Ткани: строение и функции. Типы тканей в организме человека Основные типы тканей организма человека

Ткань - система клеток и неклеточных образований, имеющих общее происхождение, строение и выполняющих в организме сходные функции. Выделяют четыре основных вида тканей: эпителиальные, соединительные, мышечные и нервные.

Эпителиальные - состоят из тесно прилегающих друг к другу клеток. Межклеточного вещества мало. Эпителиальные ткани (эпителий) образуют покровы тела, а также слизистые оболочки всех внутренних органов и полостей. Эпителий образует также большинство желез. Он располагается на соединительной ткани, обладает высокой способностью к регенерации. По происхождению эпителий может быть производным эктодермы. или энтодермы.

Эпителиальные ткани выполняют несколько функций:

  1. защитную - многослойный эпителий кожи и его производные: ногти и волосы; роговица глаза; ресничный эпителий, выстилающий воздухоносные пути и очищающий ;
  2. железистую - эпителием образована поджелудочная железа; печень; слюнные, слезные и потовые железы;
  3. обменную - всасывание продуктов переваривания пищи в кишечнике; поглощение кислорода и выделение углекислого газа в легких.

Соединительные ткани - состоят из клеток и большого количества межклеточного вещества. Межклеточное вещество представлено основным веществом и волокнами коллагена или элластина. Соединительные ткани хорошо регенерируют. Все соединительные ткани развиваются из мезодермы. К соединительным тканям относят кость, хрящ, кровь, лимфу, дентин зубов, жировую ткань.

Соединительная ткань выполняет следующие функции:

  1. механическую - кости, хрящ, образование связок и сухожилий;
  2. соединительную - кровь и лимфа связывают воедино все органы и ткани организма;
  3. защитную - выработка антител и фагоцитоз клетками крови; участие в заживлении ран и регенерации органов;
  4. кроветворную - лимфатические узлы, селезенка, красный костный мозг;
  5. трофическую или обменную - например, кровь и лимфа участвуют в обмене веществ и питании организма.

Мышечные ткани - их клетки обладают свойствами возбудимости и сократимости. В состав мышечных клеток входят особые , способные, взаимодействуя, изменять длину этих клеток. Мышечные ткани входят в состав опорно-двигательного аппарата, образуют сердце, входят в состав стенок внутренних органов и большинства кровеносных и лимфатических сосудов. По происхождению мышечные ткани являются производными мезодермы. Различают несколько видов мышечных тканей: поперечнополосатую, гладкую и сердечную.

Основные функции мышечной ткани:

  1. двигательная - движение тела и его частей; сокращение стенок желудка, кишечника, артериальных сосудов, сердца;
  2. защитная - защита органов, находящихся в грудной клетке и особенно в брюшной полости от внешних механических воздействий.

Нервная ткань - образована нервными клетками (нейронами) и нейроглией. Нейроны обладают особыми свойствами - возбудимостью и проводимостью (см. раздел «Нервная система»). Обычно нейрон состоит из тела клетки и двух видов отростков: многочисленных коротких дендритов, ветвящихся вблизи от тела нейрона, и единственного длинного аксона, передающего электрические сигналы от нейрона к другим клеткам. Между нейронами расположены многочисленные клетки нейроглии, выполняющие «обслуживающие» функции: защитную, опорную и питательную по отношению к нейронам. Нервной тканью образованы: головной и спинной мозг, нервные узлы и периферические нервы. По происхождению нервная ткань - производная эктодермы. Нервная ткань выполняет важнейшую функцию по снабжению организма информацией о происходящем во внешней среде, объединяет различные органы и системы в целостный организм.

Ткань — это исторически сложившаяся общность клеток и внеклеточ-ного вещества, объединенных общим происхождением, строением и функ-цией. В организме человека выделяют четыре типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань (эпителий) покрывает поверхность тела, высти-лает слизистые оболочки полых органов пищеварительной и дыхательной систем, мочеполового аппарата и образует железистую паренхиму желез внешней и внутренней секреции. Эпителий выполняет покровную и защит-ную функции, поэтому в эпителиальной ткани мало межклеточного вещес-тва и клетки плотно прилегают друг к другу.

