Кровь животных. Переливание крови (гемотрансфузия) у животных - кошек и собак

Прямое переливание заключается в перекачивании крови непосредственно из кровяного русла донора в кровяное русло реципиента.

Прямое переливание крови по И. О. Поваженко

1. Донора ставят на возвышенную площадку. Если такой площадки нет, то реципиента фиксируют в лежачем положении, а донора в положении стоя.

2. Яремную вену донора перетягивают жгутом для создания повышенного давления в правой или левой яремной вене.

3. Система для переливания состоит из 2 отрезков резиновой или полихлорвиниловой трубки, которые заканчиваются иглами. Свободные концы отрезков соединяют стеклянной трубкой с расширением. Длина всей системы для переливания должна быть не меньше 1,5-2 метра.

4. В вену донора вводят иглу чуть меньшего диаметра, чтобы кровь без задержки попадала в вену реципиента. Пункцию вен проводят одновременно у 2 животных (система должна быть разъединена от иглы реципиента и свободный конец трубки опущен вниз).

5. Когда кровь донора начинает течь равномерной струей, конец трубки присоединяют к игле. Для дозирования крови, которую необходимо перелить однократно определяют пропускную способность системы. Для этого сдавливают жгутом вену донора, систему опускают вниз и замеряют вытекающий объем крови за 1 минуту. Если, например, за минуту вытекло 150 мл крови, а надо перелить 1,5 литра, то систему накладывают на 10 минут.

6. При длительных переливаниях место пункции вены у реципиента и донора обезболивают (инфильтрационная анестезия). Также вводят животным нейролептик .

Наиболее широкое применение получили непрямые переливания крови

При этом кровь для переливания заготавливается заранее и подвергается стабилизации или консервации.

Консервирование крови – это комплекс воздействий на нее, имеющих своей целью создание условий для длительного хранения крови вне организма в стерильном состоянии с максимальным сохранением ее биологических свойств (как форменных элементов, так и жидкой части крови).

Для консервирования крови используются два метода:
  1. консервирование при положительных температурах;
  2. консервирование при отрицательных температурах.

Хранение крови при положительных температурах обычно происходит в бытовых комнатных холодильниках. Они обеспечивают поддержание температурного режима в пределах от +2 до +4°С.

Для того чтобы избежать таких нежелательных последствий при длительном хранении крови, используется ее консервирование при отрицательных температурах.

Для криоконсервирования используются следующие температурные режимы: умеренно низкие температуры (–40..–60°С), ультранизкие температуры (–196°С).

При умеренно низких температурах кровь может храниться несколько месяцев, а при ультранизких – 10 и более лет.

В качестве обязательного компонента во все консервирующие растворы входят особые химические вещества – стабилизаторы.

Широкое распространение в практической деятельности получили такие стабилизаторы как лимонная кислота и цитрат натрия. Они связывают ионы кальция, что способствует подавлению одного из этапов процесса гемостаза – образования тромбина.

Важным свойством цитрата натрия является то, что через 20–30 мин после трансфузии крови , стабилизированной с его помощью, он почти полностью (не менее 90%) выводится из организма.

Необходимо помнить о том, что при острой кровопотере в результате введения стабилизированной цитратом натрия крови может возникнуть дефицит ионов кальция, поэтому после гемотрансфузии объемом в 500 мл надо внутривенно ввести 10 мл 10 % раствора хлорида или глюконата кальция.

К другой разновидности стабилизаторов относится гепарин . Он препятствует свертыванию крови , непосредственно связывая и инактивируя тромбин.

Существенным недостатком гепарина при использовании его в качестве стабилизатора является то, что он не позволяет длительно сохранять консервированную с его помощью кровь , потому что по мере увеличения срока хранения происходит инактивация гепарина. В результате этого уже через сутки образуются мелкие, а через двое суток и крупные сгустки крови .

В этой статье мы бы хотели коснуться такой важной составляющей в лечении животных, как лабораторная диагностика. Данный материал предназначен прежде всего для владельцев животных и призван помочь им в понимании такого важного звена в цепи процессов постановки диагноза и лечения животного, как лабораторная диагностика и факторов, влияющих на необходимость сдачи анализов кошки или собаки.

Пусть простят меня коллеги - ветеринарные врачи, читающие эту статью, за некоторый непрофессиональный «жаргон» в тексте. Повторюсь, статья предназначена для обычных владельцев, не владеющих специальной терминологией.

Наука вообще, а вместе с ней и ветеринарная наука, не стоит на месте. С каждым годом усовершенствуются методы лечения животных, уровень ветеринарных специалистов постоянно растет, повышается их квалификация и увеличиваются требования к уровню диагностики болезней кошек и собак, хомячков и морских свинок, кроликов и птиц.

В относительно недавние времена просто невозможно было найти ветеринарную клинику, имеющую такой обычный по сегодняшним меркам аппарат, как ультразвуковой сканер. Сейчас он есть в каждой второй ветеринарной клинике. Более того, в настоящее время есть даже специалисты, умеющие проводить грамотную УЗИ-диагностику состояния органов животных. Тоже самое можно сказать и о рентгеновском аппарате. Все это сейчас есть во многих ветеринарных клиниках, этим умеют пользоваться специалисты, это оборудование в разы улучшает качество лечения животных.

Далеко не так хорошо обстоит дело с лабораторной диагностикой болезней животных. То есть, скажем, биохимический анализатор крови тоже сейчас не редкость, имеется во многих ветеринарных учреждениях. Но… Далеко не все умеют его применять. Далеко не всегда анализы, проведенные кустарно, используя дешевый биохимический анализатор, проводимые не специалистами по лабораторной диагностике, отличаются от анализов, написанных «на коленке», как до сих пор делают наши некоторые коллеги, выдавая такие «анализы» за истину. Такой диагностике не стоит доверять. Гораздо более высокий уровень доверия имеют специализированные ветеринарные лаборатории. По материалам одной из московских ветеринарных лабораторий и написана данная статья.

Итак, чем же отличается ветеринарная лаборатория какой-либо ветеринарной клиники и специализированная ветеринарная лаборатория? Прежде всего – контроль качества исследований. Причем контроль как самой лаборатории независимыми экспертами, так и контроль, выполняемый лабораторией на разных этапах исследований.

Контроль качества исследований включает три этапа:
1. Преаналитический этап – взятие материала, хранение и доставка в лабораторию
2. Аналитический этап – контроль точности оборудования и качества химреактивов, применяемых для лабораторных исследований
3. Постаналитический этап – ретроспективная оценка выдаваемых результатов, анализ полученных результатов, вычисление погрешностей.

Для анализа контроля качества применяются специально разработанные программы.

Все вышесказанное дает независимым лабораториям неоспоримое преимущество в качестве исследований и достоверности результатов лабораторных исследований.

Мы неспроста уделили столько внимания вступлению. Это поможет вам понять отличия в методиках диагностики и, при необходимости, принять верное решение, куда сдавать анализы собаки или кошки, где можно получить наиболее достоверные результаты лабораторных исследований.

Ни одна независимая лаборатория не смогла бы существовать, работая самостоятельно, проводя анализы только клиентам - владельцам животных, приводящих своих собак и кошек непосредственно в лабораторию. Поэтому ветеринарные лаборатории тесно сотрудничают с ветеринарными врачами и ветеринарными клиниками, желающими получать достоверные результаты и на основании результатов анализов ставить точный диагноз животному и назначать адекватное лечение. Памятуя о том, что специализированная ветеринарная лаборатория дает более достоверные результаты анализов, такие клиники и частные врачи имеют в своем распоряжении мощную диагностическую базу, помогающую им в работе. Таким образом, данный вид сотрудничества выгоден всем – и ветлаборатории, и врачу, и клинике и вам, дорогие владельцы животных. Ведь прежде всего в качественном лечении и скорейшем выздоровлении животного заинтересованы вы.

Предваряя вопросы, сразу оговорюсь. Мы намеренно не приводим референтные интервалы показателей исследований. Дело в том, что у каждой лаборатории эти интервалы (нормы) свои, полученные аналитическим путем.

В связи с этим сразу совет любителям проконсультироваться в всевозможных форумах - если приводите какие-либо показатели лабораторных анализов собак и кошек, всегда приводите и референтные интервалы той лаборатории, в которой делали анализ.

В противном случае консультация может оказаться практически бесполезной.

Для проведения диагностики берется венозная кровь в специальную пробирку с антикоагулянтом для предотвращения свертывания крови и разрушения форменных элементов. Важный момент – уровень профессиональной подготовленности специалиста, производящего забор анализа у кошки или собаки. Данная процедура требует определенных навыков.
Исследования проводятся на специальных лабораторных автоматических анализаторах крови.

-- Биохимические исследования крови животных
Важнейший метод диагностики патологических состояний животного. Исследование сыворотки крови дает возможность оценить активность тех или иных ферментов в организме, тем самым давая возможность оценить не только какие органы поражены, но и оценить тяжесть патологического состояния. Кроме ферментов при проведении биохимии крови исследуется количество субстратов и жиров, а также электролитов (микроэлементов, растворенных в плазме крови) сыворотки. В комплексной оценке состояния организма проведение биохимии является важнейшим этапом.

Для проведения диагностики берется венозная кровь в специальную пробирку, применение которой дает возможность «отбить» сыворотку крови. Кровь берется натощак! И обязательно ДО проведения каких-либо лечебных процедур.
Важный момент – уровень профессиональной подготовленности специалиста, производящего забор анализа у кошки или собаки. Данная процедура требует определенных навыков. Важно соблюдать сроки доставки анализов в лабораторию.
Исследования проводятся на специальных лабораторных биохимических анализаторах крови.

