Хромосомная теория наследственности цитоплазматическая наследственность. Хромосомная теория наследственности

1) Гены находятся в хромосомах.

2) Гены в хромосомах расположены линейно друг за другом и не перекрываются.

3) Гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления. Поскольку в гомологичные хромосомы входят аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы; таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. В пределах каждой группы сцепления вследствие кроссинговера происходит перекомбинирование генов.

4) Закон Моргана – «Гены, расположенные в одной хромосоме, наследуются совместно».

Полное сцепление генов. Если гены расположены в хромосоме непосредственно друг за другом, то кроссинговер между ними практически невероятен. Они почти всегда наследуются вместе, и при анализирующем скрещивании наблюдается расщепление в соотношении 1:1

Неполное сцепление генов. Если гены в хромосомах расположены на некотором расстоянии друг от друга, то частота кроссинговера между ними возрастает и, следовательно, появляются кроссоверные хромосомы, несущие новые комбинации генов: Аb и аВ

Их количество прямо пропорционально расстоянию между генами. При неполном сцеплении в потомстве появляется некоторое количество кроссоверных форм, причем их количество зависит от расстояния между генами. Процент кроссоверных форм указывает на расстояние между генами, расположенными в одной хромосоме.

Взаимодействия неаллельных генов

Комплементарность – явление при котором ген одной аллельной пары способствует проявлению генов другой аллельной пары.

1) У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента – пропигмента. Ген В определяет синтез фермента, под действием которогo из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и АаЬЬ имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором – есть пропигмент. но нет фермента, переводящего пропигмент в пигмент:

2) Новообразование признака – наследование формы гребня у кур некоторых пород. В результате различных комбинаций генов возникают четыре варианта формы гребня:

Pиc. Форма гребня у петухов: А – простой (aabb); Б – гороховидный (ааВВ или ааВВ); В – ореховидный (ААВВ или АаВЬ); Г – розовидный (ААЬЬ или Aabb)

Эпистаз – явление, при котором ген одной аллельной пары препятствует проявлению генов из другой аллельной пары, например развитие окраски плодов у тыквы. Окрашенными плоды тыквы будут только в том случае, если в генотипе-растении отсутствует доминантный ген В из другой аллельной пары. Этот ген подавляет развитие окраски, у плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться (Aabb – желтые плоды; aabb – зеленые плоды; ААВВ и ааВВ – белые плоды).

Полимерия – явление, при котором степень выраженности признака зависим от действия нескольких различных пар аллельных генов причем чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. У пшеницы красный цвет зерен определяется двумя генами: a1, a2;. Неаллельные гены обозначены здесь одной буквой А(а) потому, что определяют развитие одного признака. При генотипе А1А1А2А2 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2 они имеют белый цвет. В зависимости от числа доминантных генов в генотипе можно получить все переходы между интенсивно красной и белой окраской:

Рис. 26. Наследование окраски зерен пшеницы (полимерия)

Работы Моргана заложили основы хромосомной теории наследственности, они показали, что ограничения в свободной комбинаторике некоторых генов обусловлены расположением этих генов в одной хромосоме и их физическим сцеплением.

Морганом было установлено, что сцепление генов, расположенных в одной хромосоме, не является абсолютным. Во время мейоза хромосомы одной пары могут обмениваться гомологичными участками между собой с помощью процесса, который называется кроссинговером. Чем дальше друг от друга расположены гены в хромосоме, тем чаще они разделяются кроссинговером. На основе этого феномена была предложена мера силы сцепления генов - процент кроссинговера - и построены первые генетические карты хромосом для разных видов дрозофилы.

В качестве объекта генетического анализа была выбрана плодовая мушка дрозофила и Морган изучал наследование у нее разных признаков.

Скрестив гомозиготную самку с серыми телом и длинными крыльями (домин), с гомозиготным чернокрылым короткокрылым самцом, в F1 – однообразие (серое тело, длинные крылья)

Оказалось, что результаты будут разные в зависимости от пола гибрида.

Если гибридным был самец, то в потомстве получалось 2 фенотипических класса полностью повторяющих признаки родителей.

Если гибридной была самка, то получалось 4 фенотипических классов потомком в неравных пропорциях. Большую часть потомства (83%) составляют потомки с родительскими признаками, меньшую (17%) – особи с новыми комбинациями признаков.

Морган сделал вывод, что сцепление может быть неполным, где группа сцепления нарушается кроссинговером.

Необычность процентного соотношения у потомков объясняется тем, что кроссинговер происходит не всегда, частота кроссинговера зависит от расстояния между генами – чем больше расстояние, тем меньше силы сцепления между генами, тем чаще кроссинговер.

Гаметы, в которые попали хромосомы, не прошедшие кроссинговер, называются некроссоверные.

Если в гаметах хромосомы претерпевшие кроссинговер – кроссоверные.

6. Основные положения хромосомной теории наследственности

1. Гены расположены в хромосомах линейно в определенных участках – локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе или сцеплено. Число групп сцепления = числу хромосом в гаплоидном наборе.

3. Между гомологичными хромосомами возможен кроссинговер, нарушающий сцепление

4. процесс кроссинговера прямо пропорционален расстоянию между генами.

1% кроссинговера = 1 сантиморганида

7. Понятие о цитоплазматической наследственности

Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития.

Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений.

И оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в г. американским генетиком Т. Морганом , который в последующие годы ( -) обосновал хромосомную теорию наследственности . Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

Генетика пола

Сходный способ определения пола (XY-тип) присущ всем млекопитающим , в том числе и человеку , клетки которого содержат 44 аутосомы и две X-хромосомы у женщин либо XY-хромосомы у мужчин.

Таким образом, XY-тип определения пола , или тип дрозофилы и человека, - самый распространенный способ определения пола , характерный для большинства позвоночных и некоторых беспозвоночных . Х0-тип встречается у большинства прямокрылых, клопов, жуков, пауков, у которых Y-хромосомы нет вовсе, так что самец имеет генотип Х0, а самка - XX.

У всех птиц, большинства бабочек и некоторых пресмыкающихся самцы являются гомогаметным полом, а самки -- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола; при этом набор хромосом самцов обозначают символом ZZ, а самки - символом ZW или Z0.

Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую - ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО - самцы, а с набором ХХУ - самки (у человека - наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). (Особи со всеми этими хромосомными аберрациями у дрозофилы стерильны). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом.

Наследование признаков, сцепленных с полом

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется. Например, у дрозофилы гены, локализованные в X-хромосоме, как правило, не имеют аллелей в У-хромосоме. По этой причине рецессивные гены в X-хромосоме гетерогаметного пола практически всегда проявляются, будучи в единственном числе.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Явление наследования, сцепленного с полом, было открыто Т. Морганом у дрозофилы.

Х- и У-хромосомы у человека имеют гомологичный (псевдоаутосомный) участок, где локализованы гены, наследование которых не отличается от наследования аутосомных генов.

Помимо гомологичных участков, X- и У-хромосомы имеют негомологичные участки. Негомологичный участок У-хромосомы, кроме генов, определяющих мужской пол, содержит гены перепонок между пальцами ног и волосатых ушей у человека. Патологические признаки, сцепленные с негомологичным участком У-хромосомы, передаются всем сыновьям, поскольку они получают от отца У-хромосому.

Негомологичный участок X-хромосомы содержит в своем составе ряд важных для жизнедеятельности организмов генов. Поскольку у гетерогаметного пола (ХУ) X-хромосома представлена в единственном числе, то признаки, определяемые генами негомологичного участка X-хромосомы, будут проявляться даже в том случае, если они рецессивны. Такое состояние генов называется гемизиготным. Примером такого рода X-сцепленных рецессивных признаков у человека являются гемофилия , мышечная дистрофия Дюшена, атрофия зрительного нерва, дальтонизм (цветовая слепота) и др.

Гемофилия - это наследственная болезнь, при которой кровь теряет способность свертываться. Ранение, даже царапина или ушиб, могут вызвать обильные наружные или внутренние кровотечения, которые нередко заканчиваются смертью. Это заболевание встречается, за редким исключением, только у мужчин. Было установлено, что обе наиболее распространенные формы гемофилии (гемофилия А и гемофилия В) обусловлена рецессивными генами, локализованными в X-хромосоме. Гетерозиготные по данным генам женщины (носительницы) обладают нормальной или несколько пониженной свертываемостью крови.

Фенотипическое проявление гемофилии у девочек будет наблюдаться в том случае, если мать девочки является носительницей гена гемофилии, а отец - гемофиликом. Подобная закономерность наследования характерна и для других рецессивных, сцепленных с полом признаков.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием . Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов - Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер .

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость , которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе .

Понятие о генетической карте

Т. Морган и его сотрудники К. Бриджес, А. Г. Стертевант и Г. Дж. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии , которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в здравоохранении и медицине. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Основные положения хромосомной теории наследственности

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

  • Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
  • Гены расположены в хромосоме в линейной последовательности.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определенным набором хромосом - кариотипом .

Источники

  • Н. А. Лемеза Л. В. Камлюк Н. Д. Лисов «Пособие по биологии для поступающих в ВУЗы»

Примечания


Wikimedia Foundation . 2010 .

Хромосомная теория наследственности. Хромосомные карты человека.

    Хромосомная теория Т.Моргана.

    Карты хромосом человека.

    Хромосомная теория Т.Моргана.

Наблюдая за большим количеством мух, Т. Морган выявил много мутаций, которые были связаны с изменением разных признаков: окраски глаз, формы крыльев, окраски тела и т.д.

При изучении наследования этих мутаций оказалось, что многие из них наследуются, сцепленно с полом.

Такие гены легко было выделить, потому что они передавались от материнских особей только потомству мужского пола, и через них - только их потомкам женского пола.

У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола.

При этом особь женского пола может быть гомо или гетерозиготной по генам, расположенным в Х-хромосоме, а рецессивные гены могут проявляться у нее только в гомозиготном состоянии.

У особи мужского пола только одна Х-хромосома, поэтому все локализованные в ней гены, в том числе и рецессивные, проявляются в фенотипе. Такие патологические состояния, как гемофилия (медленная свертываемость крови, обусловливающая повышенную кровоточивость), дальтонизм (аномалия зрения, при которой человек путает цвета, чаще всего красный с зеленым), наследуются у человека сцепленно с полом.

Исследование наследования, сцепленного с полом, стимулировало изучение сцепления между другими генами.

В качестве примера можно привести эксперименты на дрозофиле.

У дрозофилы существует мутация, обусловливающая черный цвет тела. Ген, ее вызывающий, рецессивен по отношению к гену серого цвета, характерному для дикого типа. Мутация, вызывающая рудиментарные крылья, также рецессивна к гену, приводящему к развитию нормальных крыльев. Серия скрещиваний показала, что ген черного цвета тела и ген рудиментарных крыльев передавались вместе, как будто оба эти признаки вызывались одним геном.