Соединительная ткань очень разнообразна по строению и содержит много межклеточного вещества. Основными функциями соединительной ткани являются трофическая (питательная), опорная, защитная и запасаю-щая. Выделяют такие виды соединительной ткани: рыхлая, кровь, плотная, хрящевая, костная и жировая ткани.

Соединительные ткани. Слева направо: рыхлая соединительная ткань, плотная соединительная ткань, хрящ, кость, кровь

Мышечная ткань осуществляет двигательные процессы в организме животных. Она образована мышечными волокнами, в цитоплаз-ме которых есть особые, сократительные волокна — миофибриллы.

Различают гладкую (неисчерченную), поперечно-полосатую скелетную (исчерченную) и сердечную поперечно-полосатую (исчерченную) мышечные ткани. Гладкая мышечная ткань образует стенки внутренних органов , а по-перечно-полосатая — скелетные мышцы и мышцу сердца .

Слева направо: продольные срезы поперечно-полосатой, гладкой и сердечной мышцы

Нервная ткань состоит из нервных клеток (нейронов) и нейроглии.

Нейрон состоит из тела и отростков различной длины: дендритов и ак-сона. По количеству отростков выделяют униполярные нейроны с одним отростком, биполярные — с двумя и мультиполярные — с несколькими.

Аксон — наиболее длинный отросток нейрона, по которому нервный импульс движется от тела нервной клетки к рабочим органам — мышце, железе или к следующей нервной клетке. Аксоны образуют нервные во-локна.

Короткие и ветвистые отростки нейрона называются дендритами . Их окончания воспринимают нервное раздражение и проводят нервный им-пульс к телу нейрона.

Основным свойством нейрона является способность возбуждаться и проводить это возбуждение по нервным волокнам.

Клетки нейроглии выполняют опорную, питательную, защитную и другие функции. Они выстилают полости головного мозга и спинномоз-говой канал, образуют опорный аппарат центральной нервной системы и ок-ружают тела нейронов и их отростки.

Библиография:

1. Л.В. Высоцкая, Г.М.Дымщиц, Е.М.Низовцев. Общая биология. - М.: Научный мир, 2001.

2. М.Ю.Матяш, Н.М.Матяш. Биология. Учебник для 9 класса общеобразовательных учебных заведений. - К.: Перун, 2009

Группы растительных клеток с единой функцией, строением и происхождением называются тканями растений. Важнейшими из них являются: покровные, основные, выделительные, проводящие, механические и образовательные. Рассмотрим строение и функции растительных тканей.

Образовательные ткани (меристемы)

Располагаются в зонах роста:

  • на верхушках побегов;
  • на кончиках корней;
  • вдоль стеблей и корней (камбий или боковая меристема, обеспечивает рост стеблей и корней в толщину).

Клетки меристем активно делятся и даже не успевают вырасти, они как бы всегда молодые, и потому не имеют вакуолей, стенки их тонкие, ядро крупное.

Поразительна активность верхушечной меристемы бамбука. Он растёт буквально на глазах, каждый час на 2 - 3 см!

Покровные ткани

Известно, как быстро высыхают плоды со снятой кожурой, или как легко заражается гнилью плод с нарушенной кожицей. Именно барьер покровных тканей обеспечивает сохранность мягких частей растения.

Существует три вида покровных тканей:

ТОП-4 статьи которые читают вместе с этой

  • эпидерма;
  • перидерма;
  • корка.

Эпидерма (кожица) - поверхностные живые клетки различных органов. Защищает нижележащие ткани и регулирует газообмен и испарение воды растением.

Рис. 1. Клетки эпидермы под микроскопом.

Перидерма образуется у древесных растений, когда зелёный цвет побега переходит в бурый. Перидерма состоит из пробковых клеток, которые защищают побег от мороза, микробов и потерь влаги.

Корка - мёртвая ткань. Она не может растягиваться, следуя за утолщением ствола, и трескается.

Основные ткани (паренхима)

Существует три вида паренхимы:

  • фотосинтезирующая (ассимиляционная);
  • аэренхима, обеспечивает проведение воздуха внутрь растения через межклеточное пространство;
  • запасающая.

Рис. 2. Паренхима зелёного листа под микроскопом.

Проводящие ткани

Обеспечивают перемещение веществ в растительном организме. Движение осуществляется в двух основных направлениях:

  • восходящий ток , осуществляемый ксилемой;
  • нисходящий ток , осуществляемый флоэмой.