-- Общий клинический анализ мочи (ОКА мочи)
Незаменимый способ диагностики множества патологий, связанных, прежде всего, с системой мочевыделения. И не только. Важнейший способ диагностики причин непроходимости мочевыводящих протоков, для определения причин закупорки мочевыводящих путей и определения состояния органов мочевыделения (почек). При комплексном проведении ОКА мочи выясняется наличие и тип неорганических соединений в осадке (кристаллы мочевой кислоты, трипельфосфаты, оксалаты кальция и проч.), что дает возможность назначить правильное лечение при мочекаменной болезни кошек и собак.

Оценивается прозрачность, цвет, наличие включений, органические и неорганические составляющие, кислотность мочи и проч.
Для проведения анализа мочи ее собирают утром, в сухую чистую (лучше стерильную) посуду. Желательно, сразу в тот сосуд, в котором моча будет доставлена в лабораторию. Важно (!) Катетером мочу брать нежелательно. Из длительно стоящего в мочевыводящих путях катетера мочу брать нельзя вообще! Наиболее точные результаты анализа мочи получаются, если моча на анализ взята методом прямого прокола мочевого пузыря. Данная манипуляция при должном уровне подготовленности ветеринарного специалиста не представляет никакой угрозы для животного. Зато позволяет оценить реально бакобсемененность мочи, давая ветврачу возможность назначить адекватное лечение.

Исследования мочи проводятся аппаратно, микроскопия осадка проводится экспертами лаборатории визуально.

-- Общий клинический анализ кала (ОКА кала)
С помощью этого анализа можно оценить:

  • ферментативную активность и переваривающую способность желудка и кишечника;
  • характер и интенсивность микробной деятельности (дисбактериоз);
  • наличие воспалительного процесса;
  • эвакуаторную функцию желудка и кишечника (как работает ЖКТ);
  • наличие гельминтов, простейших и их яиц (цист)

Оценивается кислотность, цвет, запах кала, его консистенция, наличие специфичных для кала химических соединений и крови.

Для проведения анализа кала его собирают в одноразовую специальную лабораторную пластиковую посуду. Важно доставить пробу кала не позднее чем через 12 часов после его сбора.

Нельзя (!) направлять для исследования кал, взятый после клизьмирования, а также кал, собранный после проведения диагностических рентгенологических исследований с рентгеноконтрастными веществами. В этом случае результаты ОКА кала грозят оказаться недостоверными.

-- Определение содержания гормонов в крови
Важный диагностический метод для выяснения патологий, связанных с деятельностью желез внутренней секреции. Исследования дорогостоящие, поэтому назначать, на определение каких гормонов сдавать анализ, должен ветеринарный врач-эндокринолог. В противном случае определение ненужных в вашем случае гормонов может болезненно ударить по вашему кошельку.
Материалом для исследования является венозная кровь. Кровь следует взять натощак. Крайне важно тотчас же отделить сыворотку (достигается применением специальных лабораторных пробирок или центрифугированием крови). Сыворотку крови следует немедленно заморозить и как можно скорее доставить в лабораторию.

При повторных исследованиях кровь следует брать при аналогичных первому забору крови условиях.

При бактериологическом исследовании крови или смывов-мазков с пораженных поверхностей производится типизация возбудителя методом посева на питательные среды и определением типа роста колоний микроорганизмов с последующей микроскопией и визуальной типизацией возбудителя. В дальнейшем проводится подтитровка возбудителя на чувствительность к нескольким видам антибиотиком, позволяя определить наиболее подходящий в каждом конкретном случае антибиотик. Срок проведения бакисследования – 5-7 дней.

Аналогично бактериологическому исследованию проводится исследование микологическое. Срок исследования – 14 дней. Связано это с очень медленным ростом грибков. Так же, как и с бакисследованиями, при микологическом исследовании проводится подтитровка чувствительности выделенного гриба к микостатикам.

Материал для микробиологических исследований – кровь, смывы со слизистых, выделения из носовых каналов, из гнойных полостей, смывы с пораженных поверхностей, трахеальная слизь и проч.

-- Исследования на инфекционные заболевания
Наиболее прогрессивным на сегодняшний день методом диагностики инфекционных заболеваний у животных является полимеразная цепная реакция (ПЦР). Данный метод позволяет определить возбудителя (его фрагментов) даже в сверхмалом количестве патматериала.

Исследования методом ПЦР наиболее надежны на сегодняшний день, они дают максимально достоверные результаты исследования в довольно короткие сроки. Срок выполнения анализа на инфекционные заболевания методом ПЦР – от 1 до 3 суток.

Ниже приведены данные по предоставляемым при исследовании на каждую болезнь материалам для исследований на инфекции:

Инфекция

Метод исследования

Материал

Аденовироз респираторный

Выделения из носа, глаз

Бореллиоз (болезнь Лайма)

Кровь, суставная жидкость

Бруцеллез

Кровь, синовиальная жидкость, околоплодная жидкость, абортированный плод

Вирусная лейкемия кошек

Вирусный гепатит собак

Сыворотка крови, кал

Вирусный иммунодефицит кошек

Вирусный перитонит кошек

Асцитная жидкость, кровь

Вирусный ринотрахеит кошек

Смывы со слизистых носа, глаз, мокрота

Герпесвирус (тип 1,2)

Смывы со слизистых

Грипп лошадей

Кровь, смывы со слизистых, мокрота

Грипп птиц

Кровь, выделения из респираторных органов, части органов и тканей

Дирофилляриоз

Калицивироз кошек

Смывы с язв ротовой полости, выделения из носа и рта

Криптоспоридиоз

Короновирусная инфекция

Лейкоз КРС

Лептоспироз

До 5-7 дня болезни кровь, позже - моча

Лямблиоз

Микоплазмоз

Смывы со слизистых, синовиальная жидкость, мокрота, выделения из носа и глаз

Панлейкопения кошек

Кровь циркулирует в замкнутой сосудистой сети, поэтому её объём должен соответствовать объёму сосудистого русла. Общий объём крови в организме является видовым признаком и обычно выражается в процентах от массы тела. Величина среднего объёма крови у лошади 9,8 %, крупного рогатого скота 8,2 %, мелкого рогатого скота — 8,2 %, свиньи сального типа — 4,6 %, свиньи мясного типа — 7 %, кур — 8,5 %, кроликов — 5,4 %, собаки — 6,8 %, у кошки — 5 %. У человека объём крови составляет около 7 % от массы тела.
Объём крови у самцов из-за повышенного содержания эритроцитов, как правило, больше, чем у самок. С возрастом объём крови уменьшается, наступает дегидратация организма.
Для определения объёма крови в неё вводят какую-либо безвредную краску (например, конгорот). После того как краска распределится по всем сосудам, берут порцию крови из вены и определяют в ней концентрацию краски. Затем рассчитывают объём крови, в котором эта краска распределилась.
С этой же целью используют метод меченых атомов . Берут кровь у животного, отделяют эритроциты и инкубируют их в растворе, содержащем радиоактивный фосфор. Эритроциты адсорбируют его из раствора и становятся «мечеными». Их снова вводят в кровь того же животного и через некоторое время определяют радиоактивность крови.
Из всего объёма крови примерно половина циркулирует по организму. Остальная же половина задерживается в расширенных капиллярах некоторых органов и называется депонированной. Органы, в которых депонирована кровь, именуются кровяным депо . К таким органам относится, например, селезёнка. Она вмещает в своих лакунах — отростках капилляров до 16 % всей крови. Эта кровь практически выключена из кругооборота и не смешивается с циркулирующей. При сокращении гладких мышц селезёнки лакуны сжимаются и кровь поступает в общее русло.
Печень, включающая в себя до 20 % объёма крови, выполняет роль кровяного депо за счёт сокращения сфинктеров печёночных вен, по которым кровь оттекает от печени. В результате этого крови в печень поступает больше, чем оттекает. Капилляры печени расширяются, кровоток в ней замедляется. Однако депонированная в печени кровь полностью не выключается из кровотока.
Подкожная клетчатка депонирует до 10 % крови. В кровеносных капиллярах кожи имеются анастомозы. Часть капилляров расширяется, заполняется кровью, а кровоток совершается по укороченным путям (шунтам).
Лёгкие также можно отнести к органам, депонирующим кровь. Объём сосудистого русла лёгких не постоянен. Он зависит от вентиляции альвеол, величины кровяного давления в них и кровенаполнения сосудов большого круга кровообращения.
Таким образом, депонированная кровь выключена из кровотока и в основном не смешивается с циркулирующей кровью. Вследствие всасывания воды депонированная кровь более густа и содержит большее количество форменных элементов.
Значение депонированной крови заключается в следующем. Когда организм находится в состоянии физиологического покоя, его органы и ткани не нуждаются в усиленном снабжении кровью. В этом случае депонирование крови снижает нагрузку на сердце, в результате чего оно работает на 1/5 — 1/6 своей мощности. При необходимости кровь может быстро перейти в кровоток, например, при физической работе, сильных эмоциональных переживаниях, вдыхании воздуха с повышенным содержанием диоксида углерода — то есть во всех случаях, когда требуется увеличить доставку кислорода и питательных веществ органам.
В механизмах перераспределения крови между депонированной и циркулирующей участвует вегетативная нервная система: симпатические нервы вызывают увеличение объёма циркулирующей крови, а парасимпатические — переход крови в депо. При поступлении в кровь большого количества адреналина происходит выход крови из депо.
При кровопотерях объём крови восстанавливается , прежде всего, за счёт перехода тканевой жидкости в кровь, после чего в кровоток поступает депонированная кровь. В результате объём плазмы восстанавливается значительно быстрее, чем количество форменных элементов.
При увеличении объёма крови (например, при введении большого количества кровезаменителей или при выпаивании большого количества воды) часть жидкости быстро выводится почками. Большая же часть переходит в ткани, а затем постепенно выводится из организма. Таким образом, восстанавливается объём крови, заполняющий сосудистое русло.

