Аденовирусные векторы для генной инженерии. Вирусные векторы

Обратите внимание!

Эта работа представлена на конкурс научно-популярных статей в номинации «Лучший обзор».

Смертельные клешни

Человечество столкнулось с этой загадочной болезнью еще до нашей эры. Ее пытались понять и лечить ученые мужи в самых различных уголках мира: в Древнем Египте - Еберс, в Индии - Сушрута, Греции - Гиппократ. Все они и многие другие медики вели борьбу с опасным и серьезным противником - раком. И хоть эта битва продолжается до сих пор, сложно определить, есть ли шансы на полную и окончательную победу. Ведь чем больше мы изучаем болезнь, тем чаще возникают вопросы - можно ли полностью излечить рак? Как избежать болезни? Можно ли сделать лечение быстрым, доступным и недорогим?

Благодаря Гиппократу и его наблюдательности (именно он увидел сходство опухоли и щупалец рака) в древних врачебных трактатах появился термин карцинома (грец. carcinos) или рак (лат. cancer). В медицинской практике по-разному классифицируют злокачественные новообразования: карциномы (из эпителиальных тканей), саркомы (из соединительной, мышечной тканей), лейкемия (в крови и костном мозге), лимфомы (в лимфатической системе) и другие (развиваются в других типах клеток, например, глиома - рак головного мозга). Но в быту более популярен термин «рак», который подразумевает любую злокачественную опухоль.

Мутации: погибнуть или жить вечно?

Многочисленные генетические исследования выявили, что возникновение раковых клеток - это результат генетических изменений. Ошибки в репликации (копировании) и репарации (исправлении ошибок) ДНК приводят к изменению генов, в том числе и контролирующих деление клетки. Основными факторами, которые способствуют повреждению генома, а в дальнейшем - приобретению мутаций, - являются эндогенные (атака свободных радикалов, образующихся в процессе обмена веществ, химическая нестабильность некоторых оснований ДНК) и экзогенные (ионизирующее и УФ-излучение, химические канцерогены). Когда мутации закрепляются в геноме, они способствуют трансформации нормальных клеток в раковые. Такие мутации в основном случаются в протоонкогенах, которые в норме стимулируют деление клетки. В результате может получиться постоянно «включенный» ген, и митоз (деление) не прекращается, что, фактически, означает злокачественное перерождение. Если же инактивирующие мутации происходят в генах, которые в норме ингибируют пролиферацию (гены-супрессоры опухолей), контроль над делением утрачивается, и клетка становится «бессмертной» (рис. 1).

Рисунок 1. Генетическая модель рака: рак толстой кишки. Первый шаг - потеря или инактивация двух аллелей гена АРS на пятой хромосоме. В случае семейного рака (familiar adenomatous polyposis, FAP) одна мутация гена АРС наследуется. Потеря обоих аллелей ведет к образованию доброкачественных аденом. Последующие мутации генов на 12, 17, 18 хромосомах доброкачественной аденомы могут привести к трансформации в злокачественную опухоль. Источник: .

Очевидно, что развитие определенных видов рака включают в себя изменение большинства или даже всех этих генов и может проходить различными путями. Из этого следует, что каждую опухоль следует рассматривать как биологически уникальный объект. На сегодняшний день существуют специальные генетические информационные базы по раку, содержащих данные о 1,2 млн. мутаций из 8207 образцов тканей, относящихся к 20 видам опухолей: атлас Ракового Генома (Cancer Genome Atlas) и каталог соматических мутаций при раке (Catalogue of Somatic Mutations in Cancer (COSMIC)) .

Результатом сбоя работы генов становится неконтролируемое деление клеток, а на последующих стадиях - метастазирование в различные органы и части тела по кровеносным и лимфатическим сосудам. Это достаточно сложный и активный процесс, который состоит из нескольких этапов. Отдельные раковые клетки отделяются от первичного очага и разносятся с кровью по организму. Затем с помощью специальных рецепторов они прикрепляются к эндотелиальным клеткам и экспрессируют протеиназы, которые расщепляют белки матрикса и образуют поры в базальной мембране. Разрушив внеклеточный матрикс, раковые клетки мигрируют вглубь здоровой ткани. За счет аутокринной стимуляции они делятся, образуя узел (1–2 мм в диаметре). При недостатке питания часть клеток в узле погибает, и такие «дремлющие» микрометастазы могут достаточно долго оставаться в тканях органа в латентном состоянии. В благоприятных условиях узел разрастается, в клетках активируются ген фактора роста эндотелия сосудов (VEGF) и фактора роста фибробластов (FGFb), а также инициируются ангиогенез (формирование кровеносных сосудов) (рис. 2).

Однако клетки вооружены специальными механизмами, защищающими от развития опухолей:

Традиционные методы и их недостатки

Если системы защиты организма не справились, и опухоль все-таки начала развиваться, спасти может только вмешательство медиков. На протяжении длительного периода врачами используются три основные «классические» терапии:

  • хирургическая (полное удаление опухоли). Используется, когда опухоль имеет небольшие размеры и хорошо локализована. Также удаляют часть тканей, которые контактируют со злокачественным новообразованием. Метод не применяется при наличии метастазов;
  • лучевая - облучение опухоли радиоактивными частицами для остановки и предотвращения деления раковых клеток. Здоровые клетки тоже чувствительны к этому излучению и часто погибают;
  • химиотерапия - используются лекарства, тормозящие рост быстро делящихся клеток. Лекарства оказывают негативное воздействие и на нормальные клетки.

Вышеописанные подходы не всегда могут избавить больного от рака. Часто при хирургическом лечении остаются единичные раковые клетки, и опухоль может дать рецидив, а при химиотерапии и лучевой терапии возникают побочные эффекты (снижение иммунитета, анемия, выпадение волос и др.), которые приводят к серьезным последствиям, а часто и к смерти пациента. Тем не менее, с каждым годом улучшаются традиционные и появляются новые методы лечения, которые могут победить рак, такие как биологическая терапия, гормональная терапия, использование стволовых клеток, трансплантация костного мозга, а также различные поддерживающие терапии. Наиболее перспективной считается генная терапия, так как она направлена на первопричину рака - компенсацию неправильной работы определенных генов.

Генная терапия как перспектива

По данным PubMed, интерес к генной терапии (ГТ) раковых заболеваний стремительно растет, и на сегодняшний день ГТ объединяет ряд методик, которые оперируют с раковыми клетками и в организме (in vivo ) и вне его (ех vivo ) (рис. 3).

Рисунок 3. Две основные стратегии генной терапии. Еx vivo - генетический материал с помощью векторов переносится в клетки, выращиваемые в культуре (трансдукция), а затем трансгенные клетки вводят реципиенту; in vivo - введение вектора с нужным геном в определенную ткань или орган. Картинка из .

Генная терапии іn vivo подразумевает перенос генов - введение генетических конструкций в раковые клетки или в ткани, которые окружают опухоль . Генная терапия ех vivo состоит из выделения раковых клеток из пациента, встраивания терапевтического «здорового» гена в раковый геном и введения трансдуцированных клеток обратно в организм пациента. Для таких целей используются специальные векторы, созданные методами генной инженерии. Как правило, это вирусы, которые выявляют и уничтожают раковые клетки, при этом оставаясь безвредными для здоровых тканей организма, или невирусные векторы.

Вирусные векторы

В качестве вирусных векторов используют ретровирусы, аденовирусы, аденоассоциированные вирусы, лентивирусы, вирусы герпеса и другие. Эти вирусы отличаются по эффективности трансдукции, по взаимодействию с клетками (распознавание и заражение) и ДНК. Главным критерием является безопасность и отсутствие риска неконтролируемого распространения вирусной ДНК: если гены вставляются в неправильном месте генома человека, они могут создать вредные мутации и инициировать развитие опухоли. Также важно учитывать уровень экспрессии перенесенных генов, чтобы предотвратить воспалительные или иммунные реакции организма при гиперсинтезе целевых белков (Таблица 1).

Таблица 1. Вирусные векторы .
Вектор Краткое описание
Вирус кори (measles virus) содержит отрицательную последовательность РНК, которая не вызывает защитного ответа в раковых клетках
Вирус простого герпеса (HSV-1) может переносить длинные последовательности трансгенов
Лентивирус производный от ВИЧ, может интегрировать гены в неделящиеся клетки
Ретровирус (RCR) не способный к самостоятельной репликации, обеспечивает эффективное встраивание чужеродной ДНК в геном и постоянство генетических изменений
Обезьяний пенистый вирус (SFV) новый РНК-вектор, который передает трансген в опухоль и стимулирует его экспрессию
Рекомбинантный аденовирус (rAdv) обеспечивает эффективную трансфекцию, но возможна сильная иммунная реакция
Рекомбинантный аденоассоциированный вирус (rAAV) способен к трансфекции многих типов клеток

Невирусные векторы

Для переноса трансгенных ДНК также применяют невирусные векторы. Полимерные переносчики лекарственных средств - конструкции из наночастиц - используются для доставки препаратов с низкой молекулярной массой, например, олигонуклеотидов, пептидов, миРНК. Благодаря небольшим размерам, наночастицы поглощаются клетками и могут проникать в капилляры, что очень удобно для доставки «лечебных» молекул в самые труднодоступные места в организме. Данная техника часто используется для ингибирования ангиогенеза опухоли. Но существует риск накопления частиц в других органах, например, костном мозге, что может привести к непредсказуемым последствиям . Самыми популярными невирусными методами доставки ДНК являются липосомы и электропорация.

Синтетические катионные липосомы в настоящее время признаны перспективным способом доставки функциональных генов. Положительный заряд на поверхности частиц обеспечивает слияние с отрицательно заряженными клеточными мембранами. Катионные липосомы нейтрализуют отрицательный заряд цепи ДНК, делают более компактной ее пространственную структуру и способствуют эффективной конденсации. Плазмидно-липосомный комплекс имеет ряд важных достоинств: могут вмещать генетические конструкции практически неограниченных размеров, отсутствует риск репликации или рекомбинации, практически не вызывает иммунного ответа в организме хозяина. Недостаток этой системы состоит в низкой продолжительности терапевтического эффекта, а при повторном введении могут появляться побочные эффекты .

Электропорация является популярным методом невирусной доставки ДНК, довольно простым и не вызывающим иммунного ответа. С помощью индуцированных электрических импульсов на поверхности клеток образуются поры, и плазмидные ДНК легко проникают во внутриклеточное пространство . Генная терапия іn vivo с использованием электропорации доказала свою эффективность в ряде экспериментов на мышиных опухолях. При этом можно переносить любые гены, например, гены цитокинов (IL-12) и цитотоксические гены (TRAIL), что способствует развитию широкого спектра терапевтических стратегий. Кроме того, этот подход может быть эффективным для лечения и метастатических, и первичных опухолей .

Выбор техники

В зависимости от типа опухоли и ее прогрессии, для пациента подбирается наиболее эффективная методика лечения. На сегодняшний день разработаны новые перспективные техники генной терапии против рака, среди которых онколитическая вирусная ГТ, пролекарственная ГТ (prodrug therapy), иммунотерапия, ГТ с использованием стволовых клеток.

Онколитическая вирусная генная терапия

Для этой методики используются вирусы, которые с помощью специальных генетических манипуляций становятся онколитическими - перестают размножаться в здоровых клетках и воздействуют только на опухолевые. Хорошим примером такой терапии является ONYX-015 - модифицированный аденовирус, который не экспрессирует белок Е1В. При отсутствии этого белка вирус не может реплицироваться в клетках с нормальным геном p53 . Два вектора, сконструированных на базе вируса простого герпеса (HSV-1) - G207 и NV1020 - также несут в себе мутации нескольких генов, чтобы реплицироваться только в раковых клетках . Большим преимуществом техники является то, что при проведении внутривенных инъекций онколитические вирусы разносятся с кровью по всему организму и могут бороться с метастазами. Основные проблемы, которые возникают при работе с вирусами - это возможный риск возникновения иммунного ответа в организме реципиента, а также неконтролируемое встраивание генетических конструкций в геном здоровых клеток, и, как следствие, возникновение раковой опухоли.

Геноопосредованная ферментативная пролекарственная терапия

Базируется на введении в опухолевую ткань «суицидных» генов, в результате работы которых раковые клетки погибают. Данные трансгены кодируют ферменты, активирующие внутриклеточные цитостатики, ФНО-рецепторы и другие важные компоненты для активации апоптоза. Суицидная комбинация генов пролекарства в идеале должна соответствовать следующим требованиям : контролируемая экспрессия гена; правильное превращение выбранного пролекарства в активное противораковое средство; полная активация пролекарства без дополнительных эндогенных ферментов.

Минус терапии состоит в том, что в опухолях присутствуют все защитные механизмы, свойственные здоровым клеткам, и они постепенно адаптируются к повреждающим факторам и пролекарству. Процессу адаптации способствует экспрессия цитокинов (аутокринная регуляция), факторов регуляции клеточного цикла (отбор самых стойких раковых клонов), MDR-гена (отвечает за восприимчивость к некоторым медикаментам).

Иммунотерапия

Благодаря генной терапии, в последнее время начала активно развиваться иммунотерапия - новый подход для лечения рака с помощью противоопухолевых вакцин. Основная стратегия метода - активная иммунизация организма против раковых антигенов (ТАА) с помощью технологии переноса генов [?18].

Главным отличием рекомбинантных вакцин от других препаратов является то, что они помогают иммунной системе пациента распознавать раковые клетки и уничтожать их. На первом этапе раковые клетки получают из организма реципиента (аутологичные клетки) или из специальных клеточных линий (аллогенные клетки), а затем выращивают их в пробирке. Для того чтобы эти клетки могли узнаваться иммунной системой, вводят один или несколько генов, которые производят иммуностимулирующие молекулы (цитокины) или белки с повышенным количеством антигенов. После этих модификаций клетки продолжают культивировать, затем проводят лизис и получают готовую вакцину.

Широкое разнообразие вирусных и невирусных векторов для трансгенов позволяет экспериментировать над различными типами иммунных клеток (например, цитотоксическими Т-клетками и дендритными клетками) для ингибирования иммунного ответа и регрессии раковых клеток. В 1990-х годах было высказано предположение, что опухолевые инфильтрирующие лимфоциты (TIL) являются источником цитотоксических Т-лимфоцитов (CTL) и естественных киллеров (NK) для раковых клеток . Так как TIL можно легко манипулировать ех vivo , они стали первыми генетически модифицированными иммунными клетками, которые были применены для противораковой иммунотерапии . В Т-клетках, изъятых из крови онкобольного, изменяют гены, которые отвечают за экспрессию рецепторов для раковых антигенов. Также можно добавлять гены для большей выживаемости и эффективного проникновения модифицированных Т-клеток в опухоль. С помощью таких манипуляций создаются высокоактивные «убийцы» раковых клеток .

Когда было доказано, что большинство видов рака имеют специфические антигены и способны индуцировать свои защитные механизмы , была выдвинута гипотеза, что блокировка иммунной системы раковых клеток облегчит отторжение опухоли. Поэтому для производства большинства противоопухолевых вакцин в качестве источника антигенов используют опухолевые клетки пациента или специальные аллогенные клетки. Основные проблемы иммунотерапии опухолей - вероятность возникновения аутоиммунных реакций в организме больного, отсутствие противоопухолевого ответа, иммуностимуляция роста опухоли и другие.

Стволовые клетки

Мощным инструментом генной терапии является использование стволовых клеток в качестве векторов для передачи терапевтических агентов - иммуностимулирующих цитокинов, «суицидных» генов, наночастиц и антиангиогенных белков . Стволовые клетки (СК), кроме способности к самообновлению и дифференцировке, имеют огромное преимущество по сравнению с другими транспортными системами (нанополимерами, вирусами): активация пролекарства происходит непосредственно в опухолевых тканях, что позволяет избежать системной токсичности (экспрессия трансгенов способствует разрушению только раковых клеток). Дополнительным позитивным качеством является «привилегированное» состояние аутологичных СК - использованные собственных клеток гарантирует 100%-совместимость и повышает уровень безопасности процедуры . Но все же эффективность терапии зависит от правильной ех vivo передачи модифицированного гена в СК и последующего переноса трансдуцированных клеток в организм пациента. Кроме того, прежде чем применять терапию в широких масштабах, нужно детально изучить все возможные пути трансформации СК в раковые клетки и разработать меры безопасности для предупреждения канцерогенного преобразования СК.

Заключение

Если подвести итоги, можно с уверенностью говорить, что наступает эпоха персонализированной медицины, когда для лечения каждого онкобольного будет подбираться определенная эффективная терапия. Уже разрабатываются индивидуальные программы лечения, которые обеспечивают своевременный и правильный уход и приводят к значительному улучшению состояния пациентов. Эволюционные подходы для персонализированной онкологии, такие как геномный анализ, производство таргетных препаратов, генная терапия рака и молекулярная диагностика с использованием биомаркеров уже приносят свои плоды .

Особенно перспективным методом лечения онкозаболеваний является генная терапия. На данный момент активно проводятся клинические испытания, которые часто подтверждают эффективность ГТ в тех случаях, когда стандартное противораковое лечение - хирургия, лучевая терапия и химиотерапия - не помогает. Развитие инновационных методик ГТ (иммунотерапии, онколитической виротерапии, «суицидной» терапии и др.) сможет решить проблему высокой смертности от рака, и, возможно, в будущем диагноз «рак» не будет звучать приговором.

Рак: узнать, предупредить и устранить болезнь.

Литература

  1. Уильямс С. Клаг, Майкл Р.Каммингм. Мир биологии и медицины. Основы генетики. Москва: Техносфера, 2007. - 726 с;
  2. Биоинформатика: Большие БД против «большого Р» ;
  3. Cui H., Cruz-Correa M. et al. (2003).
Оглавление темы "Биотехнология. Генная инженерия. Генная терапия.":
1. Биотехнология. Наука биотехнология. Этапы развития биотехнологии.
2. Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.
3. Промышленное применение микроорганизмов. Производство продуктов микробного синтеза. Производство антибиотиков. Производство вакцин.
4. Генная инженерия. Биобезопасность. Актуальность генной инженерии. Теоретическая база генной инженерии.
5. Организация генетического материала в клетке. Генотип. Что такое генная инженерия? Этапы получения генной продукции.
6. Применение методов генной инженерии. Показания (оправданность) применения генной инженерии. Причины применения генной инженерии.
7. Биобезопасность в генной инженерии. Документы регламентирующие биобезопасность.
8. Группы опасности микроорганизмов. Оценка риска применения генетически модифицированных микроорганизмов.
9. Генная диагностика. Генная терапия. Что такое генная диагностика и генная терапия? Виды генной терапии.
10. Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.
11. Перспективы генной терапии. Будущее генной терапии. Задачи генной терапии.

Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.

Как было указано выше, для переноса соответствующих генов в клетку используют различные векторы [от лат. vector, переносчик]. Основная проблема при их разработке - преодоление иммунологического барьера реципиента, ограждающего организм от различных внешних воздействий, в том числе и от внедрения чужеродной ДНК в геном клеток. В этом плане особый интерес представляют вирусы, так как из всех известных агентов лишь они способны более или менее успешно интегрировать генетический материал в геном клеток человека. Поэтому все усилия специалистов генной терапии на настоящий момент сконцентрированы в области генной инженерии вирусов, применяемых в качестве векторов, доставляющих терапевтические гены в клетки организма больного.

Векторы на основе РНК-содержащих вирусов

РНК-геномные вирусы легко интегрируют в геном клетки-хозяина, тем самым обеспечивая долговременную экспрессию необходимого гена. Для создания генно-терапевтических векторов наиболее перспективны ретровирусы. С их участием проведено около 60% всех клинических попыток генной терапии.

Ретровирусы относительно безвредны для человека, исключая, конечно, ВИЧ и Т-лимфотропные вирусы человека. Наиболее часто в качестве вектора применяют вирус лейкемии мышей. При разработке векторов из их состава полностью исключают гены, кодирующие синтез продуктов, обеспечивающих репродукцию. Кодирующая ёмкость трансгенов в составе ретрови-русных векторов не превышает 8000 пар оснований нуклеиновых кислот.

Основные проблемы применения РНК-вирусных векторов - эффективная доставка генетического материала в клетки, поддержка долговременной экспрессии и трансдукция неделящих-ся клеток (большинство РНК-векторов неспособно к эффективному переносу трансгенов в покоящиеся клетки). Однако неспособность ретровирусов к трансдукции покоящихся клеток в конкретной ситуации может оказаться и выгодной, например, в генной терапии глиобластом (злокачественные опухоли мозга). Идея их применения заключается в избирательной трансдукции делящихся клеток в очаге поражения - опухолевых клеток и клеток сосудов; нервные клетки не делятся и потому не служат мишенью ретровирусных векторов.

Векторы на основе ДНК-геномных вирусов

Векторы , созданные на основе ДНК-вирусов обладают большими размерами по сравнению с РНК-геномными вирусами и поэтому могут вмещать фрагменты ДНК (трансгены) длиной до 35 000 пар оснований.

Аденовирусные векторы . На основе аденовирусов создают векторы для генной терапии in situ муковисцидоза и злокачественных опухолей. Аденовирусные векторы способны к высокоэффективной трансдукции большого спектра клеточных типов человека, включая неделящиеся клетки. Особое внимание заслуживают векторы на основе аденоасеоциированного вируса. Аденоассоциированный вирус - непатогенный вирус, широко распространённый у человека (AT к его Аг обнаруживают у 80% людей). Вирус тропен к определённой части генома- он интегрируется преимущественно с коротким плечом хромосомы 19. В экспериментах показана эффективность векторов, созданных на основе аденоассоциированного вируса, в трансдукции клеток мозга, скелетных мышц и печени.


Другие ДНК-геномные вирусы . Среди остальных ДНК-содержащих вирусов относительно часто применяют вирус простого герпеса (ВПГ), проявляющий тропность к нервной ткани (соответственно используют для трансдукции клеток мозга).

Невирусные векторы

Невирусные векторы (молекулы ДНК со свойствами транспозонов или вставочных последовательностей) менее распространены, чем векторы на основе вирусов. Тем не менее не вирусные векторы обладают многими преимуществами, такими как безопасность и простота конструирования. Путём конструирования синтетической системы по доставке генов внутрь клетки можно избежать опасности продуцирования рекомбинантного вируса или других токсических эффектов.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Ретровирусные векторы

Опыт клинических испытаний с участием более 200 пациентов показывает, что дефектные по репликации ретровирусные векторы не оказывают каких-либо неблагоприятных побочных эффектов. Тем не менее безопасности их применения продолжают придавать большое значение. Создана конструкция, называемая плазмовирусом, которая содержит ретровирусные гены gag и poh находящиеся под контролем 5"-LTR-npoMOTopa, a также «терапевтический» ген и ген env, управляемые цитомегаловирусным промотором. После трансфекции плазмовирус запускает образование дефектных по репликации вирусных частиц, причем вероятность рекомбинации с образованием компетентных по репликации ретровирусов очень мала. Вектор может переносить не более 3,5 т. п. н. ДНК, но и длина большинства потенциальных «терапевтических» кДНК и генов — супрессоров опухолей составляет 0,5—2 т. п. н.

В ретровирусную векторную систему внесены дополнительные усовершенствования: увеличено число образующихся вирусных частиц, повышена эффективность трансдукции, осуществлена генноинженерная модификация, обеспечивающая их проникновение в неделяшиеся клетки, повышена специфичность инфекции. В последнем случае геном рекомбинантного ретровирусного вектора упаковывается в оболочку другого вируса, белок которой и определяет специфичность связывания ретровируса и спектр инфицируемых им клеток. Это явление называется фенотипическим смешиванием (pseudotype formation). Фенотипически смешанный вирус получают с помощью котрансфекции клеточной линии, которая синтезирует продукты генов gag и pol, рекомбинантным ретровирусным вектором и вектором, экспрессирующим ген env другого вируса. Изменяя ген env, можно как сузить спектр инфицируемых вирусом клеток до строго определенного типа, так и расширить его. Кроме того, в ген env ретровируса можно встроить нуклеотидную последовательность, кодирующую пептид, который связывается с определенным клеточным рецептором и обеспечивает внедрение рекомбинантного ретровируса в нужные клетки. И наконец, можно добиться специфичности экспрессии терапевтического гена, осуществляя ее под контролем промотора, специфичного для определенных клеток.

Аденовирусные векторы

Аденовирусы инфицируют неделящиеся клетки человека и широко используются в качестве живых вакцин, которые предотвращают респираторные инфекции и гастроэнтериты, не оказывая побочного действия. Эти свойства делают аденовирусы перспективными для доставки генов в клетки-мишени.

Для получения аденовирусного вектора провели котрансфекцию клеточной линии, синтезирующей продукты аденовирусного гена Е1, двумя участками генома аденовируса (рис. 21.7). Один из них может существовать в виде гатазмиды в Е. coli и содержит вместо Е1 -области «терапевтический» ген, фланкируемый нуклеотидными последовательностями аденовируса, а второй представляет собой молекулу ДНК аденовируса, которая лишена 5"-концевого участка, включающего El-область, и имеет перекрывающийся участок с несущей терапевтический ген плазмидой. Рекомбинация между двумя трансфицирующими фрагментами ДНК в области их перекрывания приводит к восстановлению полноразмерного аденовирусного гена, в котором вместо Е1-области находится терапевтический ген. Продукты гена Е1, поставляемые клеткой-хозяином, инициируют образование вирусных частиц, высвобождающихся из клетки в результате лизиса. В отсутствие рекомбинации трансфицирующие молекулы ДНК, обладающие недостаточной длиной, не могут упаковываться в вирусные частицы. Вероятность того, что между областью Е1 в геноме клетки-хозяина и ДНК рекомбинантного аденовируса произойдет рекомбинация с образованием компетентных по репликации вирусов, чрезвычайно мала.

После того как рекомбинантный аденовирус инфицирует клетку-мишень, его ДНК проникает в ядро, где и происходит экспрессия «терапевтического» гена. Рекомбинантная ДНК не интегрирует в хромосому и сохраняется непродолжительное время, поэтому при проведении генотерапии с использованием аденовирусных векторов необходимо вводить их с определенной периодичностью.

Аденовирусные векторы использовали в клинических испытаниях по генной терапии муковис-цидоза.

При трансформации растений используют и векторы, сконструированные на основе растительных вирусов. Однако их набор ограничен. Это объясняется тем, что у большинства растительных вирусов генетическим материалом является РНК, и только у некоторых из них, таких, как вирус мозаики цветной капусты (CaMV) и группы вирусов Gemini, наследственным материалом служит ДНК. Недостаток вирусных векторов - ограниченная протяженность встраиваемых генов (от 200 до 500 п.н.) и высокая специфичность по отношению к видам растений. Так, вирус мозаики цветной капусты можно использовать только при трансформации растений, относящихся к семейству крестоцветных.

Безвекторные системы

Генная пушка (рис. 13.1). Этот метод носит название биологической баллистики. Он заключается в обстреле из вакуумной пушки (генная пушка) суспензий клеток растений, протопластов и каллусов. Обстрел растительных целей (тканей) производят частицами золота или вольфрама (диаметр 0,6-1,2 мкм), на которые напылена чужеродная ДНК. Растительные клетки располагают на специальной целлофановой пластине. Частицы металла пронизывают клетки, оставляя в них ДНК. Трансформируется при этом около 10-15 % клеток, часть из которых регенерирует в нормальные растения. Хотя процесс трансформации носит случайный характер, к настоящему времени этим способом получены трансгенные растения, преимущественно однодольных культур (кукурузы, риса, пшеницы и др.).

Рис. 13.1.

(Цильке, 2001. - С. 21)

Метод электропорации. Это один из методов прямого введения ДНК в клетку. Растительные клетки погружают в среду с находящейся в ней чужеродной ДНК. Через эту среду пропускают (доли секунды!) электрический ток напряжением 250-300 В. Через расширившиеся поры ядерной мембраны чужеродная ДНК проникает в ядра и включается в хромосомы.

Метод микроинъскции. С помощью микроигл (наружный диаметр 2 мкм) чужеродную ДНК вводят в ядра клеток, закрепленных на стекле при помощи полилизина.

Использование «агентов слияния». В качестве «агентов слияния» используют положительно заряженные сферы липидов (липосомы ), которые обволакивают векторную ДНК, защищая ее от действия нуклеаз. Находящаяся в липосомах ДНК проникает с их помощью в растительные клетки (механизм изучен недостаточно) и включается в геном.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Векторный перенос генов

1. Перенос генов в клетки человека и животных с помощью вирусных векто ров - главный метод генотерапии

В применении к человеку генотерапия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента.

Благодаря особенностям жизненного цикла вирусов, первые векторы (носители трансгенов) для генотерапии стали разрабатывать именно на их основе. Вирусы переносят чужеродные гены, которые затем способны экспрессироваться в зараженных клетках. Упрощенно вирус можно представить как нуклеиновую кислоту, упакованную в оболочку. Вирус проникает в клетку-мишень, где происходит экспрессия вирусного генома. Для создания хорошего вектора необходимо изменить некоторые свойства вируса. В большинстве случаев вирус должен быть лишен возможности к репродукции, чтобы предотвратить неконтролируемое распространение трансгена. Кроме того, часть вирусного генома необходимо удалить, чтобы освободить место для чужеродного генетического материала. Другие необходимые изменения зависят от типа вируса. Вирусные векторы широко используют в доклинических исследованиях и в настоящее время именно с ними проводят большинство клинических испытаний.

При выборе вектора необходимо учитывать некоторые важные особенности жизненного цикла и биологии исходного вируса. Для успешной трансфекции необходимо обеспечить избирательное заражение клеток-мишеней (тропность) и последующую экспрессию трансгена. Тропность частично определяется наличием специфических мембранных рецепторов, связывающих вирус на поверхности клетки и облегчающих его проникновение внутрь. Для экспрессии трансгена необходимо проникновение вирусного генома в ядро клетки с последующей успешной транскрипцией и трансляцией. Несколько дополнительных факторов определяют продолжительность экспрессии трансгена в зараженной клетке. Наконец, на пригодность вируса в качестве вектора влияют некоторые методические аспекты генной инженерии и получения вирусного вектора. Основные вирусные векторы, используемые сейчас в клинических испытаниях или признанные перспективными, созданы на основе ретровирусов (в частности, лентивирусов), аденовирусов, аденоасоциированных вирусов и вируса простого герпеса.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) - игрунка обыкновенная.

Хотя и в небольшом масштабе, генотерапия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.

вирус вектор генотерапия

2. Типы вирусных векторов, используемых в генотерапии

1. Векторы на основе ретровирусов;

2. Векторы на основе HIV-вирусов (лентивирусы);

3. Векторы на основе аденовирусов;

4. Векторы на основе аденоассоциированных вирусов;

5. Векторы на основе герпесвирусов.

Векторы на основе ретровирусов

Это небольшие рнк-содержащие вирусы, способные заражать только делящиеся клетки, в которых они репродуцируются. Вирусный геном (в виде провируса) встраивается в ДНК клетки-мишени. Поэтому ретровирусные векторы теоретически способны обеспечить длительную экспрессию трансгенов в некоторых типах клеток. Большинство ретровирусных векторов получено на основе вируса лейкоза мышей Молони. Геном вируса изменен так, чтобы избежать экспрессии вирусных белков в зараженных клетках, что предотвращает развитие иммунного ответа против этих клеток. Поскольку эти вирусы заражают только делящиеся клетки, ретровирусные векторы используют в основном для трансфекции клеток ex vivo или для экспериментального лечения злокачественных новообразований.

Жизненный цикл . Геном ретровирусов состоит из плюс-цепи РНК. Оболочка ретровирусов образуется из мембраны зараженной клетки и содержит вирусные белки. Для репликации генома и сборки вирусов необходимы три вирусных гена - gag, pol и env. В зараженной клетке путем обратной транскрипции на матрице вирусной РНК происходит образование двухцепочечной ДНК (провируса), которая затем встраивается в клеточный геном. Это обеспечивают вирусные белки - обратная транскриптаза и интеграза. Для проникновения провируса в ядро необходимо разрушение ядерной оболочки клетки, происходящее в ходе митоза. Встроившийся в клеточный геном провирус использует аппарат клетки для транскрипции вирусныхмРНК, их процессинга и трансляции. Жизненный цикл вируса завершается с синтезом новых плюс-цепей РНК на матрице провируса. Специфическая последовательность в молекуле РНК (psi) дает сигнал сборки, после чего новые вирусы отпочковываются от поверхности клетки.

Использование ретровирусного вектора. А. Схема получения ретровирусного вектора. Б. Экспрессия трансгена в клетке-мишени после внедрения РНК-содержащего ретровирусного вектора

Описание к рисунку 1. А. Схема получения ретровирусного вектора. Для получения не способных к репродукции ретровирусных векторов используют специальные линии клеток, способные синтезировать те вирусные белки, гены которых удалены при конструировании вектора. В клетки подходящей линии (например, эмбриональные клетки почки человека) с помощью бактериальных плазмид вводят гены gag (G), pol (Р) и env (Е). Клетки, синтезирующие соответствующие вирусные белки, называют упаковывающими. Затем плазмиду, содержащую рекомбинантную ДНК провируса, в которой вместо генов gag, pol и env находится нужный трансген, используют для трансфекции упаковывающих клеток. Теперь клетки содержат все, что нужно для сборки вирусов, и ретровирусные векторы начинают накапливаться в культуральной среде. Эти векторы содержат трансген, но лишены вирусных генов gag, pol и env, а потому при заражении следующей клетки они не могут репродуцироваться. Б. Экспрессия трансгена в клетке-мишени после внедрения РНК-содержащего ретровирусного вектора.

Конструкция и получение вектора. Ретровирусные векторы получают из соответствующего провируса. Гены gag, pol и env удаляют, чтобы освободить место для нового генетического материала и предотвратить репродукцию вируса (рис. 1). В ретровирусный вектор может быть включено до 8000 пар нуклеотидов чужеродной ДНК. Поскольку рекомбинантный вирус не может синтезировать вирусные мРНК, то в трансфицированных клетках отсутствует и синтез вирусных белков, которые могли бы вызвать иммунный ответ. Вместе с геном, предназначенным для лечения, в вектор можно ввести промотор и энхан-сер, обеспечивающие эффективную экспрессию трансгена и, в ряде случаев, ее тканеспецифичность. Можно использовать также вирусные промотор и энхансер, расположенные в области длинных концевых повторов (LTR).

После удаления генов, кодирующих вирусные белки и обеспечивающих репродукцию вируса, вирус способен репродуцироваться только в специально созданных линиях упаковывающих клеток, синтезирующих эти белки (рис. 1). В геном этих клеток встраивают вирусные гены (gag, pol и env) таким образом, чтобы они находились на разных хромосомах. Это снижает вероятность обратной рекомбинации этих генов в исходный вирусный геном и образования вирусов, способных к репродукции. После введения рекомбинантной ДНК провируса в упаковывающие клетки последние начинают производить ретровирусный вектор. ДНК провируса вводят в виде плазмиды, в которой между двумя длинными концевыми повторами заключены небольшой участок гена gag с сигналом сборки и чужеродные гены. Трансфекцию упаковывающих клеток осуществляют стандартным методом. Разработано несколько модификаций этого подхода, призванных снизить вероятность рекомбинации с образованием вируса, способного к репродукции.

Клетки-мишени. Способность вируса избирательно заражать определенные типы клеток в значительной степени определяется взаимодействием между белком внешней оболочки вируса (у ретровирусов кодируется геном env) и соответствующим мембранным рецептором клетки. Вирус лейкоза мышей Молони является экотропным, то есть заражает только клетки мышей. Для расширения круга клеток-мишеней используют ген env штамма 4070А вируса лейкоза мышей. Этот штамм является амфотропным и заражает клетки не только мышей, но и других млекопитающих, в том числе - человека. Псевдотипирование, то есть упаковка вирусного генома в оболочку, содержащую белки другого вируса, позволяет расширить круг клеток-мишеней. Например, гликопротеид вируса везикулярного стоматита, называемый G-белком, легко включается в оболочку вируса лейкоза мышей Молони. Наличие этого белка расширяет круг клеток-мишеней и облегчает заражение. Кроме того, включение G-белка повышает стабильность ретровирусного вектора и позволяет при ультрацентрифугировании получить более высокий титр вирусов. Недостаток G-белка - его токсичность по отношению к упаковывающим клеткам. Этот недостаток можно частично преодолеть, используя упаковывающие клетки с индуцируемой экспрессией G-белка. Ретровирусные векторы, содержащие другие вирусные белки, например белки вируса лейкоза гиббонов или вируса лимфоцитарного хориоменингита, менее токсичны по отношению к клеткам млекопитающих.

Применение. С помощью ретровирусных векторов обычно осуществляют трансфекцию клеток больного ex vivo или векторы вводят непосредственно в ткани. Первый подход требует выделения клеток больного и поддержания их в культуре, заражения клеток ретровирусным вектором и последующего введения клеток больному. Так пытались модифицировать лимфоциты и стволовые кроветворные клетки при недостаточности аденозиндезаминазы и семейной гиперхолестеринемии. Аналогичным образом поступали, чтобы вызвать экспрессию иммуномодуляторов в опухолевых клетках. Прямую инъекцию ретровирусных векторов пробуют применять в основном для лечения солидных опухолей.

Безопасность. Поскольку вирус встраивается в клеточный геном (что важно для длительной экспрессии), причем случайным образом, существует риск возникновения мутации (инсер-ционный мутагенез). Например, встраивание вируса может изменить функцию гена, регулирующего деление клеток, что приведет к нежелательным последствиям. Способные к репродукции ретровирусы обладают некоторой канцерогенностью, однако этого не наблюдается у ретровирусных векторов, лишенных такой способности.

HIV - вирусы (лентивирусы )

Вирусы, относящиеся к этому подсемейству ретровирусов, способны заражать как делящиеся, так и неделящиеся клетки. Из лентивирусов лучше всего изучен ВИЧ-1, а векторы, полученные на его основе, теоретически обладают рядом преимуществ перед описанными ретровирусными векторами. Особенно многообещающей является их способность к высокоэффективной трансфекции стволовых кроветворных клеток. Эти векторы также могут обеспечить длительную экспрессию трансгена. Однако в силу происхождения лентивирусных векторов перед проведением клинических испытаний необходимо убедиться в их безопасности.

Жизненный цикл . Лентивирусы сходны с другими ретровирусами. Основное отличие, объясняющее способность лентивирусов заражать неделящиеся клетки, состоит в том, что вирусный преинтеграционный комплекс взаимодействует с ядерной оболочкой, а затем транспортируется через нее. Этот преинтеграционный комплекс состоит из вирусного генома (в виде ДНК), интегразы и белка матрикса, кодируемого геном gag. Белок матрикса содержит последовательность, обеспечивающую связывание вируса с порой ядерной оболочки. Последующий перенос внутрь ядра делает возможным интеграцию вирусного генома в ДНК неделящейся клетки.

. Лентивирусные векторы лишены способности к репродукции благодаря удалению из генома ВИЧ-1 некоторых дополнительных генов, поэтому для их получения используют упаковывающие клетки, в которых независимые гены кодируют необходимые для сборки вируса компоненты. Это существенно снижает риск рекомбинации при получении вектора, в результате которой теоретически возможно восстановление способности вируса к репродукции. Удаление гена tat и длинных концевых повторов (LTR) также снижает риск восстановления способности к репродукции при получении вектора или in vivo.

Клетки-мишени. Лентивирусные векторы способны заражать как делящиеся, так и неделящиеся клетки, например стволовые кроветворные клетки или специализированные клетки - мышечные, нейроны, гепатоциты, фоторецепторы сетчатки. Однако иногда для осуществления трансфекции необходимо заставить клетки перейти в период G (клеточного цикла. С целью расширения круга клеток-мишеней лентивирусный белок, кодируемый геном env, можно заменить путем псевдотипирования на G-белок вируса везикулярного стоматита или на другой подходящий белок. Длительную экспрессию трансгенов, доставленных с помощью лентивирусного вектора, наблюдали в ЦНС экспериментальных животных. Стабильная и эффективная доставка трансгенов осуществлена также в клетки сетчатки.

Применение лентивирусных векторов почти не вызывает воспаления или других признаков поражения тканей.

Безопасность. Поскольку лентивирусные векторы получают на основе генома ВИЧ-1, особенную озабоченность вызывает риск рекомбинации, восстанавливающей способность к репродукции. Репродуцирующийся лентивирусный вектор теоретически опасен тем, что он может вызвать инсерционный мутагенез или приобрести свойства исходного ВИЧ-1. Не ясно также, к чему приведет заражение ВИЧ человека, которого ранее лечили с помощью лентивирусного вектора. Теоретически ВИЧ-инфекция может вызвать мобилизацию встроенного вектора, поскольку ВИЧ способен выступить в роли вируса-помощника. Кстати, это может быть использовано для генотерапии ВИЧ-инфекции с помощью лентивирусных векторов. Сомнения в безопасности должны быть устранены в ходе усовершенствования конструкции векторов и методов их получения.

Векторы на основе аденовирусов

Аденовирусы содержат линейную двухцепочечную ДНК и способны к репродукции независимо отделения клетки-хозяина. Аденовирусные векторы имеют ряд преимуществ, что стимулирует разработку их клинического применения. Они позволяют доставлять гены в различные ткани человека, в том числе в эпителий дыхательных путей, эндотелий, миокард и скелетные мышцы, клетки периферической и центральной нервной системы, гепатоциты, экзокринные клетки поджелудочной железы и различные типы опухолей. Известно более 40 серотипов аденовирусов человека, а вызываемые ими заболевания подробно описаны. Почти все взрослые люди перенесли аденовирусную инфекцию, и в их крови имеются антитела против аденовирусов.

Аденовирусные векторы обеспечивают эффективную трансфекцию как делящихся, так и неделящихся клеток с последующей экспрессией трансгенов. Можно использовать разные пути введения, например в/в, внутрибрюшинный, внутрипузырный, внутричерепной, интратекальный, а также инъекцию в желчные пути или непосредственно в паренхиму органа. Многообразие путей введения позволяет выбрать наилучший для выбранной мишени. Аденовирусные векторы имеют два существенных недостатка. Во-первых, после заражения клетки вирусный геном не встраивается в ДНК клетки, поэтому длительной экспрессии трансгена не происходит. Во-вторых, аденовирусная инфекция активирует как клеточное, так и гуморальное звенья иммунитета, что ведет к уничтожению трансфицированных клеток и снижает эффективность повторного введения вектора. Побочные эффекты аденовирусных векторов также объясняются иммунным ответом.

Использование аденовирусного вектора

Описание к рисунку 2. Рекомбинантный аденовирус связывается со специфическими рецепторами на поверхности клетки-мишени и проникает в нее путем эндоцитоза. Вирусные белки обеспечивают выход вируса из эндосомы до ее слияния с лизосомой; благодаря этому вирус избегает разрушения. Аденовирусная ДНК освобождается от белков и проникает в ядро, где начинается синтез новых мРНК. При этом аденовирусная ДНК, содержащая трансген, не встраивается в геном клетки-хозяина.

Жизненный цикл. Аденовирусная инфекция начинается со связывания нитей, выступающих на вершинах икосаэдрического капсида, с рецептором вирусов Коксаки и аденовирусов, расположенным на мембране клетки (рис. 2). Затем происходит взаимодействие последовательности из трех аминокислотных остатков (Apr - Гли-Асн), расположенной в основании вирусного пентона, с клеточными интегринами (avв3- или аvв5-интегрином), что приводит к эндоцитозу и интернализации вируса. Вирус покидает эндосому до ее слияния с лизосомой и таким образом избегает переваривания. Вирусная ДНК проникает в ядро клетки, где начинается синтез вирусных мРНК, причем деления клетки для этого не требуется. В делящихся клетках при высоком уровне заражения иногда происходит встраивание вирусного генома в ДНК клетки, однако это достаточно редкое событие, существенно не влияющее на применимость аденовирусных векторов. Экспрессия и репликация вирусного генома проходят в определенной последовательности, которую во многом определяют гены Е1А и ЕIB, расположенные в 5"-области аденовирусного генома. Эти гены обеспечивают трансактивацию нескольких вирусных генов, расположенных дальше в З"-направлении.

Поскольку гены Е1 участвуют в репродукции аденовирусов, их удаление блокирует или, по крайней мере, существенно затрудняет репродукцию. Из-за более сложного строения вируса удалить из вектора все аденовирусные гены труднее, чем ретровирусные. Синтез аденовирусных белков после заражения клеток существующими аденовирусными векторами активирует клеточное и гуморальное звенья иммунитета. В некоторых случаях это может ограничивать использование вектора вследствие гибели трансфицированных клеток и низкой эффективности повторного введения вектора.

Конструкция и получение вектора . Из множества известных серотипов аденовирусов для получения векторов используют в основном серотипы 2 и 5. Аденовирусные векторы первого поколения были получены путем удаления Е1- и E3-районов из вирусного генома. После этих делеций вирус не способен к репродукции, а в геном можно включить до 7500 пар нуклеотидов чужеродной ДНК. В аденовирусных векторах второго поколения удалены также Е2- и E4-районы, что способствует снижению иммуногенности, но снижает экспрессию трансгенов в зараженных клетках. В результате удаления еще большего числа вирусных генов получены аденовирусные векторы, зависящие от вирусов-помощников. В их состав можно включить больше чужеродной ДНК, и при их применении снижен риск иммунного ответа, однако такие векторы трудно сконцентрировать, и они менее стабильны in vivo.

Аденовирусные векторы в большом количестве получают путем заражения упаковывающих клеток (обычно эмбриональных клеток почки человека, линии 293), экспрессирующих вирусный белок Е1, что компенсирует отсутствие соответствующего гена в рекомбинантном вирусе. Затем зараженные клетки лизируют, а лизат подвергают центрифугированию в градиенте плотности хлорида цезия. Этот метод позволяет не только очистить вирусы от других компонентов клеточной культуры, но и сконцентрировать его, получив более 1013 вирусов в 1 мл. Очищенный вирус очень устойчив в различных буферных растворах, а для длительного хранения может быть заморожен без потери активности.

Клетки-мишени . Аденовирусы заражают широкий круг делящихся и неделящихся клеток, поскольку рецепторы для вирусов Коксаки и аденовирусов имеются почти у всех клеток. Лишь у некоторых клеток этих рецепторов мало или они недоступны. Существуют способы изменения тропности аденовирусов. Использование антител двойной специфичности к нитям вируса и мембранным белкам клетки позволяет блокировать естественную тропность вируса и перенаправить его на определенный тип клеток. Для изменения тропности или облегчения взаимодействия с клетками можно с помощью методов генной инженерии модифицировать вирусные нити или их концевые головки. Наконец, можно использовать адаптерные белки, например химерный белок, содержащий последовательности эпидермального фактора роста и рецептора вирусов Коксаки и аденовирусов. Это облегчает связывание вируса с клетками, экспрессирующими рецептор эпидермального фактора роста.

Применение. В настоящее время проводится много клинических испытаний, в которых аденовирусные векторы применяют для лечения как наследственных, так и приобретенных заболеваний. При лечении наследственных заболеваний большим недостатком является непродолжительность экспрессии трансгенов и иммунный ответ на зараженные клетки. