Стимуляция клеточного деления. Проблема клеточного деления. Нужны разгрузочные дни

Оптимальным этапом для изучения хромосом является стадия метафазы, когда хромосомы достигают максимальной конденсации и располагаются в одной плоскости, что позволяет их идентифицировать с высокой точностью. Для изучения кариотипа требуется выполнение нескольких условий:

Стимуляция клеточных делений для получения максимального количества делящихся клеток,

- блокирование клеточного деления в метафазе;

- гипотонизацш клеток и приготовление препарата хромосом для дальнейшего исследования под микроскопом.

Для изучения хромосом можно использовать клетки из активно пролиферирующих тканей (клетки костного мозга, стенок семенников, опухолей) или клеточные культуры, которые получают путём культивирования в контролируемых условиях на специальных питательных средах клеток, выделенных из организма (клетки периферической крови*, лимфоциты Т, клетки красного костного мозга, фибробласты разного происхождения, клетки хориона, опухолевые клетки)

* Техника получения хромосомных препаратов из лимфоцитов периферической крови, культивируемых в изолированных условиях является наиболее простым методом и состоит из следующих этапов:

Забор венозной крови в асептических условиях;

Добавление гепарина для предотвращения свертывания крови;

Перенос материала во флаконы со специальной питательной средой;

Стимуляция клеточных делений добавлением фитогемагглютинина;

Инкубация культуры в течение 72 часов при температуре 37 0 С.

Блокирование клеточного деления на стадии метафазы достигается введением в среду колхицина или колцемида веществ - цитостатиков, разрушающих веретено деления. Получение препаратов для микроскопического анализа включает следующие этапы:

- гипотонизацю клеток, которая достигается добавлением гипотонического раствора хлорида калия; это приводит к набуханию клетки, разрыву ядерной оболочки и дисперсии хромосом;

- фиксацию клеток для остановки жизнедеятельности клетки с сохранением структуры хромосом; для этого используются специальные фиксаторы, например, смесь этилового спирта и уксусной кислоты;

- окрашивание препарата по Гимзе или использование других способов окрашивания;

- анализ под микроскопом с целью выявления численных нарушений (гомогенных или в мозаике) и структурных аберраций;

- фотографирование и вырезание хромосом;

- идентификацию хромосом и составление кариограммы (идиограммы).

Этапы кариотипирования Дифференциальная окраска хромосом

В настоящее время наряду с рутинными методами изучения кариотипа используются методы дифференциальной окраски, позволяющие выявить в хроматидах чередование окрашенных и неокрашенных полос. Они называются бэндами и имеют специфическое и точное распределение, обусловленное особенностями внутренней организации хромосомы

Методы дифференциальной окраски были разработаны в начале 70-х годов ХХ-го века и стали важной вехой в развитии цитогенетики человека. Они имеют широкое практическое применение, т.к.:

Чередование полос не носит случайный характер, а отражает внутреннюю структуру хромосом, например распределение эухроматиновых и гетерохроматиновых участков, богатых AT или GC последовательностями ДНК, участков хроматина с разной концентрацией гистонов и негистонов;

Распределение бэндов идентично для всех клеток одного организма и всех организмов данного вида, что используется для точной идентификации вида;

Метод позволяет точно идентифицировать гомологичные хромосомы, которые являются одинаковыми с генетической точки зрения и имеют сходное распределение бэндов;

Метод обеспечивает точную идентификацию каждой хромосомы, т.к. разные хромосомы имеют разное распределение бэндов;

Дифференциальная окраска позволяет выявить многие структурные нарушения хромосом (делеции, инверсии), которые с трудом обнаруживаются методами простой окраски.

В зависимости от способа предобработки хромосом и техники окрашивания различают несколько методов дифференциальной окраски (G,Q,R,T,C). Используя их, можно получить чередование окрашенных и неокрашенных полос - бэндов, стабильных и специфичных для каждой хромосомы.