Ксилема и флоэма образуют непрерывную, похожую на водопровод, систему.

Рис. 3. Схема строения флоэмы и ксилемы.

Сосуды флоэмы составлены из ситовидных элементов, или трубок, - вытянутых клеток, поперечные грани которых похожи на сито. Ток веществ идёт через поры сита из одной клетки в другую. Клетки в сосуде как бы поставлены одна на одну.

Проводящие элементы ксилемы тоже представлены вытянутыми клетками, но поры у них расположены также и на боковых стенках клеток.

Механические ткани

Обеспечивают защиту и устойчивость растения или отдельных его частей (косточки плодов). Оболочки клеток утолщены.

Виды механической ткани:

  • колленхима (живые клетки);
  • склеренхима (мёртвые клетки).

Колленхима расположена в растущих листьях и стебле, она не препятствует их росту. Содержит клетки вытянутой формы. После прекращения роста данного участка растения колленхима постепенно превращается в склеренхиму - становится жёстче, оболочки одревесневают и толстеют.

Одревеснение повышает хрупкость склеренхимы. Льняное волокно является исключением из правила, это не одревесневшая склеренхима. Поэтому из льна получается такая мягкая ткань как батист.

Выделительные ткани

Это ткани, выделяющие из растения воду или какой-либо секрет (эфирное масло, нектар, смолу, соли и т. д.). К этому типу тканей относятся и такие, секрет которых остаётся внутри растения. Это, например, млечники, которые содержат в вакуолях млечный сок (чистотел, одуванчик).

Их основная функция - выведение ненужных веществ и защита. Так, смола в древесине хвойных защищает её от гниения.

С помощью таблицы «Ткани растений» кратко обобщим сказанное:

Ткани

Функции

Особенности строения клеток

Расположение

Покровные

Защита и газообмен

Плотное прилегание клеток друг к другу

Поверхность растения

Образовательные

Мелкие, с тонкими стенками

Верхушечные части побегов и корней;

Механические

Утолщённые оболочки

Стебель, жилки листа

Основные

Фотосинтез, запасание пит. веществ

Рыхлое расположение клеток

Основа растения, во всех органах; центр стебля

Выделительные

Защита и выделение

Строение разнообразно

Повсеместно

Проводящие

Транспорт веществ

Сосудообразные элементы

Повсеместно

Что мы узнали?

Из статьи по биологии для 6 класса мы узнали, что существует шесть основных типов растительных тканей. Растение - это система, в которой ткани являются элементами. Каждая ткань обеспечивает какую-либо сферу жизнедеятельности растения. Каждая ткань жизненно важна, от её успешной работы зависит нормальное развитие всего растения. Клетки тканей специализированы, они имеют особенности строения, соответствующие выполняемым функциям.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 548.

Ядро – обязательная составная часть клетки. Оно отсутствует только в зрелых эритроцитах млекопитающих. Большинство клеток организма человека имеют только одно ядро, однако встречаются дву- или многоядерные клетки (например, клетки печени).

Клеточный центр – органелла клетки, расположенная преимущественно около ядра и состоящая из двух (а иногда и более) центриолей, окруженных плотным слоем цитоплазмы. Клеточный центр принимает участие в процессе деления клеток.

Снаружи ядро покрыто ядерной оболочкой, состоящей из двух мембран. В мембранах имеются каналы, через которые ядро обменивается веществами с цитоплазмой. Содержимое ядра называется нуклеоплазмой (лат. нуклеус – ядро), в которой различают одно или несколько ядрышек, принимающих участие в синтезе рибосом. Ядро является центром управления жизненными процессами клетки: обменом веществ, движением и размножением. В ядре сосредоточена основная масса ДНК – носителя наследственной информации. То есть ядро выполняет функцию сохранения информации обо всех признаках организма.

Кроме органелл, в цитоплазме клеток имеются непостоянные образования, которые называют включениями . Это запасы питательных веществ (например, жиры, углеводы).

Из свыше 100 известных химических элементов около 88 обнаружено в организме человека. Основными из них являются водород, кислород, углерод и азот. Они составляют основную массу (96 %) органических соединений клетки и относятся к макроэлементам . К макроэлементам относятся также кальций, фосфор, калий, натрий и сера. На их долю приходится 3 % состава клетки.