Кровь. Кровь — это жидкостная тканевая система, состоящая из плазмы и форменных, или клеточных, элементов, которая циркулирует по сосудам, выполняя разнообразные функции: транспортную, дыхательную, регуляторную, гомеостатическую и защитную. Последняя выражается как в иммунном надзоре, так и в неспецифической защите - фагоцитозе, нейтрализации чужеродных агентов, выделении лизоцима, комплемента и других факторов. Кровь составляет у позвоночных животных от 5 до 9 % массы тела, причем на плазму приходится около 60 % объема крови, а на форменные элементы около 40 %.

Плазма крови. В плазме млекопитающих содержится 90…93 % воды и 7…10 % органических и минеральных соединений.

Плазма представляет собой коллоидную систему, в состав которой входят: солевые растворы, белки (альбумины, глобулины и фибриноген), жиры (фосфолипиды, холестерин), углеводы (глюкоза), аминокислоты и различные продукты обмена.

Форменные элементы крови. Их подразделяют на три группы: эритроциты (красные кровяные тельца у млекопитающих), лейкоциты (белые, или бесцветные, клетки) и тромбоциты (кровяные пластинки у млекопитающих)

Эритроциты. Это основной тип клеток крови: в 1 мкл крови их содержится в 1000 раз больше, чем лейкоцитов. Эритроциты - узкоспециализированные клетки; у млекопитающих животных они в процессе дифференцировки утратили ядро и приобрели вид двояковогнутого диска; у всех других позвоночных они овальной формы и содержат ядро с сильно конденсированным хроматином. Эритроциты животных разных видов существенно отличаются по размерам: диаметр эритроцита составляет, мкм: у лошади 5,7, у коровы 5,1, у свиньи 5,5, у овцы 4,3, у слона 9,4, у морской свинки 7,2, у кабарги 2,5. Размеры эритроцитов не зависят от массы тела животного: самые мелкие, как правило, обнаруживают у животных с более высоким уровнем тканевого метаболизма.

Снаружи эритроцит покрыт плазматической мембраной толщиной 20 нм, гликопротеиды которой определяют группу крови. Плазмолемма эритроцитов эластична и пластична, что необходимо при их движении по сети мелких кровеносных сосудов. Она легко проницаема для газов и анионов, обеспечивает активный перенос ионов натрия и глюкозы. Цитоплазма эритроцита на 34 % состоит из гемоглобина, в котором кроме белковых цепей (глобинов) присутствует простетическая (небелковая) группа - гем. Эта сложная гетероциклическая структура содержит атом двухвалентного железа и служит местом присоединения кислорода. Наличие гемоглобина в эритроцитах обусловливает оксифилию цитоплазмы последних при окраске азуром и эозином. При этом более вогнутая центральная часть клетки - (там, где было ядро), окрашивается слабее, чем периферическая. Площадь центральной части составляет около 30 % общей площади эритроцита. При анемиях и кахексиях наблюдают гипохромные эритроциты (за счет расширения бледно окрашенной центральной части). В цитоплазме зрелых эритроцитов даже при электронной микроскопии не удается обнаружить никаких органелл. Внутреннее содержимое клеток характеризуется высокой электронной плотностью. В некоторых эритроцитах при электронно-микроскопическом исследовании можно выявить компоненты белоксинтезирующей системы - рибосомы, отдельные митохондрии и элементы ЭПС. При специальном суправитальном окрашивании мазков крови бриллиантовым крезиловым синим, указанные компоненты выявляются в виде зернисто-сетчатых структур; такие клетки, называют ретикулоцитами, они являются предшественниками зрелых эритроцитов. Их количество может значительно увеличиваться при усиленном эритропоэзе.

У эритроцитов большинства млекопитающих форма двояковогнутого диска (и только у отряда мозоленогих эритроциты овальные), размеры могут колебаться в пределах 20 %. Форма эритроцитов обеспечивает максимальную площадь при минимальном объеме. Эритроциты меньшего диаметра носят названием микроцитов, большего - макроцитов, а среднего - нормоцитов. В количественном отношении все три типа соотносятся как 12,5 %, 12,5 % и 75%. Резкое различие эритроцитов по размерам - анизоцитоз - отмечают при функциональной недостаточности кроветворных органов. Появление в крови разнообразных по форме эритроцитов - пойкилоцитоз - наблюдают при септических заболеваниях и истинных анемиях. При анемиях и кахексиях снижается способность цитоплазмы эритроцитов воспринимать эозин, и в мазке крови обнаруживают олигохромные клетки.

Продолжительность жизни эритроцитов составляет дни: у свиньи 70, у крупного рогатого скота 50…60, а у овцы 140. Ежедневно в организме разрушаются миллионы эритроцитов. Их гибель компенсируется интенсивным кроветворением. Следует иметь в виду, что соотношение клеток различных генераций в периферической крови довольно постоянно, поэтому его нарушение между молодыми и стареющими формами имеет важное диагностическое значение. Основная функция эритроцитов - обеспечение клеток, тканей и органов кислородом. Кроме того, эритроциты могут адсорбировать на своей поверхности и транспортировать аминокислоты, некоторые лекарственные вещества и токсины. В плазматической мембране животных присутствует большое количество антигенных факторов (А, В, С и так далее), по которым определяют группу крови.

Лейкоциты. Количество лейкоцитов в крови может варьировать в зависимости от функционального состояния организма (увеличиваться во время пищеварения, при усиленной физической работе, беременности). Эти клетки принимают участие в защитных реакциях, в восстановительных и обменных процессах, о чем свидетельствуют обильные включения гликогена в цитоплазме (например, в лейкоцитах лошади и свиньи), а также присутствие многочисленных ферментов.

Морфологическая идентификация лейкоцитов основана на особенностях строения ядра, наличии зернистости в цитоплазме и тинкториальных свойствах последней. По этим признакам лейкоциты классифицируют следующим образом.

Гранулоциты или зернистые лейкоциты, имеют сегментированное ядро, и содержат в цитоплазме специфическую зернистость.

В зависимости от окраски гранул их подразделяют:
на базофильные - гранулы окашиваются основным красителем (азуром) в сине-фиолетовый цвет;
эозинофильные - гранулы окрашиваются кислым красителем (эозином) в розовый цвет;

нейтрофильные - содержат видимые только под электронным микроскопом гранулы двух видов, что придает цитоплазме слабо розовый цвет.

Агранулоциты или незернистые лейкоциты, не содержат в цитоплазме гранул и их ядра не сегментированы.

Среди агранулоцитов различают лимфоциты и моноциты

Количество лейкоцитов более или менее постоянно у каждого вида животных. Процентное соотношение различных форм лейкоцитов напевают лейкограммой. В зависимости от преобладания лимфоцитов или нейтрофилов различают лимфоцитарный профиль лейкограммы (например, у крупного рогатого скота) или нейтрофильный (например, у лошади) (табл.)

Лейкограмма крови некоторых домашних животных (%)

Вид животного

Примечание.

Б - базофильные гранулоциты;

Э - эозинофильные гранулоциты;

Н — нейтрофильные гранулоциты

(ю — юные, п — палочкоядерные, с — сегментоядерные)

Л -лимфоциты;

М - моноциты

Базофильные гранулоциты. Это относительно крупные, округлой формы клетки, размером 11…17 мкм, с хорошо выраженной зернистостью в цитоплазме и окрашивающимся диффузно полиморфным ядром. У лошади и свиньи форма ядра напоминает лист клевера, а у крупного рогатого скота - розетку с 5…7 сегментами. В цитоплазме базофилов встречаются гранулы двух типов - специфические (базофильные) и азурофильные. Последние весьма малочисленны и представляют собой лизосомы. Специфические гранулы окрашиваются азуром не в синий, а в красно-фиолетовый цвет, то есть с изменением цвета красителя. Гранулы нестойки и легко растворяются в воде. В их состав входит гепарин, препятствующий свертыванию крови, гистамин, расширяющий гемокапилляры и увеличивающий порозность их стенки, и серотонин, способствующий сокращению миофибрилл и сужению просвета капилляров. Кроме того, в гранулах содержится ЕСЕ-фактор, привлекающий эозинофилы, и протолитические ферменты - кислая фосфатаза и пероксидаза.

Базофилы в мазках крови встречаются редко.

Эозинофильные гранулоциты. Эти клетки крупнее базофилов в полтора-два раза. Ядро их состоит из 2…3 сегментов, гранулы цитоплазмы окрашиваются эозином в красноватый цвет, характерны эозинофилы у лошади и собаки: крупные пурпурные гранулы придают эозинофилу сходство с ягодой малины.

В гранулах содержатся гидролитические ферменты - оксидаза, пероксидаза, арилсульфатаза, а в кристаллоидах (специфические гранулы) - гистаминаза и основной белок (состоит на 50 % из аргинина), характеризующийся мощными антипротозойными, антигельминтными и антибактериальными свойствами. Количество эозинофилов в периферической крови максимально в ночные часы и минимально в утренние. Эти клетки, попав в периферическую кровь из красного костного мозга, пребывают в ней не более 3…8 ч, затем мигрируют в соединительную ткань (кишечника, легких, кожи и других органов), стимулируя фагоцитарную активность макрофагов. Их количество резко возрастает в крови при аллергических реакциях, а также некоторых инвазиях.

Кроме защитной, эозинофилы выполняют иммунорегуляторную функцию (особенно при аллергических реакциях), нейтрализуют антигены, гистамин и медиаторы воспаления.

Нейтрофильные гранулоциты. Это небольших размеров клетки, диаметром 12мкм, со слабооксифильной цитоплазмой. Их количество в лейкограмме составляет до 60 % у животных с нейтрофильным профилем и до 30 % — с лимфоцитарным профилем.