Характеристика различных методов дифференциальной окраски хромосом

Название метода

Используемый краситель

Природа бэндов

Практическая роль

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Выявление численных и структурных аномалий хромосом

Куинакрин (флюоресцентный краситель)

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Метод R (реверс)

Окрашенные - эухроматин;

неокрашенные -

гетерохроматин

Выявление численных и структурных аномалий хромосом

Giemsa или флюоресцентный краситель

Окрашенные центромерный гетерохроматин

Анализ полиморфизма хромосом

Giemsa или флюоресцентный краситель

окрашенные - теломерный гетерохроматин

Анализ полиморфизма хромосом

По мере развития количество клеток, из которых состоит зародыш, увеличивается. Деления клеток (дробление яйца) на самых ранних стадиях развития происходят равномерно (синхронно). Ho у одних видов раньше, у других позже эта синхронность нарушается и клетки, из которых образуются зачатки разных органов, начинают делиться с разной скоростью. Эти различия в скорости деления можно рассматривать как одно из первых проявлений их дифференцировки.

У зародышей млекопитающих уже после стадии 16–32 бластомеров большая часть клеток начинает делиться быстрее и образует трофобласт – зачаток будущей плаценты. Сам будущий зародыш состоит на этих ранних стадиях всего из нескольких клеток. Однако позже в ходе развития и роста зародыш и затем плод становятся во много раз больше плаценты.

У амфибий на стадии бластулы, состоящей из нескольких тысяч клеток, будущая мезодерма составляет менее одной трети всех клеток. Ho по мере развития мезодермальные производные – все мышцы, почти весь скелет, система кровообращения, почки и др. – занимают не менее 80 % всей массы головастика.

Особенно нагляден неодинаковый темп деления клеток в морфогенезе многих беспозвоночных. У видов с мозаичным развитием уже на стадии 30–60 клеток зачатки всех основных органов определены и представлены очень немногими клетками (иногда всего двумя). Далее деления клеток в каждом зачатке строго программируются. Так, например, ранний зародыш асцидий содержит 52 клетки эктодермы, 10 клеток энтодермы и всего 8 клеток мезодермы. В течение последующего развития число клеток эктодермы возрастает в 16 раз, энтодермы – в 20, а мезодермы – в 50. Благодаря программированности делений число клеток у некоторых взрослых беспозвоночных (например, у нематод) строго постоянно и каждый орган представлен определенным числом клеток. Далеко не всегда местоположение органа и место, где делятся составляющие его клетки, совпадают. Часто митозы происходят только в особой зоне размножения и оттуда клетки мигрируют к месту своей дифференцировки. Примеры такого рода мы уже видели при рассмотрении системы стволовых клеток. То же происходит, например, и при развитии головного мозга.

Программа клеточных делений не всегда очень строга и предопределяет точное их число. Чаще, вероятно, деления происходят до тех пор, пока количество клеток или размер органа не достигнет определенной величины. Речь идет, таким образом, о двух принципиально различных механизмах регуляции клеточных делений.

В одном случае (как в яйцах с мозаичным развитием) он, по‑видимому, заключен в самой делящейся клетке, которая должна «уметь отсчитывать» свои деления. В другом же случае должна существовать некоторая «петля обратной связи», когда масса органа или число клеток, достигая некоторой величины, начинает тормозить дальнейшие деления.

Оказалось, что число делений в нормальных клетках, не трансформированных в злокачественные, вообще не беспредельно и обычно не превышает 50–60 (большинство клеток делится меньше, так как если бы яйцо равномерно разделилось 60 раз, то число клеток в организме (260) оказалось бы в тысячи раз выше, чем в действительности). Однако ни механизм такого предела числа клеточных делений (называемого по имени открывшего его ученого предел Хайфлика), ни его биологический смысл пока непонятен.

Что же является «датчиком» в системе регуляции – размер органа или число клеток? Однозначный ответ на этот вопрос дают опыты с получением животных с измененной плоидностью – гаплоидные, триплоидные или тетраплоидные. Их клетки соответственно в 2 раза меньше или в 1,5 или 2 раза больше нормальных диплоидных. Тем не менее и размер самих животных, и размер их органов, как правило, нормальные, т. е. они содержат больше или меньше клеток, чем в норме. Регулируемой величиной, следовательно, является не количество клеток, а масса органа или всего организма.