Другие химические элементы содержатся в клетке в незначительных количествах (в тысячных долях процента и менее). Их называют микроэлементами .

В клетке химические элементы образуют органические (белки, жиры, углеводы, нуклеиновые кислоты) и неорганические (вода, минеральные соли, окись углерода, различные кислоты) соединения.

Неорганические вещества. В количественном соотношении из неорганических веществ в организме человека преобладает вода. Она составляет около 65 % массы человека. В клетках разных органов содержится неодинаковое количество воды. Например, клетки легких, сердца, почек содержат около 80 % воды, а клетки костей – только 22 %. Вода составляет основу внутренней среды организма. Она является универсальным растворителем и средой для диффузии большинства веществ, обеспечивает тургор (упругость) клеток и процессы осмоса (давления), принимает участие в регуляции температуры тела. В клетках и внеклеточных жидкостях имеются различные минеральные соли. И хотя их содержание незначительно, они выполняют важные функции.



Органические соединения составляют до 20-30 % массы каждой клетки. В организме человека имеются простые и сложные органические соединения. Аминокислоты, глюкоза, жирные кислоты – это простые органические соединения, из которых образуются сложные. Среди сложных органических соединений наиболее важными являются белки, углеводы, жиры и нуклеиновые кислоты.

Белки входят в состав всех клеток и выполняют разнообразные функции. Они участвуют в регуляции функций организма, ускоряют химические реакции, защищают организм от болезнетворных микроорганизмов и инородных тел, транспортируют кислород. Белки построены из остатков аминокислот. В природных белках содержится 20 видов аминокислот, которые, соединяясь в разной последовательности, образуют огромное разнообразие белков. У каждого организма строение белков индивидуальное и определяется генетически.

Углеводы – это группа органических природных соединений. Они входят в состав некоторых структур клеток и являются в организме основным источником энергии.

Жиры – это вещества, содержащие глицерин и жирные кислоты, не растворяющиеся в воде. Они являются одним из основных структурных компонентов клеточных мембран. При окислении жиров выделяется много энергии, поэтому они являются важным энергетическим резервом для организма. Жиры транспортируют жирорастворимые витамины.

Нуклеиновые кислоты – впервые обнаружены и выделены из ядра клетки (лат. нуклеус – ядро); принимают участие в синтезе всех белков организма и обеспечивают передачу наследственной информации от родителей потомству.

Различают два основных типа нуклеиновых кислот: дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК), строение которых достаточно сложное.

В процессе эмбрионального развития клетки специализируются на выполнении определенных функций в организме. Этот процесс называют распределением (дифференциацией) строения и функций клеток. Из клеток образуются ткани.

Ткань – исторически сложившаяся система клеток и их производных (межклеточного вещества), обладающая специфическими происхождением (эмбриологией), строением (морфологией), функцией (физиологией), биохимией (метаболизмом), типичными для неё взаимоотношениями с другими тканями и положением в организме .

Ткани могут видоизменяться в пределах своего генетического типа.

Ткани построены из клеток и межклеточного вещества. Все большое разнообразие тканей организма человека и животных может быть условно сведено к четырем тканевым типам:

Эпителиальную – пограничные ткани;

Соединительную – ткани внутренней среды организма;

Мышечную;

Нервную.

Эпителиальная ткань (покровная), или эпителий (греч. epi – на; лат. tela – ткань, тонкая, как паутина), состоит из плотно прилегающих друг к другу клеток и слабо развитого межклеточного вещества (почти отсутствует), имеет определенную ориентировку в отношении соединительной ткани и внешней среды, лишена кровеносных сосудов. Она покрывает всю наружную поверхность тела человека, выстилает все полости тела и внутренних органов, а также образует большинство желез.

Эпителии развиваются из разных эмбриональных зачатков, несут многообразные функции и имеют различное строение; они представляют собой обширную сборную группу, состоящую из разнокачественных тканей.

По расположению клеток различают однослойный, многослойный и многорядный эпителии (многорядным называют однослойный эпителий с неодинаковой высотой клеток, расположенных на разных уровнях).

По форме клеток они могут быть плоскими, кубическими и призматическими.

