Нарушения аминокислотного обмена с накоплением метаболитов в тканях. Нарушения межуточного обмена аминокислот

Поскольку в организме человека пет резервных источников белка, то белковый обмен исключительно зависит от пищевых белков. Недостаток белков в рационе или дефицит отдельных аминокислот приводит к неполному усвоению других и нарушению обмена белков в целом. Именно поэтому суточное потребление белков регламентируется Министерством здравоохра-

Рис. 12.16.

нения РФ и должно соответствовать физиологической потребности, которая учтывает возраст, вес, пол человека и уровень его физической активности.

Для оценки биологической полноценности пищевых белков существуют разные методы. К биологическим методам относятся исследования состава белков с помощью микроорганизмов и животных.

Микробиологические исследования дают неплохие результаты, но их нельзя полностью идентифицировать с усвоением белка в организме человека, поскольку в данном методе абсолютно не учитываются процессы переваривания белков в желудочно-кишечном канале.

Проведение клинических испытаний с животными - достаточно надежный способ оценки биологической полноценности белков, но очень трудоемкий и экономически затратный.

Наибольшее распространение в практике получил расчетный метод оценки биологической полноценности белков - определение аминокислотного скора. В данном методе сравнивают содержание незаменимых аминокислот в исследуемом и идеальном белке по формуле

где АК скор - аминокислотный скор, %; | АК мГ) | - масса аминокислоты в исследуемом белке, г; [АК эб ] - масса аминокислоты в эталонном белке, г.

Метод был предложен еще в 1946 г. X. Митчеллом и Р. Блоком. В настоящее время по решению ФАО и ВОЗ идеальным или эталонным белком с точки зрения аминокислотного состава считается белок яйца.

Аминокислота, имеющая наименьший скор, называется лимитирующей.

Для оценки обмена белков в организме используют расчет азотистого баланса (АБ). Это легко объяснимо, поскольку основная масса азота в организме связана с белками. Для вычислений необходимо знать:

  • количество азота, поступающего с продуктами (N n), - составляет в среднем 16% общей массы белка в продуктах;
  • количество азота, выводимого из организма с конечными продуктами (N K), - приближенно можно взять содержание мочевины в моче, так как на долю азота мочевины приходится до 95% всего азота мочи.

В результате возможны три варианта: баланс азота положительный, отрицательный или азотистое равновесие.

Положительный азотистый баланс в норме наблюдается в период роста и развития, когда закладываются новые ткани, например при беременности. Однако положительный азотистый баланс может быть результатом патологических нарушений - заболевания печени, почек или прием анаболических гормональных препаратов.

Отрицательный азотистый баланс также может быть вызван либо патологическими изменениями в организме, либо дефицитом белков или даже незаменимых аминокислот в продуктах. Например, потребление белка должно быть увеличено в период лактации. Считается, что для синтеза 1 г белка молока требуется 2 г белков пищи. В связи с этим содержание белка в рационе кормящей женщины должно быть повышено в два раза по сравнению с количеством белка, выделенного с молоком за сутки 1 .

Азотистое равновесие - норма для взрослых здоровых организмов при поступлении необходимого количества полноценных белков с продуктами.

Мониторинг, проводимый специалистами Института питания РАМН среди населения России, и данные ВОЗ свидетельствуют о недостаточном содержании биологически полноценных белков в рационе современного человека.

Таблица 12.7

Нарушения обмена белков и аминокислот

нарушения

Результат

Белковое

голодание

Дефицит перевариваемого протеина и незаменимых аминокислот в рационе.

Заболевания пищевого канала, печени, поджелудочной железы

Общая слабость, замедление роста, снижение продуктивности V животных. Гипопротеинемия.

Отрицательный азотистый баланс.

Снижение осмотического давления крови, нарушение водно-минерального обмена, «голодные» отеки

Нарушение обмена сложных белков

Хромопротеинов - различные поражения печени

Гипербилирубинемия, моча становится темной. Порфинурия, моча становится красной

Пуклеопротеииов - нарушения обмена пуриновых оснований (подагра)

Отложения мочевой кислоты и ее солей в хрящах, сухожилиях и других органах. Деформация и болезненность суставов

1 Каримова Ш. Ф., Султанов Р. Г., Зиямутдинова 3. К. Указ. соч.

К нарушениям обмена белков относят также и нарушения в обмене хромо- и нуклеопротеинов (табл. 12.7), хотя перечисленные примеры отражают изменения, наблюдаемые при распаде небелковой части этих соединений.

Если принимать в расчет не медицинские, а алиментарные аспекты таких патологий, то некоторые из них можно значительно уменьшить, изменяя рацион питания. Например, традиционные рекомендации при подагре заключаются в уменьшение общей калорийности и пуринов, которые сопутствуют мясным бульонам, субпродуктам (печень, почки), алкоголю. Нарушения обмена отдельных аминокислот (см. параграф 12.2), вызываемые наследственными причинами, также могут корректироваться благодаря правильному выбору продуктов, например, при фенилкетонурии.

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний - недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

  • фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;
  • алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;
  • глазно-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

ФЕНИЛКЕТОНУРИЯ (ФКУ) - тяжелое наследственное заболевание, которое характеризуется главным образом поражением нервной системы. В результате мутации гена, контролирующего синтез фенилаланингидроксилазы, развивается метаболический блок на этапе превращения фенилаланина в тирозин, вследствие чего основным путем преобразования фенилаланина становится дезаминирование и синтез токсических производных - фенилпировиноградной, фенил-молочной и фенилуксусной кислот. В крови и тканях значительно увеличивается содержание фвнилаланина (до 0,2 г/л и более при норме 0,01-0,02 г/л). Существенную роль в патогенезе болезни играет недостаточный синтез тирозина, который является предшественником катехоламинов и меланина. Заболевание наследуется по аутосомно-рецессивному типу.

