Эукариотические и прокариотические клетки: особенности, функции и строение. Прокариотическая и эукариотическая клетки Схема строения хромосом прокариотической и эукариотической клеток

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

12. Прокариотическая клетка

12. Прокариотическая клетка

Вспомните!

В чём заключаются принципиальные отличия в строении прокариотических и эукариотических клеток?

Какова роль бактерий в природе?

Разнообразие прокариот. Царство прокариот в основном представлено бактериями, наиболее древними организмами нашей планеты. Возникнув более 3,5 млрд лет тому назад, прокариоты фактически создали биосферу Земли, сформировав условия для дальнейшей эволюции организмов.

Впервые бактерии увидел под микроскопом и описал в 1683 г. голландский натуралист А. Левенгук. Размеры бактерий колеблются в пределах от 1 до 15 мкм. Отдельную бактериальную клетку можно увидеть только с помощью достаточно сложного микроскопа, поэтому их и называют микроорганизмами.

Бактерии обитают повсюду: в почве, в воде, в воздухе, на поверхности и внутри других организмов, в пищевых продуктах. Некоторые бактерии поселяются в горячих источниках, где температура воды достигает 78 °С и выше. Число бактерий на планете огромно, например в 1 г плодородной почвы содержится около 2,5 млрд бактериальных клеток.

Форма клеток бактерий чрезвычайно разнообразна (рис. 39). Выделяют палочковидные – бациллы , сферические – кокки , спиралевидные – спириллы , имеющие форму запятой – вибрионы .

Рис. 39. Некоторые представители современных бактерий: А – стрептококк (в процессе деления); Б – холерный вибрион; В – палочковидная бактерия клостридиум; Г – палочковидная микобактерия, вызывающая туберкулёз

Рис. 40. Образование спор у бактерий

Многие прокариоты способны к спорообразованию (рис. 40). Споры возникают, как правило, в неблагоприятных условиях и представляют собой клетки с резко сниженным уровнем метаболизма. Споры покрыты защитной оболочкой, сохраняют жизнеспособность в течение сотен и даже тысяч лет и выдерживают колебания температуры от?243 до 140 °С. При наступлении благоприятных условий споры «прорастают» и дают начало новой бактериальной клетке.

Таким образом, спорообразование у прокариот является этапом жизненного цикла, обеспечивающим переживание неблагоприятных условий окружающей среды. Кроме этого в состоянии спор микроорганизмы могут легко распространяться при помощи ветра и другими способами.

Споры болезнетворных бактерий, в покоящемся состоянии пролежавшие многие годы в земле, попадая при различных земляных работах в водоёмы, могут служить причиной возникновения вспышек инфекционных заболеваний. Так, например, споры палочки сибирской язвы сохраняют жизнеспособность в течение более 30 лет.

Учёные-микробиологи вырастили колонии микроорганизмов из спор, оказавшихся в образце льда, возраст которого превышал 10 тыс. лет.

Строение прокариотической клетки. Рассмотрим принципиальное строение бактериальной клетки (рис. 41).

Клетка окружена мембраной обычного строения, кнаружи от которой находится клеточная стенка . В центральной части цитоплазмы располагается одна кольцевая молекула ДНК , не отграниченная мембраной от остальной части цитоплазмы. Зона клетки, содержащая генетический материал, носит название нуклеоид (от лат. nucleus – ядро и греч. eidos – вид). Кроме основной кольцевой «хромосомы» бактерии обычно содержат несколько мелких молекул ДНК в форме небольших, свободно расположенных колец, так называемых плазмид , участвующих в обмене генетическим материалом между бактериями.

В бактериальных клетках нет мембранных органоидов, характерных для эукариот (эндоплазматической сети, аппарата Гольджи, митохондрий, пластид, лизосом). Функции этих органоидов выполняют впячивания клеточной мембраны.

Рис. 41. Строение прокариотической клетки

Обязательными органоидами, которые обеспечивают синтез белка в бактериальных клетках, являются рибосомы .

Поверх клеточной стенки многие бактерии выделяют слизь, образуя своеобразную капсулу , дополнительно защищающую бактерию от внешних воздействий.

Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы.

Сравнивая прокариотическую и эукариотическую клетки, можно отметить, что строение двухмембранных органоидов – митохондрий и пластид, имеющих собственную кольцевую ДНК и рибосомы, синтезирующие РНК и белки, – напоминает строение бактериальной клетки. Это сходство послужило основой гипотезы о симбиотическом происхождении эукариот. Несколько миллиардов лет назад древние прокариотические организмы внедрялись друг в друга, в результате чего возникал взаимовыгодный союз (§ 15, учебник 11 класса).

К прокариотическим организмам относят также цианобактерии, часто называемые синезелёными водорослями. Эти древние организмы, возникшие около 3 млрд лет назад, широко распространены по всему миру. Известно около 2 тыс. видов цианобактерий. Большинство из них способны синтезировать все необходимые вещества, используя энергию света.