Эпителиальным тканям свойственны две основные функции: покровная (пограничная, защитная) и секреторная.. Располагаясь на границе внутренних органов и внешней среды, выполняет защитную функцию – защищает нижние слои клеток других тканей от вредных механических и химических воздействий. Эпителий желудочно-кишечного тракта принимает участие во всасывании различных питательных веществ, а эпителий органов выделения – в выведении из организма продуктов обмена.

Выделяют следующие типы эпителия:

1. Эпителии кожного типа – эпидермис (греч. derma – кожа) – многослойный плоский эпителий (покровный эпителий), поверхностные клетки которого ороговевают.

2. Эпителии кишечного типа (средний и задний отделы пищеварительной трубки выстланы однослойным призматическим эпителием, развивающимся из внутреннего зародышевого листка – эндодермы).

3. Эпителии целонефродермального типа (серозные полости выстланы одним слоем плоских клеток, развивающихся из среднего зародышевого листка – мезодермы, такой эпителий называется мезотелий – эпителий почек и др.).

4. Эпителии эпендимо-глиального типа. Они образуются из общего источника с нервной системой, выстилают, в частности, мозговые оболочки. Эпителии могут быть однослойными, плоскими или кубическими.

5. Сосудистый эндотелий – образуется из мезенхимы и выстилает сосуды изнутри, откуда и название (греч. endon – внутри).

Восстановление эпителиальных тканей происходит путем размножения клеток того же типа.

Эпителиальные ткани обладают очень высокой способностью к восстановлению. Например, при употреблении слишком горячей пищи гибнет эпителий ротовой полости, но уже через 10-12 часов он почти полностью восстанавливается.

Соединительная ткань состоит из разнообразных клеток и большого количества межклеточного вещества.

Для соединительных тканей характерно наличие между клетками сильно развитого межклеточного вещества. Оно может быть жидким (плазма крови), студневидным (аморфное вещество рыхлой волокнистой соединительной ткани) и волокнистым (коллагеновые, эластические и аргирофильные волокна волокнистой соединительной ткани).

Скелетные ткани – хрящи, костная ткань и дентин (зубная кость) характеризуются сильным развитием аморфного (бесформенного) и волокнистого межклеточного вещества, сообщающих им большую механическую прочность при минимальной затрате материалов. Сухое вещество хрящевой ткани содержит мало неорганических солей, в то время как в костной ткани минеральные соли в виде гидроксилапатита составляют от 1/2 до 2/3 её сухого веса.

Из соединительной ткани образованы кости, хрящи, оболочки различных органов. К ней относят также жировую ткань, кровь и лимфу. Соединительная ткань выполняет в организме разнообразные функции:

а) трофическую – участвует в обмене веществ;

б) защитную – участвует в образовании иммунитета;

в) опорную – образует скелет человека;

г) пластическую – является основой структуры различных органов.

Соединительная ткань принимает участие в заживлении ран. Имея наивысшую способность к восстановлению, она заполняет места повреждений других тканей (образуя при этом соединительнотканный рубец). Рубец на месте раны отличается от других тканей кожи, поскольку заживление раны происходит благодаря регенерации соединительной ткани, а не за счет эпителиальной ткани.

Мышечные ткани объединяются по функциональному признаку – способности сокращаться, хотя сократимые элементы развиваются из разных источников.

Мышечная ткань подразделяется на исчерченную (поперечнополосатую) и неисчерченную (гладкую).

Скелетная мускулатура состоит из длинных (до 10-12 см) многоядерных волокон, имеющих в поперечнике всего 1-10 m. Внутри волокон тоже имеются специфические элементы в виде поперечнополосатых миофибрилл, обладающих в свою очередь субмикроскопической структурой.

Из исчерченной мышечной ткани, кроме скелетных мышц, построены также мышцы языка, гортани, верхней части пищевода, диафрагмы.

Гладкая мускулатура – непроизвольная, медленно сокращается, долго не утомляются и обладают способностью быстро восстанавливаться после повреждения; состоит из веретеновидных или звездчатых клеток одноядерных клеток, которые объединяются в пучки из 10-12 клеток.

Неисчерченная мышечная ткань входит в состав стенок внутренних органов: желудочно-кишечного тракта, легких, системы мочеполовых органов, а также кровеносных и лимфатических сосудов.