У нейтрофилов полиморфные ядра. Для зрелых клеток характерно сильно сегментированное ядро, состоящее из 2…5 сегментов (у свиньи чище 3, у коровы и лошади 4), связанных тонкими перемычками. V молодых незрелых клеток (их количество в лейкограмме незначительно, но возрастает существенно в острую фазу инфекционного процесса) ядро в форме подковы или палочки. В цитоплазме нейтрофилов кроме органелл общего значения постоянно встречаются включения гликогена и многочисленные азурофильные и специфические гранулы - видимые только при микроскопировании в иммерсионной системе или под электронным микроскопом.

Азурофильные гранулы (их количество составляет 10…20 %) представляют собой лизосомы, содержащие не более шести гидролитических ферментов, в том числе пероксидазу. В специфических гранулах (их количество достигает 90%) содержится щелочная фосфатаза, основной катионный белок и фагоцитины, обладающие антибактериальной активностью. У кроликов, многих птиц и представителей других классов вместо гранул встречаются оксифильные палочковидные включения, за что эти клетки получили название псевдоэозинофилов. Нейтрофилы играют важную роль в воспалительных реакциях, особенно в острой фазе. Они движутся по градиенту концентрации веществ, выделяемых бактериями (хемотаксис), фагоцитируют и переваривают последних. И. И. Мечников назвал эти клетки микрофагами.

Моноциты. Это самые крупные клетки лейкоцитарного ряда, диаметром до 20 мкм, с бобовидным, лопастным или округлым ядром, расположенным эксцентрично. Их бледно-голубая цитоплазма (слабобазофильная) содержит азурофильные гранулы, в состав которых входят гидролитические ферменты - пероксидаза, кислая фосфатаза и эстеразы. Клетки снабжены многочисленными микроскопическими выростами цитоплазмы (микровилли) и обладают амебоидной подвижностью. Моноциты находятся в периферической крови от 16 до 104 ч, затем мигрируют за пределы сосудистого русла, превращаясь в типичные макрофаги, снабженные отростками. В цитоплазме макрофагов обнаруживают множество лизосом, фагосом, вакуолей и липидные включения. Макрофаги несут на своих мембранах рецепторы иммуноглобулинов и комплемента и способны к селективному фагоцитозу. Они инактивируют антигены и стимулируют иммунокомпетентные лимфоидные клетки. Активированные макрофаги секретируют и выделяют в окружающую среду различные биологически активные вещества - интерлейкины (1 и 4), катионные белки, хемотаксические факторы для нейтрофилов, лизоцим, пирогены и другие. В очагах воспаления макрофаги утилизируют продукты распада погибших клеток и секретируют факторы, стимулирующие процессы регенерации ткани, активируют фибробласты к пролиферации и коллагенезу. Их количество в периферической крови возрастает при воспалительных процессах.

Лимфоциты. Среди агранулоцитов это самая многочисленная группа клеток. Лимфоциты сходны морфологически с моноцитами, их основные отличия от гранулоцитов - округлое ядро и отсутствие зернистости в цитоплазме. Количество лимфоцитов варьирует в зависимости от возраста и, особенно, от вида животного. У животных с нейтрофильным профилем лейкограммы (лошадь, свинья, собака) лимфоциты составляют 20…40 %, а у животных с лимфоцитарным профилем (крупный рогатый скот, овцы, грызуны) - 40…65%.

Из источника своего развития - красного костного мозга и лимфоидных органов лимфоциты попадают в кровь или лимфу, где пребыва ют не более 1 ч. После чего возвращаются (рециркулируют) в лимфоидные органы. Лимфоциты обеспечивают иммунитет - специфическую защиту организма от чужеродных и собственных измененных (утративших рецепторы гистосовместимости) белков - антигенов.

Лимфоциты называют главными иммунокомпетентными клетками иммунной системы. В зависимости от морфологии лимфоциты, встречающиеся в периферической крови, подразделяют на малые, средние и большие.

Малые лимфоциты по размерам сходны с эритроцитами; их округлое, богатое хроматином ядро, занимает до 90 % объема клетки. Окружает ядро незаметный серповидный ободок базофильной цитоплазмы. Малые лимфоциты при определенных условиях способны к бластотрансформации, то есть к превращению в бластные элементы, которые могут пролиферировать. Благодаря малым размерам и наличию микроворсинок клетки проходят через эндотелий капилляров и венозных сосудов.

Средние и большие лимфоциты значительно крупнее по размерам: их диаметр варьирует от 8 до 18 мкм. Для них характерно относительно светлое округлое или бобовидное ядро, окруженное широким ободком цитоплазмы. Они представляют собой популяцию дифференцирующихся клеток лимфоидного ряда: лимфобластов и иммунобластов.

По иммунным свойствам лимфоциты классифицируют на два, отличающихся функционально, типа:

Т-лимфоциты, отвечающие за клеточный иммунитет, и В-лимфоциты, обеспечивающие гуморальный иммунитет.

Т-лимфоциты - тимусзависимые - образуются в тимусе из клеток-прекурсоров, мигрирующих в вилочковую железу из костного мозга. Здесь под влиянием ретикулоэпителиальных клеток и гуморальных медиаторов они программируются в эффекторные и регуляторные тимоциты, которые мигрируют из тимуса во вторичные органы иммуногенеза - лимфоузлы, селезенку, лимфоидную ткань кишечника, пролиферируют и дифференцируются, по крайней мере, в три самостоятельных типа лимфоцитов: Т-хелперы, Т-супрессоры и Т-эффекторные клетки. Последние во вторичных органах под влиянием антигенной стимуляции обеспечивают накопление популяции сенсибилизированных лимфоцитов - Т-киллеров.

Т-лимфоциты обеспечивают иммунную реакцию клеточного типа, вырабатывают растворимые биологически активные вещества, гуморальным путем запускающие разнообразные воспалительные реакции. Коммитированность Т-лимфоцита (способность отвечать только на ограниченную группу сходных антигенов) выражается в наличии на его мембране рецепторов, специфических для детерминант определенного антигена.

В-лимфоциты - бурсозависимые - получили название от бурсы, или Фабрициевой сумки птиц, где они развиваются; образуются у млекопитающих из стволовых клеток-предшественников миелоидной ткани красного костного мозга.

В-лимфоциты участвуют в выработке особых защитных белков - иммуноглобулинов (IG), которые подразделяют на пять классов: IG О - нейтрализуют бактериальные токсины и защищают от вирусов; IGМ - активируют лизис чужеродных клеток и агглютинацию антигена, а также комплемент (особый белок, влияющий на связывание антигена иммуноглобулином); IGА - содержатся в слезной жидкости и слюне и обеспечивают защиту эпителия слизистых оболочек; IG Е - способствуют выделению гистамина в тучных клетках; IG В - встречаются только на поверхности эмбриональных лимфоцитов.

Предшественники В-клеток под влиянием еще неизвестных пока причин превращаются в красном костном мозге в костномозговые В-лимфоциты, несущие на своей поверхности IG М-рецепторы. Эти клетки мигрируют во вторичные органы иммуногенеза, где трансформируются в зрелые плазматические клетки, продуцирующие (иммуноглобулины) IG М, IGО и IGА. Молекулы иммуноглобулинов могут существовать как в виде секретируемых антител, так и быть прикрепленными к клеточной мембране В-лимфоцита (в последнем случае они служат его рецепторами).

Зрелые В-лимфоциты (плазмоциты) имеют на мембранах соответствующие иммуноглобулиновые рецепторы для антигена, а также иммуноглобулины класса О. При связывании иммуноглобулинов новых рецепторов с антигеном клетка активируется, что проявляется в усилении ее пролиферации и дифференцировке. Антителообразующие В-лимфоциты способны регулировать количество плазмоцитов, синтезирующих и секретирующих антитела всех пяти классов.

Кроме указанных двух главных типов в организме продуцируются лимфоциты, ответственные за неспецифические цитотоксические реакции - так называемые природные киллеры НК, способные убивать, и частности, опухолевые клетки.

К иммунокомпетентным клеткам относят также моноциты крови и другие клетки макрофагальной системы, ведущие свое происхождение от???моноцитов красного костного мозга.

Три популяции зрелых Т-лимфоцитов, три популяции зрелых В-пимфоцитов и макрофаги - это семь основных клеточных иммуно-компетентных партнеров, обеспечивающих всю гамму специфических (иммунных) реакций.

Проникший в организм антиген, фагоцируется и перерабатывается из корпускулярной формы в молекулярную. В этом виде он распознается Т-хелпером. Последний при помощи макрофага передаёт В-лимфоциту специфический сигнал, представляющий собой комплекс - рецептор Т-лимфоцита с антигеном и одновременно хелпер воздействует на В-лимфоцит неспецифическим фактором, стиимулирующим его пролиферацию. Эти два сигнала включают клетки в антителогенез. Роль

Т-супрессоров заключается в ингибиронании этого включения, то есть они тормозят развитие клона клеток-антителопродуцентов. Таким образом, в реализации иммунного ответа участвуют, по крайней мере, три клеточных системы: макрофаги, Т-лимфоциты и В-лимфоциты.

У активированных лимфоцитов есть еще один путь развития - долгоживущие клетки памяти, которые присутствуют в лимфоидных органах до 5 лет и более. При повторной стимуляции антигеном эти клетки активируются легче, чем исходные В-лимфоциты. Клетки памяти при участии Т-лимфоцитов обеспечивают быстрый синтез большого количества антител при повторном попадании антигена.

Кровяные пластинки и тромбоциты. Кровяные пластинки представляют собой мелкие (2…4 мкм) двояковыпуклые безъядерные цитоплазматические элементы, встречающиеся в крови млекопитающих; образуются в красном костном мозге из особых полиплоидных клеток - мегакариоцитов в результате фрагментации их уплощенных цитоплазматических отростков. Периферическая часть пластинки - гиаломер - слабо окрашивается; центральная - грануломер - содержит зернышки. В центре грануломера методом электронной микроскопии можно обнаружить единичные митохондрии, профили Гр и ГлЭПС, а также гранулы нескольких ионов, в которых содержится фибриноген, фибронектин, тромбоцитарный фактор роста (ТРФР), факторы свертывания крови, а также гистамин, серотонин и гидролитические ферменты. В гиаломере находятся только филаменты или микротрубочки, расположенные по периферии в виде кольца.