Таблица 3. Сравнительная характеристика клеток прокариот и эукариот

Вопросы для повторения и задания

1. В чём заключаются значение и экологическая роль прокариот в биоценозах?

2. Каким образом болезнетворные микроорганизмы влияют на состояние макроорганизма (хозяина)?

3. Опишите строение бактериальной клетки. Как вы думаете, почему у бактерий ДНК не образует комплекс с белками?

4. Как размножаются бактерии?

5. В чём сущность процесса спорообразования у бактерий? Сравните споры растений и грибов. В чём их сходство и принципиальные отличия?

Подумайте! Выполните!

1. Предположите, что произойдёт, если исчезнут все бактерии на Земле.

2. Как давно люди используют микроорганизмы?

3. В чём состоит сущность процессов пастеризации и стерилизации как меры борьбы с бактериями?

4. Что такое антибиотики? С какой целью их применяют?

5. Используя знания, полученные при изучении курса «Человек и его здоровье», расскажите об особенностях бактериальных инфекций, путях заражения, мерах профилактики и способах их лечения.

6. Организуйте и проведите исследование микроорганизмов в естественных продуктах (квашеная капуста, кисломолочные продукты, чайный гриб, дрожжевое тесто).

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Для доказательства того, что данный микроорганизм вызывает конкретное заболевание, Роберт Кох сформулировал три правила. Эти правила в дальнейшем получили название «триада Коха».

Микроб должен всегда встречаться при данной болезни, но его не должно быть у здоровых людей и при других болезнях.

Микроб нужно выделить в «чистую» культуру – посеять на питательную среду так, чтобы в неё не попали микробы другого вида.

Если взять микробов из чистой культуры и заразить ими лабораторных животных (мышей, кроликов и др.), то они должны заболеть той же самой болезнью.

Если все три правила выполняются, значит, исследуемый микроорганизм действительно является причиной данного заболевания.

Повторите и вспомните!

Человек

Бактериальные болезни человека. Среди бактерий существует много болезнетворных (патогенных) видов, вызывающих заболевания у человека. Впервые доказать болезнетворную роль бактерий удалось немецкому врачу и исследователю Роберту Коху. Он открыл бактерий-возбудителей многих заболеваний. В 1882 г. Кох выделил и описал возбудителя туберкулёза , которого позже стали называть палочкой Коха.

Одним из самых быстротекущих бактериальных заболеваний является чума . От первых признаков болезни до смерти может пройти всего несколько часов. Очень опасны газовая гангрена и столбняк . Их возбудители – бактерии, живущие в почве. Заражение происходит при попадании земли в глубокие раны. Поверхностные раны и ожоги часто инфицируются стафилококками и стрептококками, вызывающими гнойные воспаления .

Через воздух можно заразиться ангиной, коклюшем, дифтерией, туберкулёзом . Другие болезнетворные микробы могут попасть в организм через сырую воду, немытые овощи и фрукты, грязную посуду и руки. Такие заболевания, как холера, брюшной тиф, дизентерия , сопровождаются расстройством работы кишечника, болями в животе, повышением температуры.

Животные

Бактериальные болезни животных. У животных бактерии вызывают такие болезни, как сап, бруцеллёз, сибирская язва и многие другие. Этими болезнями может заразиться и человек, поэтому, например, в районах, где скот болеет бруцеллёзом, нельзя пить сырое молоко. Споры сибирской язвы легко переносят высыхание и холод, поэтому даже спустя 100 лет захоронения животных, погибших от этого заболевания, представляют опасность.

Растения

Бактериальные болезни растений. Около 10–15 % урожая всех культурных растений в настоящее время теряется из-за бактериальных болезней (бактериозов). Существуют бактерии, поражающие многие виды растений. Например, корневой рак развивается у винограда и разных плодовых деревьев, от мокрой гнили страдают капуста, картофель, лук, томаты. Специализированные бактерии поражают растения только одного вида или рода, вызывая такие заболевания, как бактериоз огурцов, пятнистость фасоли, кольцевую гниль и чёрную ножку картофеля и другие.

Для борьбы с бактериозами семена, саженцы, черенки, почву в парниках и теплицах дезинфицируют; растения обрабатывают специальными препаратами или антибиотиками; заболевшие растения уничтожают, а больные побеги обрезают. Для борьбы с бактериозами важное значение имеет выведение сортов, устойчивых к заражению.