Мускулатура сердца представлена ветвящимися волокнами. Они содержат поперечнополосатые фибриллы, которые по расположению и некоторым деталям строения отличаются от фибрилл скелетной мускулатуры. Отличие заключается также и в том, что сердечная мышца не подчиняется нашей воле и работает не переставая от первого в жизни сокращения до последнего.

Основное свойство этой ткани – способность к сокращению, что обеспечивает движение тела в пространстве, фиксацию отдельных частей тела в определенном положении, сокращение стенок полостей организма, сосудов и сердца. Мышечная ткань состоит из клеток, в цитоплазме которых имеются особые сократительные волокна – миофибриллы (греч. миос – мышца, фибрилла – волоконце, нить).

Нервная ткань является основным компонентом нервной системы. В состав нервной ткани входит два вида клеток: нервные клетки – нейроны и клетки нейроглии.

Для первых характерны функции возбуждения и проведения нервного импульса, для вторых – опорная, секреторная, защитная, а также функция питания.

Каждая нервная клетка – нейрон – состоит из тела и отростков. Та часть нервной клетки, в которой располагается основная масса органелл и ядро, называется телом нейрона.

Среди отростков нервной клетки различают дендриты и аксоны, которые проводят нервные импульсы.

Дендриты (греч. дендрон – дерево) – относительно короткие отростки, воспринимающие и передающие информацию к телу клетки. У каждой клетки обычно несколько дендритов.

Аксон (греч. аксон – ось) – длинный отросток (до 1 м), обеспечивающий проведение импульсов от нервной клетки к рабочему органу или к другой нервной клетке. Каждая нервная клетка имеет только один аксон.

В цитоплазме нервной клетки, кроме характерных для клеток органелл, имеются нейрофибриллы. Это нитевидные образования, обеспечивающие движение веществ по аксону.

Нейроглия заполняет промежутки между нервными клетками (опорная функция), через нее к нейронам поступают питательные вещества и кислород (трофическая функция). Она предотвращает попадание в нейроны различных токсических веществ (защитная функция) и выделяет биологически активные вещества (секреторная функция).

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани . Это следующий уровень иерархической структуры организма человека - переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества , которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами , клетки костной ткани - остеоцитами , печени - гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальную , соединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань , или эпителий , покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно - практически без межклеточного вещества - прилегающие друг к другу. Он бывает однослойным или многослойным . Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой - всасывание компонентов пищи и выделение продуктов обмена (экскреция ). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio - отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы - железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы , выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани . Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь . В нашем представлении кровь - это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества - плазмы (1) и взвешенных в ней форменных элементов (2) - эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3 .

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий .

Различают два основных типа мышечной ткани - гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Таблица 1.5.1. Ткани, их строение и функции
Название ткани Специфические названия клеток Межклеточное вещество Где встречается данная ткань Функции Рисунок
ЭПИТЕЛИАЛЬНЫЕ ТКАНИ
Покровный эпителий (однослойный и многослойный) Клетки (эпителиоциты ) плотно прилегают друг к другу, образуя пласты. Клетки мерцательного эпителия имеют реснички, кишечного - ворсинки. Мало, не содержит кровеносных сосудов; базальная мембрана отграничивает эпителий от нижележащей соединительной ткани. Внутренние поверхности всех полых органов (желудка, кишечника, мочевого пузыря, бронхов, сосудов и т.д.), полостей (брюшной, плевральной, суставных), поверхностный слой кожи (эпидермис ). Защита от внешних воздействий (эпидермис, мерцательный эпителий), всасывание компонентов пищи (желудочно-кишечный тракт), выведение продуктов обмена (мочевыделительная система); обеспечивает подвижность органов. Рис.1.5.1 , вид А
Железистый
эпителий
Гландулоциты содержат секреторные гранулы с биологически активные вещества. Могут располагаться поодиночке или образовывать самостоятельные органы (железы). Межклеточное вещество ткани железы содержит кровеносные, лимфатические сосуды, нервные окончания. Железы внутренней (щитовидная, надпочечники) или внешней (слюнные, потовые) секреции. Клетки могут располагаться поодиночке в покровном эпителии (дыхательная система, желудочно-кишечный тракт). Выработка гормонов (раздел 1.5.2.9), пищеварительных ферментов (желчь, желудочный, кишечный, панкреатический сок и др.), молока, слюны, потовой и слезной жидкости, бронхиального секрета и т.д. Рис. 1.5.10 «Строение кожи» - потовые и сальные железы
Соединительные ткани
Рыхлая соединительная Клеточный состав характеризуется большим разнообразием: фибробласты , фиброциты , макрофаги , лимфоциты , единичные адипоциты и др. Большое количество; состоит из аморфного вещества и волокон (эластин, коллаген и др.) Присутствует во всех органах, включая мышцы, окружает кровеносные и лимфатические сосуды, нервы; основная составляющая дермы . Механические (оболочка сосуда, нерва, органа); участие в обмене веществ (трофика ), выработке иммунных тел, процессах регенерации . Рис.1.5.1 , вид Б
Плотная соединительная Волокна преобладают над аморфным веществом. Каркас внутренних органов, твердая мозговая оболочка, надкостница, сухожилия и связки. Механическая, формообразующая, опорная, защитная. Рис.1.5.1 , вид В
Жировая Почти всю цитоплазму адипоцитов занимает жировая вакуоль. Межклеточного вещества больше, чем клеток. Подкожная жировая клетчатка, околопочечная клетчатка, сальники брюшной полости и т.д. Депонирование жиров; энергетическое обеспечение за счет расщепления жиров; механическая. Рис.1.5.1 , вид Г
Хрящевая Хондроциты , хондробласты (от лат. chondron - хрящ) Отличается упругостью, в т. ч. за счет химического состава. Хрящи носа, ушей, гортани; суставные поверхности костей; передние отделы ребер; бронхи, трахея и др. Опорная, защитная, механическая. Участвует в минеральном обмене («отложение солей»). В костях содержится кальций и фосфор (почти 98% от общего количества кальция!). Рис.1.5.1 , вид Д
Костная Остеобласты , остеоциты , остеокласты (от лат. os - кость) Прочность обусловлена минеральным «пропитыванием». Кости скелета; слуховые косточки в барабанной полости (молоточек, наковальня и стремечко) Рис.1.5.1 , вид Е
Кровь Эритроциты (включая юные формы), лейкоциты , лимфоциты , тромбоциты и др. Плазма на 90-93% состоит из воды, 7-10% - белки, соли, глюкоза и др. Внутреннее содержимое полостей сердца и сосудов. При нарушении их целостности - кровотечения и кровоизлияния. Газообмен, участие в гуморальной регуляции, обмене веществ, терморегуляции, иммунной защите; свертывание как защитная реакция. Рис.1.5.1 , вид Ж; рис.1.5.2
Лимфа В основном лимфоциты Плазма (лимфоплазма) Внутреннее содержимое лимфатической системы Участие в иммунной защите, обмене веществ и др. Рис. 1.3.4 "Формы клеток"
МЫШЕЧНЫЕ ТКАНИ
Гладкомышечная ткань Упорядоченно расположенные миоциты веретенообразной формы Межклеточного вещества мало; содержит кровеносные и лимфатические сосуды, нервные волокна и окончания. В стенках полых органов (сосудов, желудка, кишечника, мочевого и желчного пузыря и др.) Перистальтика желудочно-кишечного тракта, сокращение мочевого пузыря, поддержание артериального давления за счет тонуса сосудов и т. д. Рис.1.5.1 , вид З
Поперечно-полосатая Мышечные волокна могут содержать свыше 100 ядер! Скелетная мускулатура; сердечная мышечная ткань обладает автоматизмом (глава 2.6) Насосная функция сердца; произвольная мышечная активность; участие в теплорегуляции функций органов и систем. Рис.1.5.1 (вид И)
НЕРВНАЯ ТКАНЬ
Нервная Нейроны ; клетки нейроглии выполняют вспомогательные функции Нейроглия богата липидами (жирами) Головной и спинной мозг, ганглии (нервные узлы), нервы (нервные пучки, сплетения и т.д.) Восприятие раздражения, выработка и проведение импульса, возбудимость; регуляция функций органов и систем. Рис.1.5.1 , вид К

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4 .

Дифференцировка - это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток . Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие - это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ - замок” - этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное . Диффузионное - это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio - прилипание, слипание) - механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor - жидкость).

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань - это первые уровни организации живых организмов , но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.