Тромбоциты - овальные ядросодержащие клетки низших позвоночных животных (рыбы, амфибии, рептилии, птицы) выполняют ту же функцию, что и кровяные пластинки у млекопитающих - обеспечивают свертывание крови: при повреждении стенки сосудов останавливают кровотечение путем аггрегации или слипания, образу тромбы. Активно участвуют в регенерации кровеносных сосудов эпителиев.

Пластинки циркулируют в крови до 10 дней, затем мигрируют в селезенку, где фагоцитируются макрофагами. Недостаток в крови пластинок - тромбоцитопения может быть обусловлена нарушением функции мегакариоцитов или очень быстрым удалением кровяных пластинок из крови; ее наблюдают при заболеваниях кишечника, глистных инвазиях, инфекционной анемии лошадей, лучевой болезни и лечении бензолом. Увеличение количества пластинок отмечают при пневмониях, саркоме.

Лимфа. Лимфа состоит из плазмы и форменных элементов, представленных в основном лимфоцитами, а также моноцитами. Плазма лимфы по химическому составу близка к плазме крови, но содержит меньше белков. Лимфа обогащается форменными элементами в лимфатических узлах и, поступая в крупные лимфатические сосуды, вливается в кровь. Таким образом, между кровью и лимфой существуют определенные взаимодействия.

Лимфа поддерживает гомеостаз в тканях и метаболическую регуляцию, а также участвует в транспорте электролитов, белков, воды и минеральных веществ.

Кроветворение. Гемоцитопоэз- процесс образования и развития зрелых клеток периферической крови. Различают эмбриональное кроветворение, которое возникает в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональное, представляющее собой физиологическую регенерацию крови.

Эмбриональное кроветворение. В нем различают 3 периода.

Первый период (внезародышевый). Кроветворение начинается в мезенхиме стенки желточного мешка. В кровяных островках клетки дифференцируются на уплощенные эндотелиоциты и округлые кроветворные клетки, превращающиеся в стволовые, из которых формируются первичные эритроциты, названные за свои крупные размеры мегалобластами. Последние делятся внутри сосудистого русла (интраваскулярно). Часть из них у млекопитающих превращается в крупные безъядерные эритроциты - мегалоциты. Одновременно образуются и клетки меньшего размера - вторичные эритроциты. Экстраваскулярно дифференцируется и часть первичных лейкоцитов (гранулоцитов - нейтрофилов и эозинофилов). Из желточного мешка стволовые клетки крови расселяются в теле зародыша.

Второй период (гепато-тимо-лиенальный). Важнейшим центром кроветворения становится печень. Процесс кроветворения наблюдают по ходу капилляров, которые врастают вместе с мезенхимой в формирующиеся дольки органа. Источником кроветворения служат стволовые клетки, проникшие сюда из желточного мешка. Одновременно с эритроцитами развиваются гранулоциты и гигантские многоплоидные клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Следующим универсальным органом кроветворения становится селезёнка, в которой вначале развиваются все клетки крови. К концу эмбриогенеза в селезенке наблюдают только лимфоцитопоэз.

В тимусе лимфоциты развиваются из стволовых клеток и заселяют соответствующие зоны вторичных органов лимфоцитопоэза.

Третий период (медулло-тимо-лимфоидный). Кроветворные процессы перемещаются в миелоидную гемопоэтическую ткань красного костного мозга и в лимфоидную ткань тимуса, селезенки и лимфатических узлов.

В красном костном мозге из стволовых клеток экстраваскулярно формируются все форменные элементы крови. Он становится центральным органом кроветворения: универсальный гемопоэз, начинаясь в эмбриональный период, продолжается и в постнатальный.

В красном костном мозге продуцируются также стволовые клетки для тимуса и других гемопоэтических органов.

Постэмбриональное кроветворение. В постнатальный период гемоцитопоэз совершается в специализированных гемопоэтических тканях - миелоидной и лимфоидной. В первой образуются эритроциты, все виды гранулоцитов, тромбоциты и моноциты, а также протекают ранние стадии формирования лимфоцитов, а во второй размножаются и дифференцируются Т- и В-лимфоциты и плазмоциты. Миелоидная и лимфоидная ткани создают особое микроокружение для развивающихся гемопоэтических элементов. Стромальные ретикулярные и гемопоэтические клетки функционируют как единое целое.

Среди гемопоэтических клеток миелоидной ткани особое место занимают стволовые клетки крови (СКК). Они являются полипотентными предшественниками всех клеток крови и клеток, относящихся к саморегулирующейся популяции. Морфологически стволовая клетка не идентифицирована, так как она сходна с малым лимфоцитом. СКК делятся митотически (полагают, что одна клетка способна совершить около 100 митозов, то есть обеспечить своими потомками всю кроветворную систему) и после цикла пролиферации переходят в состояние покоя. Эти клетки можно выявить методом колониеобразования: облученным смертельной дозой мышам-реципиентам вводят кровь или взвесь клеток из кроветворных органов здоровых мышей-доноров. В селезенке реципиентов каждая стволовая клетка образует колонию и называется уже колониеобразующей единицей (КОЕ). Клетки КОЕ дифференцируются в двух направлениях. Одна линия дает начало полипотентной стволовой клетке (ПСК), которая в дальнейшем будет являться унитарным предшественником для клеток крови всех видом эритроцитарного (КОЕ-Э), гранулоцитарного (КОЕ-ГН, КОЕ-Нейт, КОЭ-Эоз, КОЕ-Баз), моноцитарного (КОЕ-Мо) и мегакариоцитарного (КОЕ-МГКц) рядов гемопоэза. Вторая линия дает начало полипотентной стволовой клетке - предшественнице лимфоцитопоэза. Стволовые клетки, полипотентные стволовые и унипотентные стволовые клетки морфологически не различаются. Из каждой унипотентной клетки образуются незрелые клетки - бласты для данного вида клеток, которые можно морфологически идентифицировать.

Эрйтроцитопоэз. Схематично его можно представить: СКК- ПСК-КОЕ-Э-проэритробласт-эритробласт (базофильный, полихроматофильный, оксифильный) - ретикулоцит - эритроцит.

Проэритробласт - крупная клетка, содержит овальное ядро с пылевидным хроматином и четко выраженным ядрышком. Пролиферируют проэритробласты с интервалом 8…12 ч. В результате ряда делений образуются более мелкие клетки с интенсивно окрашивающимся округлым ядром и базофильной цитоплазмой - базофильные эритробласты. Базофилия цитоплазмы обусловлена накоплением в ней РНК. Базофильные эритробласты после ряда делений постепенно, по мере накопления гемоглобина, приобретают легкую оксифилию и превращаются в полихроматофильные эритробласты. Интенсивность пролиферация клеток снижается и вскоре (у млекопитающих животных) наблюдаются деструктивные процессы в ядре: оно пикнотизируется и удаляется из клетки. Органеллы редуцируются, и клетка превращается сначала ретикулоцит, а затем в зрелый эритроцит, поступающий в сосудистое русло.

Гранулоцитопоэз. Включает в себя следующие клеточные трансформации: СКК-ПСК-КОЕ-ГЭММ (колониеобразующая единица гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза)-унипотентные предшественники I (КОЕ-Баз, КОЕ-Эо, КОЕ-ГН) - миелобласт - промиелоцит - миелоцит - метамиелоцит - палочкоядерный гранулоцит-сегментоядерный гранулоцит.

Миелобласты после ряда митотических делений дифференцируются в промиелоциты - клетки с крупным светлым овальным ядром, содержащим до нескольких ядрышек. В слегка базофильной цитоплазме клетки встречаются немногочисленные азурофильные (первичные) гранулы, представляющие собой типичные лизосомы. У промиелоцитов отсутствует специфическая зернистость и они способны к митотическому делению. Специфическая зернистость появляется в цитоплазме миелоцитов позже.

У нейтрофильных миелоцитов оксифильная цитоплазма, в которой наряду с первичными азурофильными гранулами встречаются и вторичные (специфические). Ядро клеток приобретает бобовидную форму, глыбки хроматина становятся грубыми, а ядрышки исчезают после многочисленных митотических делений миелоцитов. С этого момента клетки утрачивают способность к делению и превращаются в метамиелоциты, в цитоплазме которых резко увеличивается число вторичных гранул. При дальнейшем созревании клетки ее ядро приобретает вид изогнутой палочки. Эти клетки получили название палочкоядерных нейтрофильных гранулоцитов. Затем ядро сегментируется, и клетка превращается в зрелый сегментоядерный нейтрофильный гранулоцит.

Эозинофильные миелоциты на начальных стадиях содержат округлое ядро, которое с каждым митотическим делением приобретает все более бобовидную форму. В цитоплазме обнаруживают эозинофильную зернистость. По мере деления увеличивается количество специфических и неспецифических гранул, форма ядра становится палочковидной, клетки приобретают признаки эозинофильного метамиелоцита и утрачивают способность к делению, затем ядро сегментируется, и клетки превращаются в палочкоядерные и сегментоядерные лейкоциты с характерным двудольчатым ядром.

У базофильных миелоцитов округлое ядро с рыхло расположенным хроматином. В цитоплазме содержатся специфические базофильные зерна разных размеров. По мере созревания эти клетки превращаются сначала и базофильные метамиелоциты, а затем в зрелые базофильные лейкоциты.

Мегакариоцитопоэз (тромбоцитопоэз). Включает в себя следующие стадии: СКК-ПСК-КОЕ-МГЦ-мегакариобласт-промегакариоцит-мегакариоцит-тромбоцит.