Из книги Племенное дело в служебном собаководстве автора Мазовер Александр Павлович

ГРУДНАЯ КЛЕТКА Форма грудной клетки изменяется в зависимости от конституционального типа собаки, степени ее развития и возраста. Грудная клетка, вмещающая дыхательные органы, сердце и главнейшие кровеносные сосуды, должна быть объемистой. Объем груди обусловлен длиной,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Клетка - элементарная частица жизни Эти беглые замечания о способах выработки энергии в клетках многоклеточного организма и в бактериальных клетках акцентируют весьма существенные различия в важнейших аспектах их жизнедеятельности. Несходны эти два класса клеток и

Из книги Путешествие в страну микробов автора Бетина Владимир

Бактериальная клетка в цифрах Благодаря биофизике - одной из отраслей науки, с которой мы уже познакомились в начале этой главы, - были получены весьма интересные данные. Возьмем, например, шаровидную бактериальную клетку диаметром 0,5 мкм. Поверхность такой клетки

Из книги Тайны биологии автора Фреск Клас

Клетка-ловушка Тебе понадобятся: клетка-ловушка, приманка (зерна, сыр, хлеб, колбаса), доска или черепицаДлительность опыта: 1–2 дня.Время проведения: поздняя осень - ранняя весна. Твои действия: Купи клетку-ловушку любого типа или сделай ее сам. Для этого возьми

Из книги Читая между строк ДНК [Второй код нашей жизни, или Книга, которую нужно прочитать всем] автора Шпорк Петер

Каждая клетка помнит о своем происхождении Конраду Уоддингтону мы обязаны не только метафорой эпигенетического ландшафта. В 1942 году он стал, как принято считать, крестным отцом понятия «эпигенетика». Слово «эпигенотип» он впервые употребил уже в 1939-м - в своем «Введении

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

5.2. Кишечная клетка Схема кишечной клетки представлена на рис. 26. Известно, что численность кишечных клеток составляет 1010, а соматических клеток взрослого человека- 10 15. Следовательно, одна кишечная клетка обеспечивает питание около 100 000 других клеток. Такая

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Как клетка получает и использует энергию Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают различные типы работы. Таковы движение, то

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Зачем клетка обменивает натрий на калий? Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Из книги Лестница жизни [Десять величайших изобретений эволюции] автора Лейн Ник

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

5.1. Главная ячейка жизни - клетка Определение жизни с позиций функционального подхода (метаболизм, размножение, расселение в пространстве) можно дать в следующей форме [Печуркин, 1982]: это открытая система, развивающаяся на основе матричного автокатализа под влиянием

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Глава 4. Сложная клетка Ботаник - это тот, кто умеет давать одинаковые названия одинаковым растениям и разные названия разным, причем так, чтобы в этом мог разобраться каждый”, - писал великий шведский систематик Карл Линней (сам ботаник). Это определение может поразить

Из книги автора

Глава 2. Клетка ТЕМЫ История изучения клетки. Клеточная теория Химический состав клетки Строение эукариотической и прокариотической клеток Реализация наследственной информации в клетке ВирусыУдивительный и загадочный мир окружает нас, жителей планеты,

Первые прокариотические клетки в эволюции появились около 3-3,5 млрд. лет назад. Их название произошло от греч. pro-до, karion-ядро, поскольку они не имеют оформленного ядра. Их генетический материал в виде одной кольцевидной молекулы ДНК не окружен мембранной оболочкой, лежит прямо в цитоплазме и называется генофором (или нуклеоидом).

В цитоплазме из органоидов имеются только мелкие рибосомы (70 S вместо 80 S- у эукариот).

Кроме того, бактерии могут содержать ДНК в виде крошечных плазмид, сходных с внеядерными ДНК эукариот. Плазмиды являются носителями цитоплазматической наследственности и определяют некоторые специфические свойства бактерий.

Рис.10. Строение прокариотической клетки.

Поверх цитоплазмы у прокариот располагается клеточная оболочка, состоящая из плазматической мембраны и клеточной стенки. Плазматическая мембрана у прокариот имеет складчатые впячивания в цитоплазму мезосомы, на поверхности которых находятся дыхательные ферменты, и идет синтез АТФ. Похожие мембранные образования участвуют и в фиксации азота.

В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии), имеются структурированные крупные впячивания мембраны – тилакоиды, содержащие пигменты (в том числе и бактериохлорофилл). Все ферменты, обеспечивающие процессы жизнедеятельности, диффузно рассеяны в цитоплазме или фиксированы на мембране. У многих прокариот внутри цитоплазмы откладываются запасающие вещества: жиры, полисахариды и др.

Снаружи от плазматической мембраны у прокариот располагается механически прочное образование – клеточная стенка, построенная в большинстве случаев из муреина.

Клеточная стенка сохраняет форму клеток, обеспечивает их жесткость и антигенные свойства. Она служит дополнительной защитой для клеток и в ряде случаев для формирования клеточных колоний. Клеточную стенку у некоторых бактерий окружает толстый слой слизи из полисахаридов и полипептидов.