Иначе обстоит дело у растений. Клетки тетраплоидных растений, как и у животных, соответственно больше диплоидных. Но и размеры частей тетраплоидных растений – листьев, цветков, семян – часто оказываются больше обычных почти в 2 раза. Похоже, что у растений «датчиком» при определении числа клеточных делений является не размер органа, а само число клеток.

Механизмы, регулирующие клеточные деления – пролиферацию клеток, изучаются очень интенсивно и с разных сторон. Одним из стимулов такой активности ученых является то, что отличия раковых клеток от нормальных во многом и состоят в нарушении регуляции клеточных делений, в выходе клеток из‑под такой регуляции.

Примером одного из механизмов регуляции клеточных делений может служить поведение клеток, посеянных на дно флакона с питательной средой, – клеточной культуры. Их деления в хороших условиях происходят до тех пор, пока они не покроют все дно и клетки не коснутся друг друга. Далее наступает так называемое контактное торможение, или торможение, зависимое от плотности клеток. Его можно нарушить, как это делал Ю. М. Васильев, расчистив от клеток небольшое окошко на поверхности стекла. В это окошко со всех сторон устремляются клетки, вокруг него проходит волна клеточных делений. Можно думать, что и в организме контакты с соседними клетками являются механизмом, сдерживающим клеточные деления.

У опухолевых клеток эта регуляция нарушается – они не подчиняются контактному торможению, а продолжают делиться, громоздясь друг на друга. Аналогично, увы, они ведут себя и в организме.

Ho контактное торможение не является единственным механизмом регуляции: ее барьер может быть преодолен и у вполне нормальных клеток. Так, например, плотно прижатые друг к другу клетки печени у молодого животного тем не менее делятся и печень растет вместе с ростом всего животного. У взрослых животных эти деления практически прекращаются. Однако если две доли печени удалить, то в оставшейся доле очень быстро начнутся массовые деления клеток – регенерация печени. Если удалить одну почку, то в течение немногих дней вторая почка за счет клеточных делений увеличится вдвое. Очевидно, что в организме существуют механизмы, способные стимулировать клеточные деления в органе, активировать его рост и приводить размеры органа тем самым в некоторое количественное соответствие с размерами всего организма.

В этом случае действуют не контактные механизмы, а какие‑то химические факторы, может быть связанные с функцией печени или почек. Можно представить, что недостаточность функции этих органов, при удалении части их или при отставании их роста от роста всего организма, так нарушает весь метаболизм в организме, что это вызывает компенсаторную стимуляцию клеточных делений именно в данных органах. Есть и другие гипотезы, объясняющие, например, подобные явления действием особых ингибиторов клеточных делений – кейлонов, выделяемых самим органом; если орган меньше, то меньше и кейлонов и больше клеточных делений в этом органе. Если такой механизм и существует, то действует он не везде. Например, потеря одной ноги не приводит сама по себе к увеличению размеров другой ноги.

Деления стволовых и дифференцирующихся клеток крови стимулируются, как мы уже говорили, гормонами, такими, как, например, эритропоэтин. Гормоны стимулируют клеточные деления и во многих других случаях. Например, стимуляция роста числа клеток яйцевода у кур активируется женским половым гормоном. Существуют химические факторы – обычно это небольшие белки, которые действуют не как гормоны, т. е. не разносятся с кровью по всему организму, а влияют более ограниченно, на соседние ткани. Это известные сейчас факторы роста – эпидермальный и др. Однако в большинстве случаев конкретные химические факторы регуляции клеточных делений и механизмы их действия нам неизвестны.

Еще меньше мы знаем о регуляции клеточных делений во время основных процессов морфогенеза – в эмбриональном развитии. Мы уже говорили, что здесь способность одних клеток делиться быстрее, чем другие, является проявлением их дифференцировки. В то же время нельзя не заметить, что дифференцировка и клеточные деления в определенном смысле противостоят друг другу и иногда даже исключают друг друга. В некоторых случаях это связано с невозможностью деления при далеко зашедшей, терминальной дифференцировке клеток. Может ли, например, разделиться эритроцит с его очень специализированной структурой, жесткой оболочкой и почти полной утратой большинства клеточных функций, а у млекопитающих еще и с потерей ядра? Нервные клетки хотя и сохраняют очень высокий темп метаболизма, но их длинный аксон и дендриты, связанные с другими клетками, служат очевидными препятствиями к делению. Если бы такое деление у нервной клетки все же произошло, это привело бы к потере связи этой клетки с другими и, следовательно, к потере ее функции.