Мегакариобласт - крупная клетка с лопастным ядром и базофильной цитоплазмой. При дальнейшем развитии на стадии промегакариоцита и мегакариоцита происходит полиплоидизация ядра и его сегментирование. Размеры клеток увеличиваются, а по ходу каналов ЭПС цитоплазмы отепляются небольшие фрагменты, которые у млекопитающих животных получили название кровяных пластинок.

Моноцитопоэз. Схема моноцитопоэза выглядит следующим образом: СК-ПСК-унипотентный предшественник моноцита СОЕ-М-монобласт -промоноцит - моноцит - тканевой макрофаг.

Лимфоцитопоэз. Состоит из следующих этапов: СК-ПСК - шпотентный предшественник лимфоцита - лимфобласт- пролимфоцит - лимфоцит. Особенность процесса заключается его обратимости, то есть лимфоциты способны дедифференцироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в периферических органах приводит к образованию регуляторных и эффекторных клеток, а В-лимфоцитов - к превращению в плазмоциты и в клетки памяти. Развитие Т-лимфоцитов в тимусе регулируется с помощью их контактного взаимодействия с эпителиальными клетками стромы органа, а также ряда выделяемых эпителиоцитами специфических тимусных факторов - (тимозина, тимопоэтина, интерлейкинов: ИЛ-1, ИЛ-6) и других.

В систему крови входят: кровь, тканевая жидкость, лимфа, органы кроветворения и кроверазрушения, форменные элементы крови.

Кровь - основная составная часть системы крови, представляющая собой жидкость (суспензию) красного цвета, которая находится в состоянии непрерывного движения. Кровь принадлежит к опорно-трофическим тканям. Она состоит из клеток - форменных элементов (эритроцитов, лейкоцитов и тромбоцитов) и межклеточного вещества - плазмы. Доминирующими в крови форменными элементами являются эритроциты: их число измеряется миллионами в 1 микролитре (млн/мкл).

Если взятую у животного кровь предохранить от свертывания и оставить отстояться (или отцентрифугировать), то она расслаивается: форменные элементы (основную часть из них составляют эритроциты) оседают, а над ними остается жидкость соломенно-желтого цвета - плазма. Скорость оседания эритроцитов (СОЭ) используют как диагностический тест в ветеринарной и медицинской практике. У лошадей в норме СОЭ имеет самые высокие значения среди животных других видов и составляет 40...70 мм/ч. На СОЭ оказывает влияние физиологическое состояние организма. Например, после активной двухчасовой тренировки у спортивных лошадей СОЭ снижается в 4 раза. Это объясняется сгущением крови и накоплением в ней большого количества недоокис-ленных продуктов (молочной кислоты), образующихся в результате интенсивной мышечной нагрузки. Кроме того, СОЭ повышается во время беременности и при патологических состояниях организма (инфекции, хронические воспалительные процессы, злокачественные опухоли), что связано с увеличением содержания в крови крупномолекулярных белков (особенно у-глобули-нов). Последние, вероятно, уменьшают электрический заряд эритроцитов и тем самым способствуют более быстрому их оседанию.

Соотношение (%) объема форменных элементов и плазмы называется гематокритной величиной; у лошади она составляет 30...40 %. Например, работающая лошадь сильно потеет и теряет много жидкости, что приводит к увеличению гематокритной величины. Следует отметить, что такое состояние неблагоприятно для организма животного, так как «густая» кровь вследствие повышения ее сопротивления при движении по кровеносным сосудам увеличивает нагрузку на сердце. Для компенсации этого состояния в кровь начинает поступать вода из тканевой жидкости, ограничивается выделение воды почками и возникает жажда. Уменьшение гематокрита чаше всего отмечают при заболеваниях (например, инфекционной анемии лошадей).

Важнейшая функция крови - транспортная, которая обеспечивает доставку к каждой клетке организма животного кислорода и питательных веществ и своевременный вынос из клетки к органам выделения продуктов ее жизнедеятельности. Кроме того, кровь разносит по всему организму биологически активные вещества (прежде всего гормоны), благодаря которым обеспечивается гуморальное звено регуляции физиологических функций.

Кровь выполняет и защитную функцию, так как она участвует в клеточном и гуморальном иммунитете. Клеточный иммунитет обеспечивают главным образом лейкоциты (борьба с чужеродными телами, клетками и их токсинами), гуморальный - антитела (иммуноглобулины), находящиеся в крови на протяжении всей жизни или образующиеся в организме при внедрении антигенов.

Терморегулирующая функция крови заключается в поддержании постоянства температуры тела: кровь относит теплоту от более нагретых органов и распределяет ее равномерно по организму животного.

И, наконец, кровь выполняет коррелятивную функцию. Омывая каждую клетку, она обеспечивает связь между различными органами и тканями, благодаря чему организм функционирует как единое целое.

У лошади объем крови в сравнении с другими животными больший и составляет около 9,8 % от массы тела. Примерно половина ее находится в состоянии непрерывного движения по кровеносным сосудам, а остальная депонирована в печени (до 20 %), в селезенке (до 16 %) и коже (до 10 %). При необходимости увеличения объема циркулирующей крови (различные физиологические нагрузки: мышечная работа, страх, ярость, боль; кровопотери и др.) кровяные депо выбрасывают дополнительное количество крови в общий кровоток.

Физико-химические свойства крови. Кровь лошади обладает теми же физико-химическими свойствами, что и у других животных: плотностью (удельная масса), вязкостью, кислотно-основным равновесием (рН), коллоидно-осмотическим давлением и свертыванием.

Плотность. Плотность цельной крови лошади составляет 1,040...1,060 г/мл, плазмы - 1,026, эритроцитов - 1,090 г/мл. Поскольку эритроциты имеют большую плотность, чем плазма и другие форменные элементы, при отстаивании крови они оседают на дно сосуда. Плотность крови зависит от числа эритроцитов, содержания в крови гемоглобина, белков и солей. Так, при потерях лошадью большого количества воды (обильное потоотделение) или задержке в организме конечных продуктов метаболизма, своевременное удаление которых ограничивается или прекращается вследствие нарушения функций почек (нефриты, нефрозы), плотность крови повышается. Понижение плотности крови у лошади наблюдают при различного вида анемиях (малокровии) и кахекси-ях (истощении).

Вязкость. У лошади вязкость крови при нормальных условиях составляет 4,7 (за единицу принимается вязкость воды). Этот показатель зависит от многих факторов, в первую очередь от числа форменных элементов и коллоидов плазмы крови.

К и с л о т н о-о сновное равновесие. Кислотно-основное равновесие крови определяется соотношением в ней кислотных и щелочных компонентов. При этом суммарный заряд щелочных ионов больше, чем кислотных, поэтому кровь имеет слабощелочную реакцию. У лошади в норме рН (показатель концентрации водородных ионов) в среднем равняется 7,36. Это одна из самых жестких констант организма: рН крови постоянный. Лишь при условии оптимального рН возможно протекание многочисленных химических реакций, и всякое изменение его ведет к нарушению деятельности жизненно важных органов (мозг, сердце), дыхательной функции, работы печени и др. Сдвиг рНкрови животного на несколько десятых, особенно в кислую сторону, несовместим с жизнью!

Между тем в кровь животного постоянно поступают продукты обмена веществ, имеющие преимущественно кислую реакцию (например, молочная кислота), поэтому всегда существует возможность изменения реакции в кислую сторону. Однако постоянство равновесия поддерживается за счет определенных химических и физиологических механизмов регуляции - буферных систем. Химические механизмы регуляции протекают на молекулярном уровне. Они включают в себя четыре основные буферные системы крови (гемоглобиновую, бикарбонатную, фосфатную и белковую) и щелочной резерв. Буферные системы крови у лошади те же, что и у других животных, и «работают» по тому же принципу. Щелочной резерв представляет собой сумму всех щелочных веществ в крови, главным образом бикарбонатов. Его величину определяют по количеству диоксида углерода, которое может выделиться из бикарбонатов при взаимодействии с кислотой. Щелочной резерв крови у лошади колеблется от 60 до 80 см3.

Как уже отмечалось ранее, в процессе обмена (особенно при напряженной мышечной работе, что характерно для лошади) в кровь в изобилии поступают кислые продукты (молочная, фосфорная и другие кислоты). Они нейтрализуются обычно щелочами крови. Следовательно, чем выше резервная щелочность, тем эффективнее нейтрализация этих кислых продуктов без тяжелых последствий для организма.

Поэтому обычно у лошадей степень утомляемости определяют по резервной щелочности, так как существует зависимость между этим показателем и работоспособностью животного. Установлено, что у лошадей после скачек на ипподроме резервная щелочность уменьшается в 2 раза и более по сравнению с исходным значением. Таким образом, чем выше у лошади этот показатель, тем лучше она переносит напряженную мышечную работу.

Физиологическая регуляция включает сложные нейрогумо-ральные механизмы, ведущие к активным изменениям в работе, прежде всего органов выделения (почки, потовые железы).

Коллоидно-осмотическое давление. Коллоидно-осмотическое давление крови - это сила, вызывающая перемещение растворителя (воды) через полупроницаемую мембрану клетки в сторону с большей концентрацией растворенных в воде веществ. Различают осмотическое и онкотическое давление.

Осмотическое давление крови, равное 7,6 атмосферы, обусловлено наличием в основном минеральных веществ. Их суммарное количество в плазме крови составляет 0,9 г/100 мл (доминирует хлорид натрия).

Постоянство осмотического давления имеет большое значение для обмена веществами между кровью, тканевой жидкостью и клетками, а также для клеточных элементов крови, особенно эритроцитов, для которых необходима изотоническая среда. В гипотонических условиях эритроциты набухают и разрушаются (гемолиз), а в гипертонических, наоборот, теряя воду, сморщиваются. Поэтому быстрое внутривенное введение в кровь больших объемов гипо- и гипертонических растворов (а это приходится делать ветеринарному врачу довольно часто с лечебной целью) представляет опасность для жизни животного.