НАРУШЕНИЯ АМИНОКИСЛОТНОГО ОБМЕНА. Наиболее часто встречающимися болезнями, связанными с нарушением аминокислотного обмена, являются фенилкетонурия и альбинизм.
В норме аминокислота фенилаланин (ФА) с помощью фермента фенилаланингидроксилазы превращается в аминокислоту тирозин, которая в свою очередь под действием фермента тирозиназы может превращаться в пигмент меланин. При нарушении активности этих ферментов развиваются наследственные заболевания человека фенилкетонурия и альбинизм.
Фенилкетонурия (ФКУ) встречается в различных популяциях людей с частотой 1:6000-1:10 000, в Беларуси - 1:6000. Она наследуется по аутосомно-рецессивному типу; больные - рецессивные гомозиготы (аа). Мутантный ген, который отвечает за синтез фермента фенилаланингидроксилазы, картирован (12q22-q24), идентифицирован и секвенирован (определена последовательность нуклеотидов).
Фенилаланин принадлежит к числу незаменимых аминокислот. Только часть ФА используется для синтеза белков; основное количество этой аминокислоты окисляется до тирозина. Если фермент фенилаланингидроксилаза не активен, то ФА не превращается в тирозин, а накапливается в сыворотке крови в больших количествах в виде фенилпировиноградной кислоты (ФПВК), которая выделяется с мочой и потом, вследствие чего от больных исходит «мышиный» запах. Высокая концентрация ФПВК приводит к нарушению формирования миелиновой оболочки вокруг аксонов в ЦНС. Дети с фенилкетонурией рождаются здоровыми, но в первые же недели жизни у них развиваются клинические проявления заболевания. ФПВК является нейро-тропным ядом, в результате чего повышаются возбудимость, тонус мышц, развиваются гиперрефлексия, тремор, судорожные эпилептиформные припадки. Позже присоединяются нарушения высшей нервной деятельности, умственная отсталость, микроцефалия. У больных наблюдается слабая пигментация из-за нарушения синтеза меланина.
Выделяются три формы этого заболевания. Фенилкетонурия I имеет аутосомно-рецессивный тип наследования, вызывается мутациями гена РАН, локализованного на длинном плече 12-й хромосомы (12q24.1).
Фенилкетонурия //также наследуется по аутосомно-рецессивному типу, генный дефект локализуется в коротком плече 4-й хромосомы, участке 4р15.3. Частота заболевания составляет 1:100 000. Вследствие недостаточности дигидроптеридин-редуктазы нарушается восстановление активной формы тетра-гидробиоптерина, участвующего в качестве кофактора в гидроксилировании фенилаланина, тирозина и триптофана, что приводит к накоплению метаболитов, нарушению образования предшественников нейромедиаторов катехоламинового и серотонинового ряда. В патогенезе заболевания имеет значение также снижение уровня фолатов в сыворотке крови, эритроцитах, спинномозговой жидкости.
Фенилкетонурия III наследуется по аутосомно-рецессивному типу и связана с недостаточностью 6-пирувоил-тетрагидроптерина синтазы, которая участвует в синтезе тетра-гидробиоптерина из дигидронеоптерина трифосфата. Частота заболевания составляет 1:30 000. Главную роль в генезе заболевания играет дефицит тетрагидробиоптерина.
Диагностика заболевания осуществляется биохимическими методами: ещё до развития клинической картины в моче определяется ФПВК, в крови - высокое содержание фенилаланина. В родильных домах обязательно проводится скрининг-тест на фенилкетонурию.
Альбинизм встречается в разных популяциях с разной частотой - от 1:5000 до 1:25 000. Наиболее распространенная его форма - глазо-кожный тирозиназонегативный альбинизм - наследуется по аутосомно-рецессивному типу.
Основными клиническими проявлениями альбинизма в любом возрасте являются отсутствие меланина в клетках кожи (молочно-белый ее цвет), очень светлые волосы, светло-серая или светло-голубая радужная оболочка глаз, красный зрачок, повышенная чувствительность к УФ-облучению (вызывает воспалительные заболевания кожи). У больных на коже отсутствуют какие-либо пигментные пятна, снижена острота зрения. Диагностика заболевания не представляет затруднений.



61. Наследственные болезни углеводного обмена (галактоземии)

К наследственным болезням, связанным с нарушением обмена углеводов, относят, например, галактоземию , при которой нарушен процесс ферментативного превращения галактозы в глюкозу. В результате галактоза и продукты ее обмена накапливаются в клетках и оказывают повреждающее действие на печень, центральную нервную систему и др. Клинически галактоземия проявляется поносом, рвотой с первых дней жизни ребенка, стойкой желтухой в связи с поражением и увеличением размеров печени, помутнением хрусталика (катаракта), задержкой умственного и физического развития.

К наследственным нарушениям обмена углеводов относится сахарный диабет (см. Диабет сахарный) и ряд других заболеваний.

Патология углеводного обмена. Увеличение содержания глюкозы в крови - гипергликемия может происходить вследствие чрезмерно интенсивного глюконеогенеза либо в результате понижения способности утилизации глюкозы тканями, например при нарушении процессов ее транспорта через клеточные мембраны. Понижение содержания глюкозы в крови - гипогликемия - может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым в этом отношении является мозг: следствием гипогликемии могут быть необратимые нарушения его функций.

Генетически обусловленные дефекты ферментов У. о. являются причиной многих наследственных болезней . Примером генетически обусловленного наследственного нарушения обмена моносахаридов может служить галактоземия , развивающаяся в результате дефекта синтеза фермента галактозо-1-фосфатуридилтрансферазы. Признаки галактоземии отмечают также при генетическом дефекте УДФ-глюкоза-4-эпимеразы. Характерными признаками галактоземии являются гипогликемия, галактозурия, появление и накопление в крови наряду с галактозой галактозо-1-фосфата, а также снижение массы тела, жировая дистрофия и цирроз печени, желтуха, катаракта, развивающаяся в раннем возрасте, задержка психомоторного развития. При тяжелой форме галактоземии дети часто погибают ни первом году жизни вследствие нарушений функций печени или пониженной сопротивляемости инфекциям.

Примером наследственной непереносимости моносахаридов является непереносимость фруктозы, которая вызывается генетическим дефектом фруктозофосфатальдолазы и в ряде случаев - снижением активности Фруктоза-1,6-дифосфат-альдолазы. Болезнь характеризуется поражениями печени и почек. Для клинической картины характерны судороги, частая рвота, иногда коматозное состояние. Симптомы заболевания появляются в первые месяцы жизни при переводе детей на смешанное или искусственное питание. Нагрузка фруктозой вызывает резкую гипогликемию.

Заболевания, вызванные дефектами в обмене олигосахаридов, в основном заключаются в нарушении расщепления и всасывания углеводов пищи, что происходит главным образом в тонкой кишке. Мальтоза и низкомолекулярные декстрины, образовавшиеся из крахмала и гликогена пищи под действием a-амилазы слюны и сока поджелудочной железы, лактоза молока и сахароза расщепляются дисахаридазами (мальтазой, лактазой и сахаразой) до соответствующих моносахаридов в основном в микроворсинках слизистой оболочки тонкой кишки, а затем, если процесс транспорта моносахаридов не нарушен, происходит их всасывание. Отсутствие или снижение активности дисахаридаз к слизистой оболочке тонкой кишки служит главной причиной непереносимости соответствующих дисахаридов, что часто приводит к поражению печени и почек, является причиной диареи, метеоризма (см. Мальабсорбции синдром ). Особенно тяжелыми симптомами характеризуется наследственная непереносимость лактозы, обнаруживающаяся обычно с самого рождения ребенка. Для диагностики непереносимости сахаров применяют обычно нагрузочные пробы с введением натощак per os углевода, непереносимость которого подозревают. Более точный диагноз может быть поставлен путем биопсии слизистой оболочки кишечника и определения в полученном материале активности дисахаридаз. Лечение состоит в исключении из пищи продуктов, содержащих соответствующий дисахарид. Больший эффект наблюдают, однако, при назначении ферментных препаратов, что позволяет таким больным употреблять обычную пищу. Например, в случае недостаточности лактазы, содержащий ее ферментный препарат, желательно добавлять в молоко перед употреблением его в пищу. Правильный диагноз заболеваний, вызванных недостаточностью дисахаридаз, крайне важен. Наиболее частой диагностической ошибкой в этих случаях являются установление ложного диагноза дизентерии, других кишечных инфекций, и лечение антибиотиками, приводящее к быстрому ухудшению состояния больных детей и тяжелым последствиям.

Заболевания, вызванные нарушением обмена гликогена, составляют группу наследственных энзимопатий, объединенных под названием гликогенозов . Гликогенозы характеризуются избыточным накоплением гликогена в клетках, которое может также сопровождаться изменением структуры молекул этого полисахарида. Гликогенозы относят к так называемым болезням накопления. Гликогенозы (гликогенная болезнь) наследуются по аутосомно-рецессивному или сцепленному с полом типу. Почти полное отсутствие в клетках гликогена отмечают при агликогенозе, причиной которого является полное отсутствие или сниженная активность гликогенсинтетазы печени.

Заболевания, вызванные нарушением обмена различных гликоконъюгатов, в большинстве случаев являются следствием врожденных нарушений распада гликолипидов, гликопротеинов или гликозаминогликанов (мукополисахаридов) в различных органах. Они также являются болезнями накопления. В зависимости от того, какое соединение аномально накапливается в организме, различают гликолипидозы, гликопротеиноды, мукополисахаридозы. Многие лизосомные гликозидазы, дефект которых лежит в основе наследственных нарушений углеводного обмена, существуют в виде различных форм, так называемых множественных форм, или изоферментов. Заболевание может быть вызвано дефектом какого-либо одного изофермента. Так, например. болезнь Тея - Сакса - следствие дефекта формы AN-ацетилгексозаминидазы (гексозаминидазы А), в то время как дефект форм А и В этого фермента приводит к болезни Сандхоффа.

Большинство болезней накопления протекает крайне тяжело, многие из них пока неизлечимы. Клиническая картина при различных болезнях накопления может быть сходной, и, напротив, одно и то же заболевание может проявляться по-разному у разных больных. Поэтому необходимо в каждом случае устанавливать ферментный дефект, выявляемый большей частью в лейкоцитах и фибробластах кожи больных. В качестве субстратов применяют гликоконьюгаты или различные синтетические гликозиды. При различных мукополисахаридозах , а также при некоторых других болезнях накопления (например, при маннозидозе) выводятся с мочой в значительных количествах различающиеся по структуре олигосахариды. Выделение этих соединений из мочи и их идентификацию проводят с целью диагностики болезней накопления. Определение активности фермента в культивируемых клетках, выделенных из амниотической жидкости, получаемой при амниоцентезе при подозрении на болезнь накопления, позволяет ставить пренатальный диагноз.

При некоторых заболеваниях серьезные нарушения У. о. возникают вторично. Примером такого заболевания является диабет сахарный , обусловленный либо поражением b-клеток островков поджелудочной железы, либо дефектами в структуре самого инсулина или его рецепторов на мембранах клеток инсулинчувствительных тканей. Алиментарные гипергликемия и гиперинсулинемия ведут к развитию ожирения, что увеличивает липолиз и использование неэтерифицированных жирных кислот (НЭЖК) в качестве энергетического субстрата. Это ухудшает утилизацию глюкозы в мышечной ткани и стимулирует глюконеогенез. В свою очередь, избыток в крови НЭЖК и инсулина ведет к увеличению синтеза в печени триглицеридов (см. Жиры ) и холестерины и, соответственно, к увеличению концентрации в крови липопротеинов очень низкой и низкой плотности. Одной из причин, способствующих развитию таких тяжелых осложнений при диабете, как катаракта, нефропатия, англопатия и гипоксия тканей, является неферментативное гликозилирование белков.

62. Наследственные болезни соединительной ткани (мукополисахаридозы)

Мукополисахаридозы или сокращенно МПС, или MPS (от (мукополисахариды + -ōsis)) - группа метаболических заболеваний соединительной ткани, связанных с нарушением обмена кислых гликозаминогликанов (GAG, мукополисахаридов), вызванных недостаточностью лизосомных ферментов обмена гликозаминогликанов. Заболевания связаны с наследственными аномалиями обмена, проявляются в виде «болезни накопления» и приводят к различным дефектам костной, хрящевой, соединительной тканей.

Виды заболеваний

В зависимости от характера ферментативного дефекта выделяют несколько основных типов мукополисахаридозов:

  • I тип - синдром Гурлер (мукомполисахаридоз I H - Hurler), синдром Гурлера-Шейе (мукополисахаридоз I H/S - Hurler-Scheie), синдром Шейе (мукополисахаридоз I S - Scheie). Обусловлен дефицитом альфа-L-идуронидазы (фермент катаболизма мукополисахаридов). Заболевание постепенно приводит к накоплению в тканях гепарансульфата и дерматансульфата. Выделяют три фенотипа: синдром Гурлера, синдром Шейе и синдром Гурлера-Шейе.
  • II тип - синдром Хантера
  • III тип - синдром Санфилиппо
  • IV тип - синдром Моркио
  • V тип - синдром Шейе
  • VI тип - синдром Марото-Лами
  • VII тип - синдром Слая дефицит р-глюкуронидазы

63. Менделизирующие признаки у человека

Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно (от греч.monos-один) то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью (от лат.penetrans-проникающий, достигающий) и постоянной экспрессивностью (степенью выраженности признака).
Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя.
Общие законы наследственности одинаковы для всех эукариот. У человека также имеются менделирующие признаки, и для него характерны все типы их наследования: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с половыми хромосомами (с гомологичным участком Х- и У-хромосом).

Типы наследования менделирующих признаков:
I. Аутосомно-доминантный тип наследования. По аутосомно-доминантному типу наследуются некоторые нормальные и патологические признаки:
1) белый локон над лбом;
2) волосы жесткие, прямые (ежик);
3) шерстистые волосы - короткие, легко секущиеся, курчавые, пышные;
4) кожа толстая;
5) способность свертывать язык в трубочку;
6) габсбургская губа - нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот;
7) полидактилия (от греч.polus – многочисленный, daktylos- палец) – многопалость, когда имеется от шести и более пальцев;
8) синдактилия (от греч. syn - вместе)-сращение мягких или костных тканей фаланг двух или более пальцев;
9) брахидактилия (короткопалость) – недоразвитие дистальных фаланг пальцев;
10) арахнодактилия (от греч. агаhna – паук) – сильно удлиненные «паучьи» пальцы

II. Аутосомно-рецессивный тип наследования.
Если рецессивные гены локализованы в аутосомах, то проявиться они могут при браке двух гетерозигот или гомозигот по рецессивному аллелю.
По аутосомно-рецессивному типу наследуются следующие признаки:
1)волосы мягкие, прямые;
2)кожа тонкая;
3)группа крови Rh-;
4)неощущение горечи вкуса фенилкарбамида;
5)неумение складывать язык в трубочку;
6)фенилкетонурия – блокируется превращение фенилаланина в тирозин, который превращается в фенилпировиноградную кислоту, являющуюся нейротропным ядом (признаки – судорожные синдромы, отставание в психическом развитии, импульсивность, возбудимость, агрессия);
7)галактоземия - накопление в крови галактозы, которая тормозит всасывание глюкозы и оказывает токсическое действие на функцию печени, мозга, хрусталика глаза;
8)альбинизм.
Частота рецессивных наследственных болезней особенно повышается в изолятах и среди населения с высоким процентом кровнородственных браков.
Некоторые признаки долгое время считались менделевскими, однако их механизм наследования, вероятно, основывается на более сложной генетической модели и, возможно, задействует более одного гена. К ним относятся:
цвет волос
цвет глаз
палец Мортона
скручивание языка

64. Наследственные болезни циркулирующих белков (талассемии)

Талассемия (анемия Кули) - наследуемое по рецессивному типу (двухаллельная система) в основе которых лежит снижение синтеза полипептидных цепей, входящих в структуру нормального гемоглобина. В норме основным вариантом гемоглобина (97%) взрослого человека является гемоглобин А. Это тетрамер, состоящий из двух мономеров α-цепей и двух мономеров β-цепей. 3% гемоглобина взрослых представлено гемоглобином А2, состоящем из двух альфа- и двух дельта-цепей. Существуют два гена HBA1 и HBA2, кодирующих мономер альфа и один HBB ген, кодирующий мономер бета. Наличие мутации в генах гемоглобина может привести к нарушению синтеза цепей определенного вида.

65. Кареотип человека. Строение и виды хромосом. См. вопр. 12 и 22

66. . Наследственные болезни циркулирующих белков (серповидноклеточная анемия)

Серповидноклеточная анемия - это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.

Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.

Серповидноклеточная анемия наследуется по аутосомно-рецессивному типу (с неполным доминированием). У носителей, гетерозиготных по гену серповидноклеточной анемии, в эритроцитах присутствуют примерно в равных количествах гемоглобин S и гемоглобин А. При этом в нормальных условиях у носителей симптомы практически никогда не возникают, и серповидные эритроциты выявляются случайно при лабораторном исследовании крови. Симптомы у носителей могут появиться при гипоксии (например, при подъеме в горы) или тяжелой дегидратации организма. У гомозигот по гену серповидноклеточной анемии в крови имеются только серповидные эритроциты, несущие гемоглобин S, и болезнь протекает тяжело.

Серповидноклеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидноклеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке. Повышенной устойчивостью к малярии обладают и гетерозиготы-носители, которые анемией не болеют (преимущество гетерозигот), что объясняет высокую частоту этого вредного аллеля в африканских

Большая часть аминокислот в организме связана в белках, зна­чительно меньшая может выполнять функцию нейромедиаторов (глицин, у-аминомасляная кислота), служить предшественниками гормонов (фенилаланин, тирозин, триптофан, глицин), коферментов, пигментов, пуринов и пиримидинов.

Современные представления о врожденных болезнях метабо­лизма основываются на результатах изучения нарушений обмена аминокислот. В настоящее время известно более 70 врожденных аминоацидопатий. Каждое из этих нарушений встречается редко. Их частота колеблется от 1:10 000 (фенилкетонурия) до 1:200 000 (алкаптонурия). При одних дефектах определяется избыток амино­кислоты-предшественника, при других накапливаются продукты ее распада. Характер нарушения зависит от места ферментативного блока, обратимости реакций, протекающих выше поврежденного зве­на, и существования альтернативных путей «утечки» метаболитов.

Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность: различают 4 формы гиперфенилаланинемии, 3 ва­рианта гомоцистинурии, 5 типов метилмалоновой ацидемии. Кли­нические проявления многих аминоацидопатий можно предотвра­тить или ослабить при ранней диагностике и своевременном нача­ле адекватного лечения: ограничение белка и аминокислот в диете, добавка витаминов. Вот почему среди новорожденных проводится скрининг на аминоацидопатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Кроме того, для диагностики врожденных нарушений обмена аминокислот используют:

Прямой ферментный метод, используя экстракты лейкоци­тов, эритроцитов, культуру фибробластов;

ДНК-ДНК-блотгибридизацию с использованием культуры клеток амниотической жидкости.

К числу наиболее распространенных аминоацидопатий отно­сится фенилкетонурия - одна из разновидностей гиперфенилала­нинемии, обусловленной нарушением превращения фенилаланина в тирозин вследствие снижения активности фенилаланингидрокси-лазы. Дефект наследуется аутосомно-рецессивно, широко распрост­ранен среди европеоидов и жителей Востока. В заметных количе­ствах фенилаланингидроксилаза обнаружена только в печени и ночках. Прямым следствием нарушения гидроксилирования фени­лаланина является накопление его в крови и моче и снижение об­разования тирозина.

Концентрация фенилаланина в плазме дости­гает уровня, достаточно высокого (более 200 мг/л) для активации альтернативных путей обмена с образованием фенилпирувата, фе. нилацетата, фениллактата и других производных, которые подвер­гаются почечному клиренсу и выводятся с мочой. Избыток фенила ланина в жидких средах организма тормозит всасывание в желудочно-кишечном тракте других аминокислот, а это лишает голов ной мозг других аминокислот, необходимых для синтеза белка, сопровождается нарушением образования или стабилизации полири­босом, снижением синтеза миелина и недостаточным синтезом норадреналина и серотонина.

Фенилаланин - конкурентный ингибитор тирозиназы, являю­щейся ключевым ферментом на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обусловливает недостаточную пигментацию волос и кожи.

У новорожденных никаких отклонений от нормы не отмечают, однако дети, оставленные без лечения с классической фенилкетонурией, отстают в развитии; у них прогрессируют нарушения функ­ций головного мозга. Гиперактивность и судороги, прогрессирую­щая дисфункция головного мозга и базальных ганглиев обуславливают резкое отставание в психическом развитии, хорею, гипотензию, регидность мышц. Вследствие накопления фенилаланина является «мышиный» запах кожи, волос и мочи, склонность к гипопигментации и экземе. Несмотря на ранний диагноз и стандартное лечение дети погибают в первые несколько лет жизни от вторичной инфекции.

У новорожденного содержание фенилаланина в плазме может быть в пределах нормы при всех 4 типах гиперфеиилаланинемии но после начала кормления белком уровень фенилаланина в крови быстро увеличивается и уже обычно на 4-й день превышает норму.

Классическую фенилкетонурию можно диагностировать прена-тально по полиморфизму длины рестрикционных фрагментов, идентифицируемому с помощью ДНК-ДНК-блотгибридизации, и после рождения ребенка по определению концентрации фенилала­нина в крови по методу Гутри (ингибирование роста бактерий).

Резкое нарушение катаболизма тирозина вследствие недостаточности фермента оксидазы гомогентизиновой кислоты обусловливает развитие алкаптонурии (алкаптон - окрашенный поли мер продуктов окисления гомогентизиновой кислоты). Дефект го фермента вызывает повышенную экскрецию гомогентизиновой кислоты с мочой и накопление окисленной гомогентизиновой лоты в соединительной ткани (охроноз). Со временем охроноз обусловливает развитие дегенеративного артрита.

Гомогентизиновая кислота - это промежуточный продукт пре­вращения тирозина в фумарат и ацетоацетат. При снижении ак­тивности оксидазы гомогентизиновой кислоты в печени и почках нарушается раскрытие фенольного кольца тирозина с образовани­ем малеилацетоуксусиой кислоты. Вследствие этого в жидких сре­дах и клетках организма накапливается гомогентизиновая кислота. Эта кислота и особенно ее окисленные полимеры связываются кол­лагеном, что приводит к усилению накопления серого или сине-чер­ного пигмента (охроноз) с развитием дистрофических изменений в хрящах, межпозвоночных дисках и других соединительнотканных образованиях.

Заболевание наследуется аутосомно-рецессивно.

Алкаптонурия может оставаться нераспознанной вплоть до развития дистрофических повреждений суставов. Такие симпто­мы, как способность мочи больных темнеть при стоянии и легкое изменение окраски склер и ушных раковин, долгое время могут оказываться незамеченными, хотя это самые ранние внешние при­знаки заболевания. Затем появляются очаги серо-коричневой пиг­ментации склер и генерализованное потемнение ушных раковин, противозавитка и завитка. Ушные хрящи фрагментируются и утолщаются. Появляется охронозный артрит с болевыми симпто­мами и тугоподвижностью, особенно в тазобедренных, коленных и плечевых суставах.

Аминокислота тирозин, поступающая с белками пищи и обра­зующаяся из фенилаланина, может превращаться:

1) в фенилпируват после переаминирования с а-кетоглютаратом, окисление которого приводит к образованию гомогентизино­вой кислоты; последняя, окисляясь, превращается в фумаровую, за­тем ацетоуксусную кислоту, которая включается в цикл Кребса;

2) ДОФА (n-диоксифенилаланин) при участии тирозиназы в норадреналин и меланин;

3) в тетра- и грийодтиронин после йодирования;

4) подвергаться декарбоксилированию.

Нарушение различных стадий окислительного превращения тирозина при участии тирозиназы и, следовательно, образование из него меланина обусловливает развитие альбинизма. Задержка окисления тирозина на стадии оксифенилпировиноградной кислоты (при недостатке витамина С и поражении паренхимы печени) индуцирует тирозиноз, который проявляется в повышенной экскреции с мочой оксифенилпирувата. Межуточный обмен триптофана характеризуется тем, что он сравнительно мало вовлекается в реакции переаминирования и дезаминирования. Большая часть триптофана превращается в никотиновую кислоту (витамин РР), и на этом этапе образуется ряд про­межуточных продуктов: кинуренин, ксантуреновая кислота, оксиант-раниловая кислота и другие. Повышение их концентрации в крови оказывает общее токсическое действие; ксантуреновая кислота нару­шает образование инсулина. Патология обмена триптофана может быть связана с недостаточностью специфических ферментов, коферментов и витамина В6, участвующих в его обмене, а также при оча­говых и диффузных поражениях печени, при инфекционных заболе­ваниях, при лечении противотуберкулезными препаратами.

Своеобразным нарушением обмена аминокислот является аминоацидурия - повышенное их выделение с мочой. Причины аминоацидурии: нарушение дезаминирования аминокислот при пораже­нии печени и нарушение реабсорбции аминокислот в почечных ка­нальцах при поражении почек.

При острой дистрофии печени или терминальной стадии цир­роза потеря с мочой аминокислот весьма значительна. Аминоацидурия возникает и при других патологических процессах (кахексия, обширные травмы, мышечная атрофия, гипертиреоз), течение кото­рых характеризуется усиленным распадом тканевых белков и уве­личением содержания аминокислот в крови.

Иногда в моче отмечается увеличенное содержание цистина - цистинурия как врожденная аномалия обмена, для которой харак­терно образование цистиновых камней в мочевыводящих путях. Более тяжелое нарушение обмена цистина - цистиноз, который сопровождается общей аминоацидурией, отложением кристаллов цистина в тканях и характеризуется ранним летальным исходом.

В целом, в основе нарушения межуточного обмена аминокис­лот лежит патология ферментативных систем (врожденные анома­лии синтеза ферментов, общая белковая недостаточность, дистро­фические процессы) или недостаточность тех или иных витаминов, гипоксия, сдвиг рН и др.

Патофизиологическое значение нарушений межуточного звена белкового обмена состоит в том, что при этих нарушениях появля­ются токсические продукты обмена и нарушаются количественные соотношения между аминокислотами, что в конечном итоге создает условия для нарушения процессов синтеза белка, образования и эк­скреции конечных продуктов белкового обмена.

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование - к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на а-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридок-саминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови - гипераминоацидемию . Следствием этого является усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием CO 2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин - с образованием гистамина, тирозин - тирамина, 1-глутаминовая кислота - γ-аминомасляной кислоты , 5-гидрокситриптофан - серотонина , производные тирозина (3,4-диоксифенилаланин) и цистина (1-цистеиновая кислота) - соответственно 3,4-диоксифенилэтиламина (дофамин ) и таурина .

Биогенные амины, как известно, обладают специфической биологической активностью и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Таких генетически обусловленных нарушений обмена аминокислот известно довольно много; все они наследуются рецессивно. Некоторые из них представлены в табл. 4.

Таблица 4 Наследственные нарушения аминокислот, связанные с отсутствием или низкой активностью ферментов

Аминокислота

Клиническое проявление

Фенилаланин

Фенилаланингидроксилаза

Фенилкетонурия Фенилпировиноградная олигофрения

Оксидаза n-гидроксифенилпировиноградной кислоты

Алкаптонурия

Оксидаза гомогентизиновой кислоты

Тирозиноз

Тирозиназа

Альбинизм

Ксантиноксидаза

Ксантинурия

Аргининсукциназа

Аргининсукцинатурия

Нарушения обмена фенилаланина. Фенилаланин в норме необратимо окисляется в тирозин. Если же в печени нарушается синтез необходимого для этого фермента фенилаланингидроксилазы (схема 14, блок а), то окисление фенилаланина идет по пути образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия . Однако этот путь обладает малой пропускной способностью и поэтому фенилаланин накапливается в большом количестве в крови, тканях и цереброспинальной жидкости, что в первые же месяцы жизни ведет к тяжелому поражению центральной нервной системы и неизлечимому слабоумию. Из-за недостаточного синтеза тирозина снижается образование меланина, что обусловливает посветление кожи и волос. Кроме того, при увеличенной выработке фенилпировиноградной кислоты тормозится активность фермента (дофамингидроксилазы), необходимого для образования катехоламинов (адреналина, норадреналина). Поэтому тяжесть наследственного заболевания определяется комплексом всех этих нарушений.

Установить болезнь можно с помощью следующей пробы: при добавлении к свежей моче нескольких капель 5% раствора трихлоруксусного железа появляется оливково-зеленая окраска. Больные погибают в детстве, если не проводится специальное лечение, которое заключается в постоянном, но осторожном (контроль за аминокислотным составом крови) ограничении поступления фенилаланина с пищей.

Нарушения обмена тирозина. Обмен тирозина осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую (см. рис. 14.9 , блок 6) первая, а также тирозин выделяются с мочой. Это нарушение носит название тирозиноза . Если же задержка окисления тирозина происходит в момент превращения гомогентизиновой кислоты в малеилацетоуксусную (см. рис. 14.9 , блок в), развивается алкаптонурия . Фермент, окисляющий гомогентизиновую кислоту (оксидаза гомогентизиновой кислоты), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота "не успевает" появиться в крови, а если и появляется, то быстро выводится почками. При наследственном дефекте этого фермента гомогентизиновая кислота в большом количестве обнаруживается в крови и моче. Моча при стоянии на воздухе, а также при добавлении к ней щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона ("захватывающий щелочь"). Гомогентизиновая кислота из крови проникает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего появляются темные пятна в области ушей, носа, щек, на склерах. Иногда развиваются тяжелые изменения в суставах.

Тирозин, кроме того, является исходным продуктом для образования красящего вещества кожи и волос - меланина. Если превращение тирозина в меланин уменьшено из-за наследственной недостаточности тирозиназы (см. рис. 14.9 , блок д), возникает альбинизм.

Наконец, тирозин является предшественником тироксина. При недостаточном синтезе фермента, катализирующего процесс йодирования тирозина свободным йодом (см. рис. 14.9 , блок г), нарушается образование гормонов щитовидной железы.

Нарушения обмена триптофана. Основной путь метаболизма триптофана приводит к синтезу амида никотиновой кислоты, который играет очень важную роль в жизнедеятельности организма, являясь простетической группой ряда окислительных ферментов - никотинамидадениндинук-леотида (НАД) и его восстановленной формы никотинамидаденин-динуклеотидфосфата (НАДФ). Поэтому при недостаточности никотиновой кислоты и ее амида нарушаются многие обменные реакции, а при значительном дефиците этих веществ развивается пеллагра .

Нарушение обмена триптофана может проявиться также в изменении количества образующегося из него серотонина.

Обеспечение организма белками из нескольких источников определяет разнообразную этиологию нарушений белкового обмена. Последние могут носить первичный или вторичный характер.

Одной из наиболее частых причин общих нарушений белкового обмена является количественная или качественная белковая недостаточность первичного (экзогенного) происхождения. Дефекты, связанные с этим, обусловлены ограничением поступления экзогенных белков при полном или частичном голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот (валина, изолейцина, лейцина, лизина, метионина, треонина, триптофана, фенилаланина, гистидина, аргинина).

При некоторых заболеваниях нарушения белкового обмена могут развиваться в результате расстройства переваривания и всасывания белковых продуктов (при гастроэнтеритах, язвенном колите), повышенного распада белка в тканях (при стрессе, инфекционных болезнях), усиленной потери эндогенных белков (при кровопотерях, нефрозе, травмах), нарушения синтеза белка (при гепатитах). Следствием указанных нарушений часто является вторичная (эндогенная) белковая недостаточность с характерным отрицательным азотистым балансом.

При длительной белковой недостаточности резко нарушается биосинтез белков в различных органах, что ведет к патологическим изменениям обмена веществ в целом.

Белковая недостаточность может развиться и при достаточном поступлении белков с пищей, но при нарушении белкового обмена.

Она может быть обусловлена:

  • нарушением расщепления и всасывания белков в ЖКТ;
  • замедлением поступления аминокислот в органы и ткани;
  • нарушением биосинтеза белка; нарушением промежуточного обмена аминокислот;
  • изменением скорости распада белка;
  • патологией образования конечных продуктов белкового обмена.

Нарушения расщепления и всасывания белков.

В пищеварительном тракте белки расщепляются под влиянием протеолитических ферментов. При этом, с одной стороны, белковые вещества и другие азотистые соединения, входящие в состав пищи, теряют свои специфические особенности, с другой стороны, из белков образуются аминокислоты, из нуклеиновых кислот - нуклеотиды и т.д. Образовавшиеся при переваривании пищи или находившиеся в ней азотсодержащие вещества с небольшой молекулярной массой подвергаются всасыванию.

Различают первичные (при различных формах патологии желудка и кишечника - хронических гастритах, язвенной болезни, раке) и вторичные (функциональные) расстройства секреторной и всасывательной функции эпителия в результате отека слизистой оболочки желудка и кишечника, нарушения переваривания белков и всасывания аминокислот в желудочно-кишечном тракте.

Основные причины недостаточного расщепления белков заключаются в количественном уменьшении секреции соляной кислоты и ферментов, снижении активности протеолитических ферментов (пепсина, трипсина, химотрипсина) и связанном с этим недостаточным образованием аминокислот, уменьшении времени их воздействия (ускорение перистальтики). Так, при ослаблении секреции соляной кислоты снижается кислотность желудочного сока, что ведет к уменьшению набухания пищевых белков в желудке и ослаблению превращения пепсиногена в его активную форму - пепсин. В этих условиях часть белковых структур переходит из желудка в двенадцатиперстную кишку в неизмененном состоянии, что затрудняет действие трипсина, химотрипсина и других протеолитических ферментов кишечника. Дефицит ферментов, расщепляющих белки растительного происхождения, ведет к непереносимости злаковых белков (риса, пшеницы и др.) и развитию целиакии.

Недостаточное образование свободных аминокислот из пищевых белков может происходить в случае ограничения поступления в кишечник сока поджелудочной железы (при панкреатите, сдавлении, закупорке протока). Недостаточность функции поджелудочной железы ведет к дефициту трипсина, химотрипсина, карбоангидразы А, Б и других протеаз, воздействующих на длинные полипептидные цепи или расщепляющих короткие олигопептиды, что снижает интенсивность полостного или пристеночного пищеварения.

Недостаточное действие пищеварительных ферментов на белки может возникнуть вследствие ускоренного прохождения пищевых масс по кишечнику при усилении его перистальтики (при энтероколитах) либо уменьшении площади всасывания (при оперативном удалении значительных участков тонкого кишечника). Это ведет к резкому сокращению времени контакта содержимого химуса с апикальной поверхностью энтероцитов, незавершенности процессов энзиматического распада, а также активного и пассивного всасывания.

Причинами нарушения всасывания аминокислот являются повреждение стенки тонкого кишечника (отек слизистой оболочки, воспаление) или неравномерное по времени всасывание отдельных аминокислот. Это ведет к нарушению (дисбалансу) соотношения аминокислот в крови и синтеза белка в целом, поскольку незаменимые аминокислоты должны поступать в организм в определенных количествах и соотношениях. Чаще всего имеет место нехватка метионина, триптофана, лизина и других аминокислот.

Помимо общих проявлений нарушения аминокислотного обмена, могут быть специфические нарушения , связанные с отсутствием конкретной аминокислоты. Так, недостаток лизина (особенно в развивающемся организме) задерживает рост и общее развитие, понижает содержание в крови гемоглобина и эритроцитов. При недостатке в организме триптофана возникает гипохромная анемия. Дефицит аргинина приводит к нарушению сперматогенеза, а гистидина - к развитию экземы, отставанию в росте, угнетению синтеза гемоглобина.

Кроме того, недостаточное переваривание белка в верхних отделах желудочно-кишечного тракта сопровождается усилением перехода продуктов его неполного расщепления в толстый кишечник и ускорением процесса бактериального расщепления аминокислот. В результате увеличивается образование ядовитых ароматических соединений (индола, скатола, фенола, крезола) и развивается общая интоксикация организма этими продуктами гниения.

Замедление поступления аминокислот в органы и ткани.

Всосавшиеся из кишечника аминокислоты поступают непосредственно в кровь и частично в лимфатическую систему, представляя собой запас разнообразных азотистых веществ, которые затем участвуют во всех видах обмена. В норме аминокислоты, всосавшиеся в кровь из кишечника, циркулируют в крови 5 - 10 мин и очень быстро поглощаются печенью и частично другими органами (почками, сердцем, мышцами). Увеличение времени этой циркуляции указывает на нарушение способности тканей и органов (в первую очередь печени) поглощать аминокислоты.

Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы. Повышенное содержание в крови тирозина способствует накоплению тирамина, который участвует в патогенезе злокачественной гипертонии. Длительное повышение содержания гистидина ведет к увеличению концентрации гистамина, что способствует нарушению кровообращения и проницаемости капилляров. Кроме того, повышение содержания аминокислот в крови проявляется увеличением их выведения с мочой и формированием особой формы нарушений обмена - аминоацидурии. Последняя может быть общей, связанной с повышением концентрации в крови нескольких аминокислот, или избирательной - при увеличении содержания в крови какой-либо одной аминокислоты.

Нарушение синтеза белков.

Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.

Среди причин, вызывающих нарушения синтеза белка, важное место занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, нарушение количественных соотношений между незаменимыми аминокислотами, поступающими в организм). Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотношениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соотношении (1:1:0,5), то синтез тканевого белка будет обеспечиваться при этом только наполовину. При отсутствии в клетках хотя бы одной из 20 незаменимых аминокислот прекращается синтез белка в целом.

Нарушение скорости синтеза белков может быть обусловлено расстройством функции соответствующих генетических структур, на которых происходит этот синтез (транскрипция ДНК, трансляция, репликация). Повреждение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующего излучения, ультрафиолетового облучения и др.). Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, ошибки в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и некоторых других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белков, может явиться нарушение регуляции этого процесса. Интенсивность и направленность белкового обмена регулируют нервная и эндокринная системы, действие которых заключается, вероятно, в их влиянии на различные ферментные системы. Клинический и экспериментальный опыт показывают, что отключение органов и тканей от ЦНС приводит к местному нарушению процессов обмена в денервированных тканях, а повреждение ЦНС вызывает расстройства белкового обмена. Удаление коры головного мозга у животных ведет к снижению синтеза белка.

Соматотропный гормон гипофиза, половые гормоны и инсулин оказывают стимулирующее воздействие на синтез белка. Наконец, причиной патологии синтеза белка может стать изменение активности ферментных систем клеток, участвующих в биосинтезе белка. В крайне выраженных случаях речь идет о блокировке метаболизма, представляющей собой вид молекулярных расстройств, составляющих основу некоторых наследственных заболеваний.

Результатом действия всех перечисленных факторов является обрыв или снижение скорости синтеза как отдельных белков, так и белка в целом.

Выделяют качественные и количественные нарушения биосинтеза белков. О том. какое значение могут иметь качественные изменения биосинтеза белков в патогенезе различных заболеваний, можно судить на примере некоторых видов анемий при появлении патологических гемоглобинов. Замена только одного аминокислотного остатка (глутамина) в молекуле гемоглобина на валин приводит к тяжелому заболеванию - серповидноклеточной анемии.

Особый интерес представляют количественные изменения в биосинтезе белков органов и крови, приводящие к сдвигу соотношений отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемий: гиперпротеинемия (увеличение содержания всех или отдельных видов белков) и гипопротеинемия (уменьшение содержания всех или отдельных белков). Так, ряд заболеваний печени (цирроз, гепатит), почек (нефрит, нефроз) сопровождаются выраженным уменьшением содержания альбуминов. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению содержания γ-глобулинов.

Развитие диспротеинемии сопровождается, как правило, серьезными сдвигами в гомеостазе организма (нарушением онкотического давления, водного обмена). Значительное уменьшение синтеза белков, особенно альбуминов и γ-глобулинов, ведет к резкому снижению сопротивляемости организма к инфекции, снижению иммунологической устойчивости. Значение гипопротеинемии в форме гипоальбуминемии определяется еще и тем, что альбумин образует более или менее прочные комплексы с различными веществами, обеспечивая их транспорт между различными органами и перенос через клеточные мембраны при участии специфических рецепторов. Известно, что соли железа и меди (чрезвычайно токсичные для организма) при pH сыворотки крови трудно растворимы и транспорт их возможен только в виде комплексов со специфическими белками сыворотки (трансферрином и церулоплазмином), что предотвращает интоксикацию этими солями. Около половины кальция удерживается в крови в форме, связанной с альбуминами сыворотки. При этом в крови устанавливается определенное динамическое равновесие между связанной формой кальция и его ионизированными соединениями.

При всех заболеваниях, сопровождающихся снижением содержания альбуминов (заболевания почек) ослабляется и способность регулировать концентрацию ионизированного кальция в крови. Кроме того, альбумины являются носителями некоторых компонентов углеводного обмена (гликопротеиды) и основными переносчиками свободных (неэстерифицированных) жирных кислот, ряда гормонов.

При поражении печени и почек, некоторых острых и хронических воспалительных процессах (ревматизме, инфекционном миокардите, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственные норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы), нарушения свертывания крови при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37 °С, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.

Патология промежуточного белкового обмена (нарушение обмена аминокислот).

Основные пути промежуточного обмена белка - это реакции переаминирования, дезаминирования, амидирования, декарбоксилирования, переметилирования, пересульфирования.

Центральное место в промежуточном обмене белков занимает реакция переаминирования, как основной источник образования новых аминокислот.

Нарушение переаминирования может возникнуть в результате недостаточности в организме витамина В 6 . Это объясняется тем, что фосфорилированная форма витамина В 6 - фосфопиридоксаль - является активной группой трансаминаз - специфических ферментов переаминирования между амино- и кетокислотами. Беременность, длительный прием сульфаниламидов тормозят синтез витамина В 6 и могут послужить причиной нарушения обмена аминокислот.

Патологическое усиление реакции переаминирования возможно в условиях повреждения печени и инсулиновой недостаточности, когда значительно увеличивается содержание свободных аминокислот. Наконец, снижение активности переаминирования может произойти в результате угнетения активности трансаминаз из-за нарушения синтеза этих ферментов (при белковом голодании) либо нарушения регуляции их активности со стороны некоторых гормонов. Так, тирозин (незаменимая аминокислота), поступающий с белками пищи и образующийся из фенилаланина, частично окисляется в печени до фумаровой и ацетоуксусной кислот. Однако это окисление тирозина совершается только после его переампнирования с α-кетоглутаровой кислотой. При белковом истощении переаминирование тирозина заметно ослаблено, вследствие этого нарушено его окисление, что приводит к увеличению содержания тирозина в крови. Накопление тирозина в крови и выделение его с мочой могут быть связаны и с наследственно обусловленным дефектом тирозинаминотрансферазы. Клиническое состояние, развивающееся в результате этих нарушений, известно под названием «тирозиноз». Для болезни характерны цирроз печени, рахитоподобные изменения костей, геморрагии, поражения канальцев почек.

Процессы переаминирования аминокислот тесно связаны с процессами окислительного дезаминирования . в ходе которого происходит ферментативное отщепление аммиака от аминокислот. Дезаминирование определяет образование конечных продуктов белкового обмена и вступление аминокислот в энергетический обмен. Ослабление дезаминирования может возникнуть вследствие нарушения окислительных процессов в тканях (гипоксии, гиповитаминозов С, РР, В 2). Однако наиболее резкое нарушение дезаминирования наступает при понижении активности аминооксидаз либо вследствие ослабления их синтеза (диффузное поражение печени, белковая недостаточность), либо в результате относительной недостаточности их активности (увеличение содержания в крови свободных аминокислот). Вследствие нарушения окислительного дезаминирования аминокислот происходит ослабление мочевинообразования, повышение концентрации аминокислот и увеличение выведения их с мочой (аминоацидурия).

Промежуточный обмен ряда аминокислот совершается не только в форме переаминирования и окислительного дезаминирования, но и путем их декарбоксилирования (потеря СO 2 из карбоксильной группы) с образованием соответствующих аминов, получивших название «биогенные амины». Так, при декарбоксилировании гистидина образуется гистамин, тирозина - тирамин, 5-гидрокситриптофана - серотонин и т.д. Все эти амины биологически активны и оказывают выраженное фармакологическое действие на сосуды. Если в норме они образуются в малых количествах и довольно быстро разрушаются, то при нарушении декарбоксилирования складываются условия для накопления в тканях и крови соответствующих аминов и проявления их токсического действия. Причинами нарушения процесса декарбоксилирования могут служить усиление активности декарбоксилаз, торможение активности аминооксидаз и нарушение связывания аминов белками.

Изменение скорости распада белка.

Белки организма постоянно находятся в динамическом состоянии: в процессе непрерывного распада и биосинтеза. Нарушение условий, необходимых для реализации этого подвижного равновесия, также может привести к развитию обшей белковой недостаточности.

Обычно полупериод существования разных белков колеблется в пределах от нескольких часов до многих суток. Так, биологическое время уменьшения наполовину альбумина человеческой сыворотки составляет около 15 сут. Величина этого периода в значительной степени зависит от количества белков в пище: при уменьшении со держания белков он увеличивается, а при увеличении - уменьшается.

Значительное увеличение скорости распада белков тканей и крови наблюдается при повышении температуры организма, обширных воспалительных процессах, тяжелых травмах, гипоксии, злокачественных опухолях, что связано либо с действием бактериальных токсинов (в случае инфицирования), либо со значительным увеличением активности протеолитических ферментов крови (при гипоксии), либо токсическим действием продуктов распада тканей (при травмах). В большинстве случаев ускорение распада белков сопровождается развитием в организме отрицательного азотистого баланса в связи с преобладанием процессов распада белков над их биосинтезом.

Патология конечного этапа белкового обмена.

Основными конечными продуктами белкового обмена являются аммиак и мочевина. Патология конечного этапа белкового обмена может проявляться нарушением образования конечных продуктов либо нарушением их выведения.

Рис. 9.3. Схема нарушения синтеза мочевины

Связывание аммиака в тканях организма имеет большое физиологическое значение, так как аммиак обладает токсическим эффектом прежде всего в отношении центральной нервной системы, вызывая ее резкое возбуждение. В крови здорового человека его концентрация не превышает 517 мкмоль/л. Связывание и обезвреживание аммиака осуществляется при помощи двух механизмов: в печени путем образования мочевины , а в других тканях - путем присоединения аммиака к глутаминовой кислоте (посредством аминирования) с образованием глутамина .

Основным механизмом связывания аммиака является процесс образования мочевины в цитруллин-аргининорнитиновом цикле (рис. 9.3).

Нарушения образования мочевины могут наступить в результате снижения активности ферментных систем, участвующих в этом процессе (при гепатитах, циррозе печени), обшей белковой недостаточности. При нарушении мочевинообразования в крови и тканях накапливается аммиак и увеличивается концентрация свободных аминокислот, что сопровождается развитием гиперазотемии . При тяжелых формах гепатитов и цирроза печени, когда резко нарушена ее мочевинообразовательная функция, развивается выраженная аммиачная интоксикация (нарушение функции центральной нервной системы с развитием комы).

В основе нарушения образования мочевины могут лежать наследственные дефекты активности ферментов. Так, увеличение концентрации аммиака (аммониемия) в крови может быть связано с блокированием карбамил-фосфатсинтетазы и орнитинкарбомо-илтрансферазы. катализирующих связывание аммиака и образование орнитина. При наследственном дефекте аргининсукцинатсинтетазы в крови резко увеличивается концентрация цитруллина, в результате с мочой экскретируется цитруллин (до 15 г в сутки), т.е. развивается цитруллинурия .

В других органах и тканях (мышцы, нервная ткань) аммиак связывается в реакции амидирования с присоединением к карбоксильной группе свободных дикарбоновых аминокислот. Главным субстратом служит глутаминовая кислота. Нарушение процесса амидирования может происходить при снижении активности ферментных систем, обеспечивающих реакцию (глутаминаза), или в результате интенсивного образования аммиака в количествах, превосходящих возможности его связывания.

Другим конечным продуктом белкового обмена, образующимся при окислении креатина (азотистое вещество мышц), является креатинин . Нормальное суточное содержание креатинина в моче составляет около 1-2 г.

Креатинурия - повышение уровня креатинина в моче - наблюдается у беременных женщин и у детей в период интенсивного роста.

При голодании, авитаминозе Е, лихорадочных инфекционных заболеваниях, тиреотоксикозе и других заболеваниях, при которых наблюдаются нарушения обмена в мышцах, креатинурия свидетельствует о нарушении креатинового обмена.

Другая общая форма нарушения конечного этапа белкового обмена возникает при нарушении выведения конечных продуктов белкового обмена при патологии почек. При нефритах происходит задержка мочевины и других азотистых продуктов в крови, остаточный азот увеличивается и развивается гиперазотемия. Крайней степенью нарушения экскреции азотистых метаболитов является уремия.

При одновременном поражении печени и почек возникает нарушение образования и выделения конечных продуктов белкового обмена.

Наряду с общими нарушениями белкового обмена при белковой недостаточности могут возникать и специфические нарушения в обмене отдельных аминокислот. Например, при белковой недостаточности резко ослабляется функция ферментов, участвующих в окислении гистидина, а функция гистидиндекарбоксилазы, в результате действия которой из гистидина образуется гистамин, не только не страдает, но, наоборот, усиливается. Это влечет за собой значительное увеличение образования и накопления в организме гистамина. Состояние характеризуется поражением кожи, нарушением сердечной деятельности и функции желудочно-кишечного тракта.

Особое значение для медицинской практики имеют наследственные аминоацидопатии , число которых на сегодня составляет около 60 различных нозологических форм. По типу наследования почти все они относятся к аутосомно-рецессивным. Патогенез обусловлен недостаточностью того или иного фермента, осуществляющего катаболизм и анаболизм аминокислот. Общим биохимическим признаком аминоаиидопатий служит ацидоз тканей и аминоацидурия. Наиболее частыми наследственными дефектами обмена являются четыре вида энзимопатии, которые связаны между собой общим путем метаболизма аминокислот: фенилкетонурия, тирозинемия, альбинизм, алкаптонурия.