Причина такого результата заключалась в том, что гены, обусловливающие два признака, локализованы в одной хромосоме. Это явление так называемого полного сцепления генов. В каждой хромосоме расположено много генов, которые наследуются совместно, и такие гены называют группой сцепления.

Таким образом, закон независимого наследования и комбинирования признаков, установленный Г. Менделем, действует только в случае, когда гены, определяющие тот или иной признак, находятся в разных хромосомах (разных группах сцепления).

Однако гены, находящиеся в одной хромосоме, сцеплены не абсолютно.

    Сцепленные гены, кроссинговер.

Причиной неполного сцепления является кроссинговер. Дело в том, что во время мейоза, при конъюгации хромосом, происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление называется кроссинговером. Он может произойти в любом участке гомологичных Х-хромосом, даже в нескольких местах одной пары хромосом. Причем, чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Рисунок 17 Кроссинговер: а - схема процесса; б - варианты кроссинговера между гомологичными хромосомами

    Карты хромосом человека.

В каждой группе сцепления генов содержатся сотни или даже тысячи генов.

В экспериментах А. Стертеванта в 1919 г. было показано, что гены внутри хромосомы расположены в линейном порядке.

Это было доказано путем анализа неполного сцепления в системе генов, принадлежащей к одной группе сцепления.

Изучение взаимоотношений между тремя генами при кроссинговере выявило, что в случае, если частота перекреста между генами А и В равна величине М, а между генами А и С частота обменов равна величине N, то частота перекреста между генами В и С составит М+N, или М - N, в зависимости в какой последовательности расположены гены: АВС или АСВ. И такая закономерность распространяется на все гены этой группы сцепления. Объяснение этому возможно лишь при линейном расположении генов в хромосоме.

Эти эксперименты явились основой создания генетических карт хромосом многих организмов, в том числе и человека.

Единицей генетической или хромосомной карты является сан-тиморганида (сМ). Это мера расстояния между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Методы изучения групп сцепления генов, такие как: генетический анализ соматических гибридных клеток, изучение морфологических вариантов и аномалий хромосом, гибридизация нуклеиновых кислот на цитологических препаратах, анализ аминокислотной последовательности белков и другие, которые позволили описать все 25 групп сцепления у человека.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы. На генетической карте показано относительное расположение генов и других генетических маркеров на хромосоме, а также относительное расстояние между ними.

Генетическим маркером для составления карты потенциально может быть любой наследуемый признак, будь то цвет глаз или длина фрагментов ДНК. Главное при этом - наличие легко выявляемых межиндивидуальных различий рассматриваемых маркеров. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения.

Самой мелкомасштабной картой является картина дифференциального окрашивания хромосом. Максимально возможный уровень разрешения - один нуклеотид. Следовательно, самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов. Размер генома человека равен примерно 3 164,7 м.п.н.

К настоящему времени для всех хромосом человека построены мелкомасштабные генетические карты с расстоянием между соседними маркерами в 7-10 миллионов пар оснований или 7-10 Мб (мегабаз, 1Мб = 1 млн пар оснований).

Современные сведения о генетических картах человека содержат информацию о более чем 50 000 маркеров. Это означает, что они находятся в среднем на расстоянии десятков тысяч пар оснований друг от друга, и между ними расположено несколько генов.

Для многих участков, конечно же, имеются и более подробные карты, но все же большая часть генов еще не идентифицирована и не локализована.

К 2005 г. идентифицировано более 22 000 генов и около 11 000 генов картированы на отдельных хромосомах, около 6 000 генов локализованы, из них 1000 - это гены, определяющие заболевания.

Неожиданным оказалось обнаружение необычно большого числа генов на хромосоме 19 (более 1400), что превышает число генов (800), известных на самой большой хромосоме человека 1.

Рисунок 18 Патологическая анатомия хромосомы 3

Митохондриальная ДНК представляет собой небольшую кольцевую молекулу длиной 16 569 пар оснований. В отличие от ДНК ядерного генома она не связана с белками, а существует в «чистом» виде.

Рисунок 19 Структура митохондриального генома

В митохондриальных генах отсутствуют интроны, а межгенные промежутки очень невелики. Эта небольшая молекула содержит 13 генов, кодирующих белки, и 22 гена транспортных РНК. Митохондриальная ДНК полностью секвенирована и на ней выявлены все структурные гены. Митохондриальные гены имеют гораздо большую, чем хромосомные, копийность (несколько тысяч на клетку).

Наследственные свойства крови.

    Механизм наследования групп крови системы АВО и резус системы.

В одном локусе мог быть либо доминантный, либо рецессивный ген. Однако часто признак определяется не двумя, а несколькими генами.

Три или большее число генов, которые могут находиться в одном локусе (занимать одно и то же место в гомологичных хромосомах), называют множественными аллелями.

В генотипе одного индивида может быть не более двух генов из этого множества, однако в генофонде популяции соответствующий локус может быть представлен большим числом аллелей.

Примером является наследование группы крови.

Ген I A кодирует синтез в эритроцитах специфического белка агглютиногена А, ген I B - агглютиногена B, ген I О не кодирует никакого белка и является рецессивным по отношению к I A и I B ; I A и I B не доминируют относительно друг друга. Таким образом, генотип I О I О определяет группу крови 0 (первую); I A I A и I A I О - группу А (вторую); I B I B и I B I О - группу В (третью); I A I B - группу АВ (четвертую).