Онкотическое давление - V220 часть общего коллоидно-осмотического давления крови, создаваемая белками (коллоидами) плазмы. У лошади онкотическое давление крови в норме колеблется от 15 до 35 мм рт. ст. Его постоянство также имеет очень большое значение. Так, онкотическое давление препятствует чрезмерному переходу воды из крови в ткани («удерживает» воду в просвете кровеносных сосудов) и способствует реабсорбции ее из тканевого пространства. В том случае, когда уменьшается количество белков в плазме крови, развиваются отеки тканей. Отсюда и происходит название этого давления, так как onkos с греческого означает «опухоль».

Необходимо отметить, что в организме животных имеются надежные механизмы компенсации, не допускающие серьезных изменений коллоидно-осмотического давления. Например, лошади внутривенно ввели 7 л 5%-го раствора сульфата натрия. Теоретически это должно повысить осмотическое давление в 2 раза. Однако, слегка поднявшись, оно уже через 10 мин возвратилось к исходному значению. Как объяснить данный факт?

В первую очередь происходит перераспределение воды между кровью и тканевой жидкостью. Если этого недостаточно, то вступают в действие более сложные регуляторные механизмы, такие, как многочисленные осморецепторы кровеносных сосудов и гипоталамуса. Это приводит к ограничению выделения в кровь антидиуретического гормона нейрогипофиза и вода, не реабсорби-руясь в почках, выделяется из организма.

Свертывание крови. При повреждении кровеносных сосудов вытекающая из них кровь у любого животного в норме должна свертываться; у лошади это происходит за 10... 14 мин. Образующийся сгусток крови закупоривает поврежденный сосуд, в результате чего прекращается кровотечение. Свертывание крови играет огромную роль: спасает животное от гибели, которая была бы неизбежной вследствие обильной кровопотери, а при незначительном ранении кровеносных сосудов - от постепенного обескровливания. При поражении внутренней сосудистой стенки (эндотелия), даже без наружного кровотечения, кровь может свертываться внутри сосуда с образованием тромба.

Свертывание крови представляет собой сложный каскадный ферментативный процесс. Суть его заключается в образовании белка - фибрина из фибриногена. Фибрин выпадает в виде нитей, в которых задерживаются форменные элементы, т. е. образуется сгусток. Многочисленные вещества (факторы), участвующие в свертывании крови, всегда присутствуют в крови в неактивном состоянии. При отсутствии хотя бы одного из этих факторов кровь теряет способность свертываться. У лошадей, так же как и у людей, возможна гемофилия (наследственная несвертываемость крови). Свертывание крови нарушается при недостатке витамина К. Важную роль в этом процессе выполняют тромбоциты.

Кровь должна быть жидкой, чтобы двигаться по сосудам и выполнять свои основные функции. Это состояние обеспечивает присутствующая в крови противосвертывающая система.

Форменные элементы крови. В крови лошади находятся 3 типа клеток: эритроциты, лейкоциты и тромбоциты (цв. вкл., рис. 2).

Эритроциты. Эритроциты лошади, как и у других млекопитающих, в процессе эволюционного развития специфически дифференцировались. Они в значительной степени утратили обычную клеточную структуру и функцию, преимущественно приспособившись для связывания и переноса газов крови (кислорода и диоксида углерода). У эритроцитов отсутствуют ядра, форма их округлая. Внешне они напоминают пластинки с утолщениями по краям. Сбоку они похожи на двояковогнутую линзу.

Эритроциты у лошади довольно крупные. Их диаметр в среднем 6...8 мкм, а толщина 2...2,5 мкм. Интересно, что у верховых лошадей эритроциты несколько крупнее, чем у лошадей других пород. Основная составляющая часть эритроцита сложный белок-хромопротеид - гемоглобин. По-другому его называют дыхательным ферментом. Эритроциты образуются в красном костном мозге. Средняя продолжительность их «жизни» у лошади составляет около 100 сут.

Количество эритроцитов в крови лошади огромно; в норме оно колеблется в следующих пределах: у рабочих и тяжеловозов - (6...8)- 1012/л, У рысистых - (8...10)-1012/л, у верховых - до 11 1012/л. Из этого можно сделать вывод, что с увеличением потребности организма в кислороде и питательных веществах возрастает число эритроцитов в крови. У новорожденных жеребят количество эритроцитов всегда больше, чем у взрослых животных.

Следует отметить, что за счет колоссального количества эритроцитов формируется огромнейшая поверхность соприкосновения с окружающими факторами (плазмой, эндотелием капилляров). Установлено, что у лошади площадь всей поверхности достигает 15 ООО м2 (1,5 га), т. е. в 2 тысячи раз больше поверхности тела. Количество эритроцитов в крови лошади, как и у других животных, непостоянно. Уменьшение их количества (эритроцитопе-ния) обычно происходит только при заболеваниях (анемия), а увеличение (эритроцитоз) может быть и у здоровых животных.

Эритропоэз бывает перераспределительный, истинный и относительный. Перераспределительный эритроцитоз возникает быстро в результате мгновенного выброса дополнительного количества эритроцитов из депо крови. Это бывает крайне необходимо для усиления дыхательной и трофической функций крови при физических и эмоциональных нагрузках. Так, у рысаков после интенсивной пробежки на ипподроме количество эритроцитов может достигать 12...14Т012/л, т. е. возрастает на 50 % и больше в сравнении с обычным уровнем. Доказано, что данный показатель находится в прямой зависимости от степени напряженности работы; чем с большим напряжением лошадь выполняет ту или иную работу, тем в большей степени у нее увеличивается количество эритроцитов в циркулирующей крови. Однако у лошадей, хорошо тренированных и лучше подготовленных к выполнению определенного вида работ, происходит меньший сдвиг количества эритроцитов при выполнении этой работы.

Истинный эритроцитоз является результатом усиления эритро-поэза. Для этого требуется более продолжительное время, чем при перераспределительном эритроцитозе. Истинный эритроцитоз обычно развивается при систематических мышечных тренировках, длительном содержании животных в условиях пониженного атмосферного давления (например, горные переходы).

Относительный эритроцитоз не связан ни с перераспределением крови, ни с выработкой новых эритроцитов. Он обусловлен обезвоживанием животного (сильное потоотделение, диарея, развитие отеков и водянок).

Как уже отмечалось, основу сухого вещества эритроцитов (90 %) составляет гемоглобин- Гемоглобин состоит из четырех молекул тема (небелковая группа) и глобина (простатическая группа). Гем содержит двухвалентное железо, за счет которого гемоглобин соединяется с кислородом и диоксидом углерода. В первом случае образуется окси-, а во втором - карбогемоглобин. Эти соединения нестойкие и легко отдают переносимые ими газы.

К стойкой форме гемоглобина относят его соединение с оксидом углерода (СО) - карбоксигемоглобин. Это соединение блокирует гемоглобин и нарушает его дыхательную функцию. Установлено, что при связывании 60...70 % гемоглобина с СО наступает гибель животного от кислородного голодания тканей (гипоксии). Следует отметить, что, несмотря на сродство гемоглобина с кислородом, его способность соединяться с СО в 300 раз выше, поэтому при вдыхании животным воздуха, содержащего всего 0,1 % СО, 80 % гемоглобина связывается с оксидом углерода. Следовательно, даже незначительное количества оксида углерода, содержащегося в окружающей атмосфере, опасно для жизни. Оказывая помощь пострадавшему животному, нужно помнить, что карбоксигемоглобин очень медленно отдает оксид углерода и только при большом количестве кислорода, поэтому необходимо обеспечить доступ свежего воздуха, лучше с добавлением чистого кислорода.

Количество гемоглобина в крови является важным клиническим показателем дыхательной функции крови. У лошади уровень гемоглобина в среднем составляет 90... 150 г/л, зависит от таких факторов, как кормление, содержание, работа, возраст, порода, продуктивность и др. При этом нужно учитывать его непостоянство даже у одного и того же животного.

Лейкоциты. Белые кровяные клетки - лейкоциты, в отличие от эритроцитов, кроме цитоплазмы имеют ядро. Их подразделяют на две группы: зернистые (гранулоциты) и незернистые (агранулоциты) лейкоциты. Различают следующие разновидности гранулоцитов: базофилы, эозинофилы и нейтрофилы (юные, па-лочкоядерные, сегментоядерные). Агранулоциты бывают только двух видов: лимфоциты и моноциты.

В мазке крови (цв. вкл., рис. 2) лошади сразу обращает на себя внимание характерное расположение эритроцитов - соединяясь друг с другом, они образуют длинные цепочки («монетные столбики»); у крупного рогатого скота эритроциты всегда располагаются отдельно друг от друга. Видовую отличительную особенность имеют и эозинофилы: крупная зернистость цитоплазмы (диаметр зерен достигает 2...3 мкм при размерах клетки 8... 16 мкм). Следует отметить, что цитоплазма буквально нафарширована зернами, которые полностью закрывают ядро клетки и окрашиваются в сочный ярко-розовый цвет. Поэтому эозинофил лошади напоминает ягоду малины.

Количество лейкоцитов в крови лошади в норме составляет (6...10) 109/л. Уменьшение количества лейкоцитов в крови - лейкопения, увеличение - лейкоцитоз. Для того чтобы правильно поставить диагноз, ветеринарный врач должен учитывать физиологический лейкоцитоз, который у здоровых лошадей наблюдают после приема корма (алиментарный), при мышечной нагрузке (миогенный), у беременных, новорожденных, при сильных эмоциональных перегрузках и болевых раздражениях (условно-рефлекторный).