Поэтому обычной последовательностью событий является сначала период пролиферации клеток, а уже затем дифференцировка, носящая терминальный характер. Более того, ряд ученых предполагают, что как раз во время клеточных делений хромосомы как бы «освобождаются» для следующего этапа дифференцировки, – последнему митозу перед дифференцировкой придается особое значение. Эти представления носят пока во многом умозрительный характер п не имеют на молекулярном уровне хороших экспериментальных оснований.

Ho и не зная конкретных механизмов регуляции клеточных делений, мы вправе рассматривать их программированный характер как такое же проявление программы развития, каким являются и все остальные его процессы.

В заключение мы кратко остановимся и на явлении, как бы обратном размножению клеток, – их гибели, которая в определенных случаях формообразования является необходимым этапом развития. Так, например, при образовании пальцев в зачатках кисти передних и задних конечностей клетки мезенхимы собираются в плотные тяжи, из которых потом формируются хрящи фаланг. Среди клеток, оставшихся между ними, происходит массовая гибель, за счет которой отчасти пальцы отделяются друг от друга. Нечто похожее происходит и при дифференцировке зачатка крыла у птиц. Механизмы гибели клеток в этих случаях – факторы, внешние по отношению к клеткам, и события внутри клеток – остаются малоизвестными. А. С. Уманский предполагает, например, что гибель клетки начинается с деградации ее ДНК.

Размножение клеток, несмотря на всю его важность, нельзя считать основным механизмом морфогенеза: в создании формы оно участвует все же косвенно, хотя такие важные параметры, как общая форма органа и его относительные размеры, могут регулироваться именно на уровне клеточных делений. Еще меньшую роль играет в морфогенезе программированная гибель клеток. Ho тем не менее они являются в нормальном развитии совершенно необходимыми компонентами. В регуляции этих явлений участвуют практически все компоненты клетки и ее генетический аппарат. Это показывает нам, что в развитии не бывает простых процессов. Попытка до конца разобраться в любом из них заставляет нас обращаться к основным молекулярным механизмам работы клетки. А здесь еще много нерешенного.

Для того чтобы оценить всю сложность развития многоклеточного организма, надо представить себе этот процесс происходящим как бы в многомерном пространстве. Одну ось составляет длинная цепь этапов реализации генетической информации – от гена до признака. Второй такой осью можно назвать всю совокупность генов в хромосомах. В ходе развития продукты различных генов взаимодействуют друг с другом. Развертывание событий но двум осям образует как бы сеть на плоскости. Однако существует п третья ось – разнообразие событий, происходящих в разных частях зародыша. События эти могут происходить относительно автономно, как у животных с мозаичным развитием. Ho частично и у них, а в полной мере у видов с регуляционным типом развития между частями организма осуществляются большие или меньшие взаимодействия и всегда сложные перемещения клеток. Рассматривать их все как одну ось можно, только идя на значительные упрощения. И наконец, все развитие (гаметогенез, эмбриогенез и постэмбриональное развитие) происходит во времени, масштаб которого совершенно иной, чем время, измеряемое на пути от гена до белка. По этой (условно четвертой) оси вся многомерная картина радикально изменяется – яйцо превращается в размножающийся организм. Эта многомерность иллюстрирует сложность всех процессов и их взаимоотношений и трудности их понимания.


У части вирусов роль наследственного вещества выполняет не ДНК, а сходная с ней по строению РНК.

Стимуляторы метаболизма клеток и стимуляторы регенерации: экстракт плаценты, экстракт околоплодной жидкости, пантенол, экстракт медицинских пиявок, лососевой молоки, морского планктона, цветочной пыльцы, костный мозг, эмбриональные клетки, маточное молочко пчел (апилак), ДНК, РНК, факторы роста, органопрепараты тимуса, пуповины, костного мозга, масло облепихи, фитэстрогены и др.

Факторы роста - белки и гликопротеиды, которые оказывают митогенное действие (стимулируют деление) на различные клетки. Факторы роста получают название по типу клеток, для который впервые было показано митогенное действие, однако они обладают более широким спектром действия и не ограничиваются одной группой клеток. Фактор роста кератиноцитов стимулирует деление кератиноцитов. Появляется при ранениях кожи. Эпидермальный фактор роста - стимулирует регенерацию. Подавляет дифференцировку и апоптоз, обеспечивает реэпителизацию ран. Может индуцировать опухолевый рост. Гепаринсвязывающий фактор роста оказывает антипролиферативный эффект на кератиноциты. Фактор роста нервных клеток стимулирует деление кератиноцитов. В настоящее время факторы роста, способные активировать деление человеческих клеток, выделены из молочной сыворотки, из амниотической жидкости животных, плаценты, тканей человеческих эмбрионов, гонад беспозвоночных животных и спермы млекопитающих. Факторы роста используют для активации митозов в стареющей коже, ускорения обновления эпидермиса и регенерации кожных покровов.

Какие именно вещества стимулируют обновление клеток?

  • Витамины,
  • микроэлементы,
  • аминокислоты,
  • ферменты,

Это могут быть: вит. А, Е, С, F, цинк, магний, селен, сера, кремний, вит. группы В, биотин, глютатион, протеаза, папаин, и др.

Вещества, повышающие тургор и эластичность кожи, эластостимуляторы (сера, вит. С, хондроитинсульфат, гиалуроновая к-та, коллаген, кремний, глюкозамины, ретиноиды и ретиноевая кислота, фибронектин, фитоэстрогены, препараты клеточной косметики и др).

Ретиноиды

Ретиноиды - природные или синтетические соединения, проявляющие сходное с ретинолом (вит. А) действие. Действие ретиноидов на кожу: шелушивающее, осветляющее, повышение упругости и эластичности, сглаживание морщин, уменьшение воспаления, ранозаживляющее, побочное действие - раздражающее. Ретиноиды вызывают одновременное утолщение эпидермиса и отшелушивание рогового слоя, ускоряя обновление кератиноцитов. Группы ретиноидов:

  • Неароматические ретиноиды - ретинальдегид, третиноин, изотретиноин, транс-ретинол в - глюкуронид, фентретинид, эфиры ретиноевой кислоты (ре- тинилацетат, ретинилпальмитат).
  • Моноароматические ретиноиды - этретинат, транс-ацитретин, мотретинид.
  • Полиароматические ретиноиды - адапален, тазаротин, тамибаротин, аротиноид метилсульфон.

В наружных лекарственных и косметических средствах для коррекции старения используются ретинол, ретинола пальмитат, ретинальдегид, третиноин, эфиры ретиноевой кислоты, изотретиноин, для коррекции фотостарения - третиноин, изотретиноин, аротиноид метилсульфонат, фенретинид, для коррекции акне - третиноин, изотретиноин, мотретинид, адапален.


В основе омолаживающих процедур, которые проводит косметолог для улучшения внешнего вида лица и устранения морщин, лежит регенерация клеток кожи, которую необходимо стимулировать. Для этого имеются множество косметических средств и процедур, действие которых направлено на активизацию клеточных процессов в таких слоях кожи, как эпидермис и дерма, а также на ускорение выработки коллагена и эластина. Методики и средства омоложения подбираются с учетом способности кожи отвечать на стимулирующее воздействие.

Некоторые причины замедленной регенерации клеток кожи

Медленное обновление клеток в стареющей коже происходит из-за снижения скорости их деления в базальном слое, а также из-за нарушения процесса слущивания чешуек рогового слоя. В результате нарушается барьерная функция кожи, увеличивается количество дефектных клеток в эпидермисе, ухудшается общий внешний вид кожи.
Дерма страдает от внешних повреждающих факторов среды не намного меньше эпидермиса, а потому тоже нуждается в обновлении. Фибробласты этого слоя кожи постоянно синтезируют волокна эластина и коллагена, гиалуроновую кислоту, другие гликозамингликаны и так же постоянно их разрушают, поддерживая процессы регенерации кожи. Со временем фибробласты утрачивают возможность синтезировать межклеточное вещество так же быстро, как раньше, и скорость обновления дермы замедляется.

Возможные пути стимулирования регенерации клеток кожи

Сегодня перспективными стали исследования возможностей стволовых клеток, способных к почти бесконечному делению. Принято считать, что стволовые клетки эпидермиса расположены в области bulge волосяного фолликула, что подтверждается некоторыми экспериментами, в процессе которых ученым удавалось вырастить фрагмент полноценной кожи из клеток волосяного фолликула.

Кроме того, к интенсивному делению способны клетки базального слоя кожи, причем именно те из них, которые располагаются на углубленных в дерму участках эпидермиса. Скорость обновления эпидермиса зависит от темпа деления клеток базального слоя, но не напрямую, поскольку они делятся гораздо быстрее необходимого. Эта особенность базального слоя объясняется необходимостью создания некоторых резервов на случай повреждения кожи и потребности в немедленной регенерации клеток кожи. В обычных условиях эпидермис сдерживает этот процесс за счет выработки кейлонов, ингибирующих клеточное деление, и поддерживает оптимальную толщину рогового слоя.

При любом повреждающем воздействии на кожу скорость деления базальных клеток увеличивается. Если повреждение происходит на небольшом участке, утолщение кожи происходит локально (яркий пример тому - образование мозоли на стертом участке стопы). Повреждение кожи на большой площади вызывает акантоз - общее утолщение эпидермиса (например, после избыточной инсоляции кожа на теле становится более грубой и плотной).

Методы и средства стимулирования регенерации клеток кожи

В косметологии один из способов стимулировать кожу к регенерации - пилинг - основан именно на этом свойстве кожи отвечать на ее повреждение активным делением клеток базального слоя. Другой способ дать им сигнал к интенсивному размножению - использовать цитокины и ретиноиды.

Цитокины - это медиаторы белковой природы, которые участвуют в межклеточной передаче сигналов, регулируют пролиферацию и дифференцировку клеток. Ретиноиды способны напрямую стимулировать клетки эпидермиса к делению и дифференцировке, а также ослаблять связи между клетками рогового слоя, что способствует их отшелушиванию.

Фитоээстрогены - еще одно средство, стимулирующее регенерацию клеток кожи. Фитоэстрогены могут ускорить клеточное обновление, если клетки стали медленнее делиться из-за недостаточной гормональной стимуляции.

Стимуляция клеток эпидермиса к обновлению способствует активизации фибробластов дермы, что ведет к усилению синтеза коллагена и эластина. В качестве таких стимуляторов в составе косметических средств, ускоряющих регенерацию клеток кожи и способствующих разглаживанию некоторых видов морщин, могут выступать следующие вещества:

  • N-ацетил-L-цистеин (серосодержащая аминокислота);
  • гамма-аминобутировая кислота;
  • неомыляемые фракции масла авокадо, соевого масла;
  • полисахариды стенки дрожжей;
  • очищенные полисахариды геля алоэ;
  • L-аскорбиновая кислота.

Выбор средства и метода для регенерации клеток кожи и ее общего омоложения, а также для ее лечения в случае повреждения или УФ-облучения зависит от выраженности признаков старения или характера повреждения, а также от способности кожи отвечать на стимулирующие действия. Если же деградация клеток в силу возраста или влияния внешних факторов зашла слишком далеко и кожа не отвечает на косметическое воздействие, понадобятся более интенсивные омолаживающие процедуры или помощь пластической хирургии.

Деление клеток играет большую роль в процессах онтогенеза. Во-первых, благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм. Во-вторых, пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма. В-третьих, избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов. В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Зигота, бластомеры и все соматические клетки организма, за исключением половых клеток, в периоде созревания гаметогенеза делятся митозом. Клеточное деление как таковое является одной из фаз клеточного цикла. От продолжительности интерфазы (G­ 1 + S + G 2 -периоды) зависит частота последовательных делений в ряду клеточных поколений. В свою очередь интерфаза имеет разную продолжительность в зависимости от стадии развития зародыша, локализации и функции клеток.