Если у одного из родителей группа крови 0, то (за исключением маловероятных ситуаций, требующих дополнительных обследований) у него не может родиться ребенок с группой крови АВ.

    Причины и механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

По определению иммуногенетики группа крови это - феномен сочетания антигенов эритроцитов и антител в плазме.

Группа крови определяется сочетанием аллелей. в настоящее время известно более 30 видов аллелей детерминирующих группы крови. При гемотрансфузии учитываются те группы, которые могут вызвать осложнения. Это группы крови системы АВО, Rh-фактор, С, Kell. В донорской крови данных групп сохраняются антитела. В других известных группах антитела в донорской крови быстро разрушаются.

На рис. 20 а) показаны группы крови системы АВО, где антитела, соответствующие антигенам группы В, синего цвета, группе А – красного. Рисунок показывает, что плазма группы А имеет антитела к группе В, группы В антитела к группе А, группы АВ антител нет, группы О – антитела к группам А и В.

При гемотрансфузии (переливании крови) переливают плазму, так как, эритроциты каждого человека несут на поверхности мембраны огромное количество антигенов, специфичных для данного человека. Попав в кровь реципиента, они вызывают тяжело протекающие иммунные реакции.

Рисунок 20 Группы кови системы АВО; а) сочетание антигенов на эритроцитах и антител в плазме, b) гемолиз эритроцитов реципиента антителами донорской крови.

Если реципиенту с группой В перелить кровь (плазму) группы В, антитела в плазме немедленно вступят в взаимодействие с антигенами эритроцитов с последующим лизисом эритроцитов рис 20 b). Такой же механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

Практическое занятие

Решение задач, моделирующих скрещивание, сцепленное с полом наследование, наследование групп крови по системе АВО и резус систе

Статья на конкурс «био/мол/текст»: В 2015 году исполняется 100 лет хромосомной теории наследственности . Ее основные положения были сформулированы Т. Морганом, А. Стёртевантом, Г. Мёллером и К. Бриджесом в книге «Механизм менделевской наследственности», вышедшей в Нью-Йорке в 1915 году. А позднее Томас Морган получил первую «генетическую» Нобелевскую премию - за открытие роли хромосом в наследственности. Юбилею хромосомной теории была посвящена международная конференция «Хромосома 2015», прошедшая в августе 2015 года в Новосибирском Академгородке. Нижеизложенный текст - это авторские комментарии к постеру об истории исследований хромосом , представленному на конференции, а теперь и на «Биомолекуле» - в самой «живой» конкурсной номинации «Наглядно о ненаглядном ».

Обратите внимание!

Более полную информацию можно найти в книге - Коряков Д.Е., Жимулев И.Ф. . Новосибирск: Изд-во СО РАН, 2009 г. - 258 с., ISBN 978-5-7692-1045-7

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Нижеизложенный текст - это краткие комментарии к постеру, а более полную информацию можно найти в книге: Коряков Д.Е., Жимулев И.Ф. Хромосомы. Структура и функции . Новосибирск: Изд-во СО РАН, 2009 г. - 258 с., ISBN 978-5-7692-1045-7.

Нажмите на изображение, чтобы увеличить (откроется в отдельном окне).

Генетическая роль хромосом

Каждый организм воспроизводит лишь себе подобных, и даже в мелких чертах внешности и поведения детей можно увидеть сходство с их родителями. Первый шаг на пути к пониманию, почему так происходит, сделал монах из австрийского города Брюнн (сейчас это чешский Брно) Г. Мендель (G. Mendel ). В 1865 году на заседании Брюннского общества испытателей природы он сделал доклад под названием «Опыты над растительными гибридами » (Versuche über Pflanzen-Hybriden ), а в 1866 году опубликовал его в сборнике трудов этого общества. Монах-естествоиспытатель описал результаты скрещиваний разных форм гороха и предположил наличие особых факторов, от которых зависят внешние признаки растения. Закономерности наследования этих факторов позднее были названы законами Менделя . Однако современники не поняли значения этого открытия и забыли про него, и лишь в 1900 году Г. де Фриз (H. de Vries , Нидерланды), К. Корренс (C. Correns , Германия) и Э. Чермак (E. Tschermak , Австрия) независимо друг от друга переоткрыли законы Менделя.

Задолго до всех этих исследований, которые сейчас бы назвали генетическим анализом, ученые, занимавшиеся ботаникой, зоологией, эмбриологией, гистологией и физиологией, заложили основу цитогенетики - науки о хромосомах. В разных статьях и книгах приоритет открытия хромосом отдан разным людям, но чаще всего годом их открытия называют 1882, а их первооткрывателем - немецкого анатома В. Флемминга (W. Flemming ). Однако справедливее было бы сказать, что он не открыл хромосомы, а лишь собрал и упорядочил в своей фундаментальной книге «Клеточное вещество, ядро и деление клетки » (Zellsubstanz, Kern und Zellteilung ) всё, что было известно о них на тот момент. Сам же термин «хромосома» ввел в науку немецкий гистолог Х. Вальдейер (H. Waldeyer ) в 1888 году, и в буквальном переводе термин означает «окрашенное тело».