Лейкоциты выполняют в организме животных защитную функцию, и в зависимости от разновидностей каждый из них выполняет строго определенную.

Базофилы, например, синтезируют в своих гранулах и выделяют в кровь гепарин и гистамин. Гепарин является основным антикоагулянтом противосвертывающей системы крови. Гистамин - антагонист гепарина. Кроме того, это один из самых активных аминов в организме, принимающий участие в регуляции многих физиологических процессов (кровообращение, пищеварение, фагоцитоз и др.).

Эозинофилы обладают антитоксическими свойствами. Они способны адсорбировать на своей поверхности токсины и нейтрализовывать их. Уменьшение числа эозинофилов (эозинопения) наблюдают при стрессах различной этиологии, обусловленной активацией гипофизарно-надпочечниковой системы. Увеличение количества эозинофилов (эозинофилия) сопровождает любую интоксикацию и возможно при аллергических реакциях (обычно в сочетании с базофилией).

Нейтрофил - главная клетка белой крови, ответственная за фагоцитоз. Различают следующие разновидности нейтрофилов: ней-трофильный миелоцит, юный нейтрофил, палочкоядерный и сег-ментоядерный нейтрофил.

Особенность этой клетки состоит в том, что она способна к самостоятельному амебовидному передвижению, обладает хемотаксисом. Переваривание патогенных микроорганизмов, собственных отмерших и мутантных клеток, т. е. фагоцитоз, обеспечивается нейтрофилами благодаря содержанию в них ферментов, расщепляющих белки, жиры и углеводы.

Кроме своей важнейшей функции - фагоцитоза, нейтрофилы вырабатывают различные биологически активные вещества (бактерицидные, антитоксические, пирогенные), принимающие участие в патогенезе инфекционных заболеваний и развитии воспаления.

Таким образом, число нейтрофилов в крови лошади может изменяться в сторону увеличения в связи с различными воспалительными и инфекционными процессами в организме. Кроме того, известно, что злокачественные образования (рак, саркома) сопровождаются появлением в лейкоцитарной формуле юных и увеличением доли палочкоядерных нейтрофилов («сдвиг ядра влево»).

Следует отметить, что все зернистые лейкоциты (гранулоциты) образуются в красном костном мозге.

К незернистым лейкоцитам (агранулоцитам) относятся лимфоциты и моноциты.

Лимфоциты - незернистые лейкоциты, так же как и зернистые, образуются в красном костном мозге лошади, но в последующем одна часть их попадает в тимус (Т-лимфоциты), а другая - в лимфатические узлы кишечника и миндалины (В-лимфоциты). Там заканчивается процесс их созревания. Установлено, что Т-лимфоциты «отвечают» за клеточный иммунитет, а В-лимфоциты - за гуморальный.

Моноциты - незернистые лейкоциты, обладают высокой фагоцитарной активностью. Их называют «санитарами» кровяного русла, так как они очищают его, разрушая живые и погибшие микроорганизмы, уничтожая обрывки тканей и отмершие клетки организма.

Большинство из лейкоцитов существует недолго. При помощи методики меченых атомов установлено, что продолжительность жизни гранулоцитов и В-лимфоцитов колеблется от нескольких часов до нескольких дней, Т-лимфоцитов - месяцы и даже годы.

Тромбоциты. Тромбоциты, или кровяные пластинки, образуются в красном костном мозге из мегакариоцитов в процессе гемопоэза. Диаметр тромбоцитов в среднем 3 мк (в среднем от 1 до 20 мк). Они крайне нестойки и чрезвычайно легко распадаются. Основная их функция - участие в процессе свертывания крови. Кроме того, тромбоциты выполняют роль «кормильцев» эндотелия кровеносных сосудов, прилипая к нему и изливая в него свое содержимое. Они могут также, наряду с гемоглобином, транспортировать кислород. Появились новые данные о способности тромбоцитов фагоцитировать. Число тромбоцитов в крови лошади в норме колеблется в пределах (300...800) 1012/л.

Химический состав плазмы крови. Плазма крови лошади примерно на 90 % состоит из воды. Сухой остаток (10 %) составляют белки, жиры (липиды), углеводы, различные промежуточные и конечные продукты обмена, соли, макро- и микроэлементы, витамины и многочисленные биологически активные вещества (гормоны, ферменты и др.). Содержание этих химических компонентов плазмы достаточно стабильно и колеблется весьма незначительно. Нужно помнить, что любые отклонения от их физиологического уровня могут привести к серьезным нарушениям в работе отдельных систем и организма в целом.

Необходимо знать, в каких пределах у нормальной здоровой лошади допустимо изменение концентрации различных веществ, содержащихся в крови. Итак, содержание общего белка в плазме крови данного вида животного составляет в среднем 68 г/л (в том числе альбуминов - 40 %, альфа-глобулинов - 16, бета-глобулинов - 23, гамма-глобулинов - 21 %). Отношение количества альбуминов к глобулинам называется белковым коэффициентом. Видовая особенность лошадей заключается в том, что у них более низкие значения белкового коэффициента в сравнении с другими животными. При этом необходимо отметить, что у новорожденных фракция самых «тяжелых» белков - гамма-глобулинов - совсем отсутствует. Она появляется в крови лишь с началом выпаивания жеребятам первых порций молозива. Количество фибриногена (составная часть глобулиновой фракции, принимающая участие в свертывании крови) в плазме крови лошади - около 300 мг/100 мл.

Как известно, характерной особенностью химического состава белков является наличие азота. Однако азот присутствует и во многих других органических веществах, являющихся продуктами расщепления белков (аминокислотах, мочевой кислоте, мочевине, креатине, индикане и др.). Совокупный азот всех этих веществ (за исключением белкового азота) называется небелковым, или остаточным. У взрослой лошади его количество в среднем составляет 34 мг/100 мл (на долю доминирующего компонента остаточного азота - мочевины приходится 3,6...8,6 ммоль/л). Остаточный азот в крови определяют в целях оценки состояния белкового обмена: при усиленном распаде белка в организме значения этого показателя возрастают.

Липиды плазмы крови животных представлены следующими классами: моно-, ди-, триглицеридами, фосфолипидами, холестерином и свободными жирными кислотами. Содержание общих липидов в крови лошади существенно не отличается от других животных и колеблется в пределах от 1 до 10 г/л. Содержание холестерина у этого вида животных обычно находится в пределах 1,9...3,9 ммоль/л.

Углеводы крови лошади главным образом представлены глюкозой. Следует помнить, что ее содержание принято определять только в цельной крови, так как она частично адсорбируется на эритроцитах. Итак, в норме уровень глюкозы в крови составляет 55...95 мг/100 мл (4,1...6,4 ммоль/л). Из других углеводов присутствуют в плазме крови гликоген, фруктоза, молочная и пирови-ноградная кислоты, кетоновые тела, летучие жирные кислоты и др.

Физиологические колебания содержания минеральных веществ в крови лошади обусловлены многими факторами: питанием, возрастом, физиологическим состоянием и др.

Группы крови и переливание крови. В ветеринарной практике для лечения лошадей издавна применяется переливание крови. Особенно актуальным это всегда было во время войны. Однако в любом случае при этом необходимо, чтобы переливаемая кровь от одного животного (донора) имела группу, соответствующую группе крови животного, которому производят переливание (реципиенту). Переливание крови без учета ее совместимости опасно и может быть даже смертельно для животного, получающего кровь. Опасность заключается в том, что плазма реципиента может склеивать (агглютинировать) в комочки эритроциты донора, т. е. происходит агглютинация. После агглютинации эритроциты разрушаются (гемолизируются) и выделяют свои внутриклеточные вещества, в обычном состоянии отсутствующие в плазме крови. Эти соединения действуют, как яды, и отравляют организм реципиента. Кроме того, образовавшиеся комочки эритроцитов могут закупоривать кровеносные капилляры органов (в том числе и жизненно важных, к которым относятся мозг и сердце), что представляет опасность не только для здоровья, но даже для жизни животного.

Комплекс описанных выше явлений, приводящих к таким серьезнейшим изменениям в организме животного в результате переливания несовместимой крови, принято называть гемот-рансфузионным шоком. Агглютинация происходит потому, что в плазме крови содержатся особые вещества (белковой природы), называемые агглютининами {склеивающие), а на поверхности эритроцитов - агглютиногены {склеиваемые). В крови лошади присутствуют два агглютиногена (А и В) и два агглютинина (а и Р). В зависимости от того, какие агглютиногены и агглютинины имеются у конкретного животного, различают 4 группы крови. В I группе крови отсутствуют агглютиногены, но представлены все агглютинины; во II группе есть агглютиноген А и р-агглю-тинин; в III группе есть агглютиноген В и а-агглютинин; в IV группе нет агглютининов, но представлены все агглютиногены. Феномен агглютинации наступает только в том случае, если при переливании крови происходит «встреча» одноименно обозначенных агглютиногенов с агглютининами. При этом склеиваются переливаемые эритроциты, имеющие одноименный агглютиноген с агглютинином реципиента (например, А и а; В и Р).

Таким образом, кровь лошадей I группы можно переливать лошадям с любой группой крови; кровь II группы - только лошадям, имеющим II и IV группы; кровь III группы - лошадям с III и IV группой; кровь IV группы - только лошадям, имеющим IV группу крови. Из этого же следует, что лошадям с I группой крови можно переливать кровь только I группы; лошадям со II группой - кровь II и I групп; лошадям с III группой - кровь III и I групп; лошадям с IV группой - кровь любой группы.

Лошадь, имеющую I группу крови, называют универсальным донором, IV группу - универсальным реципиентом. Следует отметить, что большинство лошадей имеют свою, четко выраженную, одну из четырех групп крови. Лишь у некоторых лошадей (6... 10 %) группы не всегда четко разграничены. Поэтому при переливании крови у лошадей в каждом случае делают пробу на совместимость крови донора и реципиента.