Бактерии размножаются бесполым путем – делением надвое. После редупликации кольцевой хромосомы и удлинения клетки образуется поперечная перегородка. Затем дочерние клетки расходятся.

Размножению иногда предшествует половой процесс в форме возникновения новых комбинаций генов в хромосоме. Известны три способа образования рекомбинантов: трансформация, конъюгация, трансдукция.

При трансформации из клетки-донора выходит небольшой фрагмент ДНК, который активно поглощается клеткой-реципиентом и включается в ее ДНК, замещая в ней похожий, хотя и не обязательно идентичный фрагмент.

Конъюгация – это перенос ДНК между клетками, контактирующими друг с другом. В переносе генов при этом участвуют плазмиды с половым фактором, или F+ фактором.

Трансдукция – это перенос фрагмента ДНК из одной клетки в другую бактериофагом.

Многим бактериям свойственно спорообразование, когда в среде имеет место недостаток питательных веществ или в избытке накапливаются продукты обмена. Спорообразование начинается с отшнуровывания части цитоплазмы от материнской клетки. Отшнуровавшаяся часть содержит хромосому и окружена мембраной, а затем и клеточной стенкой, нередко многослойной. Процессы жизнедеятельности при этом практически прекращаются. Образовавшиеся споры в сухом состоянии очень устойчивы и могут сохранять жизнеспособность сотни и тысячи лет, выдерживая резкие колебания температуры. Попадая в благоприятные условия, споры преобразуются в активную бактериальную клетку.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» - до, «эу» - хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот . В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом. Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид , обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином . Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

Признак Прокариоты Эукариоты
Клеточное ядро Нет Есть
Мембранные органоиды Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Оболочки клетки Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Генетический материал Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Деление Бинарное деление клетки. Есть митоз и мейоз.
Многоклеточность Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Рибосомы Мельче Крупнее
Обмен веществ Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Происхождение Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Делит все клетки (или живые организмы ) на два типа: прокариоты и эукариоты . Прокариоты - это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома - молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро , в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды . К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму - от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой - жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри - комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей - двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим

Прочитаем информацию.

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Прокариоты (доядерные) - клетки, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и другими внутренними мембранными органоидами.

К прокариотическим клеткам относят клетки бактерий, (сине-зеленые водоросли), .

Строение прокариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

У некоторых микроорганизмов - выпячивания внутрь клетки, образующие стопки плоских мешочков (мезосомы)

У цианобактерий и некоторых пурпурных бактерий - множество мембранных

1.транспортная

2.защитная

5.восприятие сигналов внешней среды

6.участие в иммунных процессах

7.обеспечение поверхностных свойств клетки

Неоформленное ядро, т.е. нуклеарная область, не имеет ядерной мембраны (оболочки).

Содержит одну кольцевую молекулу ДНК - нуклеотид, которую называют бактериальной хромосомой.

Кроме нуклеотида часто встречается небольшая кольцевая молекула ДНК - .

Хранение и реализация наследственной информации, и передача ее дочерним поколениям.

Цитоплазма

Очень мало мембранных органоидов (ЭПС, аппарат Гольджи, пластиды, митохондрии).

Очень много рибосом более мелких, чем у эукариотов.

Синтез белков

Рибосомы

Мельче по размерам, чем у эукариот и расположены в цитоплазме свободно (не образуют ).

Синтез белков

Клеточная стенка

Состоит из комплексов белков и олигосахаридов, уложенных слоями.

Белковые нити, не образуют микротрубочек. Состоят из трех структур , и .

Движение

Муреин (пептидогликан) — это важнейший компонент клеточной стенки бактерий, который выполняет опорную и защитную функции. Он имеет сетчатую структуру и образует жёсткий наружный каркас клетки. Состоит из углеводов и белков. Вещества, убивающие бактерий (лизоцим, антибиотики), разрушают муреин или нарушают его образование.

Цианобактерии (сине-зеленые водоросли) - группа крупных грамотрицательных бактерий, способных к фотосинтезу.

Археи - группа микроскопических одноклеточных орагнизмов-прокариот, резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Среди них нет возбудителей инфекционных болезней.

Тилакоиды - ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза.

Рецепция в физиологии - осуществляемое рецепторами восприятие раздражителей и преобразование в нервное возбуждение.

Полисома (полирибосома) - структура клеточной цитоплазмы, которая состоит из нескольких рибосом, соединенных с помощью молекул информационной (матричной) РНК.

Жгутики бактерий - состоят из трех субструктур:

  • филамент (фибрилла, пропеллер) - полая белковая нить толщиной 10-20 нм и длиной 3-15 мкм.
  • крюк - более толстое, чем филамент (20-45 нм), белковое образование.
  • базальное тело - образование, расположенное у основания жгутика. Имеет форму цилиндра. Длина около 0,5 мкм.

Плазмиды - дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Жгутик

Опорно-двигательные структуры клетки