Сейчас сложно сказать, кто сделал первое описание хромосом. В 1842 году швейцарский ботаник К. Нэгели (C. Nägeli ) опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии и традесканции. Возможно, это и были первые рисунки хромосом. Первое (1873 год) подробное описание митоза у плоского червя Mesostoma ehrenbergii принадлежит, как считают, немецкому зоологу А. Шнайдеру (F.A. Schneider ). Он описал не просто отдельные стадии митоза, которые видели и до него, а всю последовательность сложных изменений ядра: возникновение на его месте нитевидных телец, их расхождение в противоположные стороны и формирование новых ядер в дочерних клетках. Другой тип деления - мейоз - впервые подробно описал Э. ван Бенеден (E. van Beneden , Бельгия) в 1883 году, наблюдая за образованием гамет у аскариды. Он обнаружил, что в мейозе число хромосом уменьшается вдвое, а при оплодотворении восстанавливается, и, несмотря на различие в размерах, мужская и женская гаметы привносят в зиготу равное число хромосом.

* - Немного о месте и предназначении мобильных генетических элементов в про- и эукариотических геномах: «Мобильные генетические элементы прокариот: стратификация „общества“ бродяжек и домоседов », «Геном человека: полезная книга, или глянцевый журнал? », «„Мусорная“ ДНК управляет эволюцией млекопитающих? » - Ред.

Еще одним вариантом обмена участками является сестринский хроматидный обмен (СХО). Если при кроссинговере обмениваются хроматиды разных хромосом, то в случае СХО обмениваются хроматиды внутри одной хромосомы. Впервые СХО увидел американский генетик Д. Тейлор (J. Taylor ) в 1958 году.

С кроссинговером, хоть и неоднозначно, но связано формирование в профазе мейоза особой структуры из пары гомологичных хромосом - синаптонемного комплекса . Он был открыт в 1956 году независимо двумя американскими цитологами: М. Мозесом (M. Moses ) у речного рака и Д. Фоцеттом (D. Fawcett ) у мыши.

Многообразие хромосом

Если понимать под хромосомами любые носители наследственной информации, то они исключительно разнообразны по размеру, форме, внешнему виду, составу и числу. Хромосомы вирусов и бактерий могут быть кольцевыми и линейными. Хромосомы хлоропластов и митохондрий имеют кольцевую форму. Ядерные хромосомы эукариот имеют линейную форму, и именно они в виде телец X- и V-образной формы обычно приходят на ум при упоминании хромосом. Их называют митотическими или метафазными , поскольку такой вид они имеют во время деления - митоза (а метафаза - это одна из его стадий).

В 1912 году российский ботаник и цитолог С.Г. Навашин показал, что метафазные хромосомы обладают индивидуальным набором признаков, включающим размер, соотношение длин плеч, наличие спутников и перетяжек. Используя положение центромеры или соотношение длин плеч, С.Г. Навашин предложил классификацию митотических хромосом, которую используют и по сей день: метацентрики, субметацентрики, акроцентрики и телоцентрики.

Число хромосом у разных видов организмов может варьировать в самых широких пределах: от двух (у пары видов растений и одного из австралийских муравьев) до 1440 у папоротника Ophioglossum reticulatum и даже 1600 у морской радиолярии Aulacantha scolymantha . У человека число хромосом составляет 46, и оно было определено только в 1955 году, а опубликовано в 1956 цитогенетиком китайского происхождения Д. Чио (J. Tjio ) в соавторстве со своим руководителем А. Леваном (A. Levan ) в Швеции. Несколькими месяцами позже число подтвердили британцы Ч. Форд (C. Ford ) и Д. Хамертон (J. Hamerton ). Количество хромосом человека пытались определить еще с конца XIX века. В разных случаях получались разные значения: 18, 24, 47 или 48, - и только в 1955 году убедились, что хромосом у человека 46. В честь этого события на здании Института генетики Университета шведского города Лунда (где это событие и случилось) в 2003 году была открыта мемориальная доска с изображением той самой метафазной пластинки, по которой и были посчитаны хромосомы. Любопытно, что число хромосом шимпанзе (48) было выяснено на 15 лет раньше.

Общепринято, что число хромосом у каждого вида живых организмов постоянно, и в подавляющем большинстве случаев так и есть. Однако у некоторых животных и растений существуют так называемые сверхчисленные , или добавочные , хромосомы. Все хромосомы основного набора называют A-хромосомами . Они присутствуют всегда, и потеря или добавление хотя бы одной из них ведет к серьезным последствиям. Добавочные же хромосомы называют B-хромосомами , и их главные особенности - необязательность наличия и непостоянство числа. Впервые сверхчисленные хромосомы были найдены Э. Уилсоном (E. Wilson , США) в 1906 году у клопа Metapodius terminalis .

Своеобразный тип хромосом, названный хромосомами типа «ламповых щеток » , можно видеть в профазе первого деления мейоза при формировании ооцитов у птиц, рыб, рептилий и земноводных. Впервые их упоминает в своей фундаментальной книге (1882) В. Флеминг, который обнаружил эти хромосомы у аксолотля . Название они получили за сходство с ершиком для чистки керосиновых ламп.

Совершенно особое место среди всех типов хромосом занимают политенные хромосомы , которые имеют вид длинных толстых шнуров с поперечными полосками. Их открыл французский эмбриолог Э. Бальбиани (E. Balbiani ) в 1881 году в ядрах клеток слюнных желез личинок комара Chironomus plumosus . Политенные хромосомы сыграли выдающуюся роль в развитии генетики, цитогенетики и молекулярной биологии. С их помощью была показана линейность расположения генов и однозначно доказана генетическая роль хромосом. На политенных хромосомах дрозофил был впервые описан хромосомный полиморфизм диких популяций. Именно на политенных хромосомах были открыты гены белков теплового шока - компонентов системы, охраняющей клетки всех организмов от стрессорных воздействий. Политенные хромосомы сыграли ключевую роль в исследовании системы дозовой компенсации у дрозофилы.