Так, в периоде дробления эмбриогенеза клетки делятся быстрее, чем в другие, более поздние периоды. Во время гаструляции и органогенеза клетки делятся избирательно в определенных областях зародыша. Замечено, что там, где скорость клеточного деления высокая, происходят и качественные изменения в структуре эмбриональной закладки, т.е. органогенетические процессы сопровождаются активным размножением клеток. Показано, что растяжение клеток при их движении стимулирует клеточное деление. В сформировавшемся организме некоторые клетки, например нейроны, вообще не делятся, в то время как в кроветворной и эпителиальной тканях продолжается активное размножение клеток. Клетки некоторых органов взрослого организма в обычных условиях почти не делятся (печень, почка), но при наличии стимула в виде воздействия гормональных или внутритканевых факторов, часть из них может вступить в деление.

При изучении расположения делящихся клеток в тканях обнаружено, что они группируются гнездами. Само по себе деление клеток не придает эмбриональному зачатку определенной формы, и нередко эти клетки располагаются беспорядочно, но в результате последующего их перераспределения и миграции зачаток приобретает форму. Так, например, в зачатке головного мозга деление клеток сосредоточено исключительно в том слое стенки, который прилежит к полости невроцеля. Затем клетки передвигаются из зоны размножения к наружной стороне пласта и образуют ряд выпячиваний, так называемых мозговых пузырей. Таким образом, клеточное деление в эмбриогенезе носит избирательный и закономерный характер. Об этом же свидетельствует открытая в 60-х годах суточная периодичность количества делящихся клеток в обновляющихся тканях.

В настоящее время известен ряд веществ, которые побуждают клетки к делению, например фитогемагглютинин, некоторые гормоны, а также комплекс веществ, выделяющихся при повреждении тканей. Открыты также и тканеспецифичные ингибиторы клеточного деления - кейлоны. Их действие заключается в подавлении или замедлении скорости деления клеток в тех тканях, которые их вырабатывают. Например, эпидермальные кейлоны действуют только на эпидермис. Будучи тканеспецифичными, кейлоны лишены видовой специфичности. Так, эпидермальный кейлон трески действует и на эпидермис млекопитающего.

За последние годы установлено, что многие структуры зародыша образуются клетками, происходящими от небольшого числа или даже одной клетки. Совокупность клеток, являющихся потомками одной родоначальной клетки, называют клоном. Показано, например, что большие по объему участки центральной нервной системы формируются из определенных клеток раннего зародыша. Пока не ясно, в какой именно срок происходит отбор родоначальных клеток, каков механизм этого отбора. Важным следствием такой селекции является то, что многим клеткам раннего зародыша не суждено участвовать в дальнейшем развитии. В опытах на мышах показано, что организм развивается всего из трех клеток внутренней клеточной массы на стадии, когда бластоциста состоит из 64 клеток, а сама внутренняя клеточная масса содержит примерно 15 клеток. Клональные клетки могут быть причиной мозаицизма, когда большие группы клеток отличаются по набору хромосом или аллельному составу.

По-видимому, количество циклов клеточных делений в ходе онтогенеза генетически предопределено. Вместе с тем известна мутация, изменяющая размеры организма за счет одного дополнительного клеточного деления. Это мутация gt (giant), описанная у Drosophila melanogaster. Она наследуется по рецессивному сцепленному с полом типу. У мутантов gt развитие протекает нормально на протяжении всего эмбрионального периода. Однако в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи gt продолжают оставаться в личиночном состоянии еще дополнительно 2-5 сут. За это время у них происходит одно, а может быть, и два дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.

У мышей описан ряд мутаций, обусловливающих снижение пролиферативной активности и следующие за этим фенотипические эффекты. К ним относят, например, мутацию or (ocular retardation), затрагивающую сетчатку глаза начиная с 10-х суток эмбрионального развития и приводящую к микрофтальмии (уменьшению размеров глазных яблок), и мутацию tgia, затрагивающую центральную нервную систему с 5-6-х суток после рождения и приводящую к отставанию роста и атрофии некоторых внутренних органов.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.