Эволюция хромосом и геномов

В современных цитогенетических исследованиях важную роль играет дифференциальная окраска . Впервые способность хромосом окрашиваться дифференциально (то есть неодинаково по длине) продемонстрировали англичане С. Дарлингтон (C. Darlington ) и Л. Ла Кур (L. La Cour ) в 1938 году. Другой важный метод исследования - это гибридизация in situ , которая позволяет определить положение любого фрагмента ДНК на хромосоме. В основе метода лежит способность нуклеиновых кислот образовывать двуцепочечные молекулы, как ДНК-ДНК, так и РНК-ДНК. Придумали этот метод в 1969 году Д. Голл (J. Gall ) и М. Пардью (M. Pardue ) из США и Х. Джон (H. John ), М. Бирнстил (M. Birnstiel ) и К. Джонс (K. Jones ) из Великобритании .

Комбинация этих методов дает возможность подробно исследовать эволюцию хромосом и геномов*, а неизменным спутником эволюционного процесса являются хромосомные перестройки . По мере эволюции вида в его хромосомах неизбежно возникают перестройки, которые меняют порядок генов по сравнению с предковым видом. Чем дальше виды уходят друг от друга, тем больше хромосомных перестроек их отличает, и тем больше меняется порядок генов. Известны разные типы перестроек: делеции (потеря), дупликации (удвоение) и транслокации (перемещение) участков хромосом, которые обнаружил К. Бриджес в 1916, 1919 и 1923 годах соответственно. Еще один тип - это инверсии (поворот участка хромосомы на 180°), описанные А. Стёртевантом в 1921 году. Кроме того, существует особый тип перестроек, называемый Робертсоновской транслокацией (или центрическим слиянием). Первым ее описал американец У. Робертсон (W. Robertson ) в 1916 году, сравнивая хромосомные наборы близких видов саранчи. Суть этой перестройки сводится к слиянию двух акроцентрических хромосом в одну метацентрическую или субметацентрическую. Существует и обратный процесс - центрическое разделение. В этом случае мета- или субметацентрическая хромосома делится на две акроцентрических.

* - На биомолекуле можно найти внушительную подборку статей, так или иначе затрагивающих эволюцию геномов и изменения генетического кода: «Вирусные геномы в системе эволюции », «Под „генную гармошку“ », «Аллополиплоидия, или как разные геномы научились жить под одной крышей », «Полные геномы галапагосских вьюрков наконец-то раскрыли механизмы их эволюции », «Как составлялся геном эукариот: эндосимбиоз VS. непрерывный горизонтальный перенос »; «Таинственный код нашего генома », «Эволюция генетического кода », «У истоков генетического кода: родственные души », «Такие разные синонимы » и др. - Ред.

Положение хромосом в ядре

В конце XIX века Т. Бовери выдвинул идею о том, что хромосомы в интерфазном ядре не перемешаны случайным образом, а каждая из них занимает свое пространство. В 1909 году для обозначения этого пространства он ввел термин «хромосомная территория ». Первые доказательства существования хромосомных территорий были получены лишь в 1982 году немецким исследователем Т. Кремером (T. Cremer ) с соавторами. Позднее они визуализировали эти территории с помощью флуоресцентных красителей разного цвета. Оказалось, что хромосомы крупного размера с гораздо большей вероятностью можно найти в периферической части ядра, тогда как мелкие сосредоточены в основном в центральной. Кроме этого, на периферии ядра расположены районы хромосом, обедненные генами. Районы же, обогащенные генами, наоборот, расположены ближе к центру ядра.

Состав хромосом. ДНК

Хромосомы представляют собой структуры, состоящие из сложного комплекса ДНК, РНК и белков. Такой комплекс называется хроматином .

ДНК как химическое вещество открыл и выделил в чистом виде молодой швейцарский исследователь Ф. Мишер (F. Miescher ), работая в 1868–1869 годах в университете немецкого города Тюбингена. Он изучал химический состав лейкоцитов, источником которых служил гной с бинтов из местной хирургической клиники. Ф. Мишер разработал метод разделения ядер и цитоплазмы клеток и анализировал состав ядер. Помимо белков и липидов он обнаружил вещество, которое назвал нуклеином (от слова nucleus - ядро), а сейчас оно известно как ДНК. То, что именно ДНК является носителем наследственной информации, первыми установили в 1944 году американцы О. Эйвери (O. Avery ), К. МакЛауд (C. MacLeod ) и М. МакКарти (M. McCarty ) в экспериментах по заражению мышей пневмококками.

Структуру молекулы ДНК в виде двойной спирали расшифровали в 1953 году Ф. Крик (F. Crick ), Д. Уотсон (J. Watson ), М. Уилкинс (M. Wilkins ) и Р. Франклин (R. Franklin ), работавшие в Великобритании. За это открытие первые три исследователя получили Нобелевскую премию в 1962 году (историю открытия увлекательно описал в книге «Двойная спираль » Джеймс Уотсон, очень рекомендуем - Ред. ). Среди лауреатов нет Розалинды Франклин, поскольку она умерла от рака за четыре года до этого. Известно, что молекула ДНК состоит из последовательности четырех типов нуклеотидов : аденина, тимина, гуанина и цитозина*. За разработку метода определения их последовательности (секвенирования ) в 1980 году Нобелевской премии были удостоены П. Берг (P. Berg , США), У. Гилберт (W. Gilbert , США) и Ф. Сэнгер (F. Sanger , Великобритания).

* - Помимо четырех «классических» нуклеотидов в ДНК находят и их эпигенетически модифицированные варианты: метилцитозин и метиладенин («Шестое ДНК-основание: от открытия до признания »). А для некоторых бактериофагов Bacillus subtilis описано включение в ДНК «РНК-ового» урацила - Ред .

Если вначале секвенирование было трудоемким процессом, который позволял за раз «прочитать» лишь небольшой фрагмент, то по мере развития технологии стало возможным определить, например, полную последовательность митохондриальной ДНК человека (1981 год). В 1990 году был запущен амбициозный проект с целью полного секвенирования человеческого генома, а первый результат был представлен в 2001 году (биомолекула: «Геном человека: как это было и как это будет »). При этом секвенирование одного генома обошлось в колоссальную сумму - сотни миллионов долларов. Но технологии не стоят на месте, и появление новых методов позволило снизить затраты в тысячи раз*. Теперь секвенирование целого генома стало рядовым событием, и в 2009 году был запущен проект «Genome 10K». Его цель - это секвенирование и полная «сборка» в хромосомы 10 тысяч геномов животных.

* - «Закон» Мура прямо таки обречен на достижение конечных точек в разных науках (куда только его удалось притянуть). Биология даже обогнала электронику: постепенное падение стоимости секвенирования в 2007-м ушло в крутое пике, приближая эру рутинного чтения геномов в сельских фельдшерских пунктах по полисам ОМС. Правда, в обозримой перспективе всё же придется раскошелиться - долларов на 1000 плюс транспортные расходы: «Технология: 1,000 $ за геном ». Но и о таком могли лишь мечтать до появления новых методов секвенирования ДНК: «454-секвенирование (высокопроизводительное пиросеквенирование ДНК) ». И для понимания базовых (на уровне клетки) процессов развития организма и победы над онкозаболеваниями мечтать есть еще о чём: «Секвенирование единичных клеток (версия - Metazoa) » - Ред.

Новые технологии позволили развиться такому направлению, как исследование древней ДНК (биомолекула: «Древняя ДНК: Привет из прошлого »). Стало возможным выделять ДНК из костей возрастом десятки тысяч лет, и в 2008 году, например, был секвенирован митохондриальный геном неандертальца. Исследование древней ДНК, да и всю современную молекулярную биологию невозможно представить без использования ПЦР - полимеразной цепной реакции . За ее открытие американец К. Муллис (K. Mullis ) получил в 1993 году Нобелевскую премию .

Состав хромосом. Белки́

ДНК в хромосомах претерпевает несколько последовательных уровней упаковки, и на самом первом уровне двойная спираль ДНК оборачивается вокруг белковой глобулы, образуя нуклеосому (биомолекула: «Катится, катится к ДНК гистон »). В состав глобулы входят четыре типа белков, называемых гистонами . В 1982 году английский молекулярный биолог А. Клюг (A. Klug ) получил Нобелевскую премию за расшифровку трехмерной структуры нуклеосом. Косвенно нуклеосомы отмечены еще одной Нобелевской премией - в 1910 году ее получил немецкий биохимик А. Коссель (A. Kossel ) за изучение химического состава веществ, образующих ядро клетки, и в том числе за открытие гистонов.

C-концевые части молекул гистонов плотно свернуты, а N-концевые не имеют определенной структуры и свободно расходятся в стороны. В 1963–1964 годах было обнаружено, что некоторые аминокислотные остатки в гистонах могут быть ковалентно модифицированы, то есть ацетилированы или метилированы. Сейчас список модификаций значительно расширился, к остаткам аминокислот могут быть присоединены как относительно простые группы - метильная, ацетильная, фосфатная, - так и сложные крупные молекулы: биотин, олигопептиды или цепочки ADP-рибозы. Модификации появляются в основном на N- и, в гораздо меньшей степени, на С-концевой частях молекул гистонов.

Согласно теории гистонового кода , модификации, которые присутствуют на нуклеосомах в данном участке хроматина, не случайны, а «кодируют» какой-либо процесс. Такую точку зрения сформулировали в 2000–2001 годах Б. Штраль (B. Strahl , США), С. Эллис (C. Allis , США) и Т. Йенувайн (T. Jenuwein , Австрия). Схематично процесс работы гистонового кода можно составить из трех этапов. На первом этапе работают ферменты, которые производят модификацию определенных остатков в гистонах. На втором этапе с модифицированными аминокислотами связываются белки, имеющие для этой цели специальные домены. Каждый из доменов подходит только к «своей» модификации. На последнем же этапе эти связавшиеся белки привлекают другие белковые комплексы, запуская тем самым какой-то процесс.

* - О блестящих перспективах и отрезвляющих сомнениях в области применения ИПСК: «Французским исследователям удалось омолодить клетки столетних людей », «Снежный ком проблем с плюрипотентностью ». - Ред.

Гетерохроматин

Одним из объектов исследования многообразных эпигенетических процессов является гетерохроматин . Его как более темные участки хромосом открыл в 1907 году немецкий цитолог С. Гутхерц (S. Gutherz ), а термины «гетерохроматин» и «эухроматин» ввел в 1928 году другой немецкий цитолог Э. Хайц (E. Heitz ). Если совсем кратко, то эухроматин - это части хромосом, в которых расположено подавляющее большинство генов, тогда как гетерохроматин - это в основном районы с некодирующей ДНК, состоящей из коротких многократно повторенных последовательностей. Кроме этого, эу- и гетерохроматин различаются временем репликации в течение S-фазы клеточного цикла. Первым это отличие описал в 1959 году А. Лима-де-Фария (A. Lima-de-Faria , США), исследуя процесс репликации ДНК в семенниках у саранчи Melanoplus differentialis . Он показал, что гетерохроматин и начинает, и заканчивает репликацию своей ДНК позже эухроматина.

Важным свойством гетерохроматина является способность инактивировать помещенные в него эухроматиновые гены. Это явление называется эффектом положения мозаичного типа . Оно было обнаружено в 1930 году Г. Мёллером у дрозофилы. В результате хромосомной перестройки ген white попал в гетерохроматин. Этот ген отвечает за красный цвет глаз, а если он не работает, то глаза становятся белыми. У Г. Мёллера же получились мухи, глаза которых были ни красными, ни белыми, а пятнистыми, и у разных мух пятна были разной формы и размера. Это объясняется тем, что сам ген остается неповрежденным, а лишь случайным образом инактивируется в одних клетках глаза и работает в других.

Несмотря на многолетние исследования, процесс формирования гетерохроматина во многом до сих пор не ясен, особенно его самый первый этап. Предполагают, что ключевую роль в нём играет процесс, схожий с интерференцией РНК (биомолекула: «Обо всех РНК на свете, больших и малых »). За открытие этого явления два американца Э. Файр (A. Fire ) и К. Мелло (C. Mello ) получили Нобелевскую премию в 2006 году. Процесс интерференции сложен и многостадиен, но если не вдаваться в детали, то введение в клетку двухцепочечной РНК, гомологичной какому-либо гену, приводит к инактивации этого гена.

Теломеры

Интенсивное исследование теломер началось после того, как в 1978 году американцы Э. Блэкберн (E. Blackburn ) и Д. Голл секвенировали теломеру у инфузории Tetrahymena thermophila . Оказалось, что теломеры содержат последовательность из шести нуклеотидов, повторенную от 20 до 70 раз. В 1985 году К. Грейдер (C. Greider ) и Э. Блэкберн всё у той же инфузории открыли фермент, названный теломеразой , задачей которого является достраивание теломер. В 2009 году Э. Блэкберн , К. Грейдер и Д. Шостак (J. Szostak , США) получили Нобелевскую премию за исследование теломер и открытие фермента теломеразы (биомолекула: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе », «Старение - плата за подавление раковых опухолей? »).

Дозовая компенсация

Огромное число видов живых организмов, и человек в их числе, имеет негомологичные половые хромосомы, например, X и Y. При этом возникает необходимость в процессе, который называется дозовой компенсацией . Суть его заключается в следующем: поскольку число аутосом одинаково и у самцов, и у самок, то число аутосомных генов, а следовательно, и количество их продуктов, также будет одинаковым. А вот количество продуктов, синтезированных с генов, расположенных в половой хромосоме, у одного пола будет в 2 раза больше, чем у другого. Получается диспропорция, которую надо как-то регулировать, то есть уравнять «дозу генов». Решить эту проблему призвана система дозовой компенсации (биомолекула: «, США) выдвинули гипотезу, согласно которой у самок млекопитающих одна из двух X-хромосом инактивируется, и выбор ее случаен. Таким способом система дозовой компенсации млекопитающих уравнивает число работающих X-хромосом у разных полов: у самцов Х-хромосома всего одна, а у самок из двух только одна работает.

У дрозофилы природа изобрела другой механизм, противоположный по сути механизму млекопитающих: единственная X-хромосома самцов гиперактивируется и работает как две X-хромосомы самок. То, что суммарная активность двух копий какого-либо гена из X-хромосомы у самок и одной копии у самцов дрозофилы одинакова, было обнаружено еще на заре развития генетики. Это сделали К. Штерн в 1929 году и Г. Мёллер в 1931 году, так что дрозофила - это первый организм, у которого нашли дозовую компенсацию.

Ну и наконец...

Пара слов об открытии, которое не связано напрямую с хромосомами, но его очень активно используют, в том числе и для исследования разных сторон жизни хромосом. В 2008 году О. Шимомура (O. Shimomura ), М. Чалфи (M. Chalfie ) и Р. Циен (R. Tsien ) из США получили Нобелевскую премию за открытие, выделение и применение зеленого флуоресцирующего белка (GFP) медузы Aequorea victoria . С помощью молекулярных манипуляций можно соединить ген белка GFP с геном любого другого белка и получить химерный белок, который будет выполнять как свою исходную функцию, так и светиться зеленым цветом. Это дает возможность видеть, в каких клетках работает белок, в ядре или цитоплазме, в каких частях хромосом. Кроме зеленого (GFP) сейчас известны красный (RFP) и желтый (YFP) флуоресцирующие белки*.

* - О многообразии флуоресцентных белков и их применении в биологических исследованиях рассказывают материалы: «Флуоресцирующая Нобелевская премия по химии », «Флуоресцентные белки: разнообразнее, чем вы думали! », «„Нарисуем“ живую клетку ». А о биолюминесценции у наземных и морских организмов и работе люциферин-люциферазной системы - статьи: «Биолюминесценция: возрождение », «Микроскопическое свечение космического масштаба ». - Ред.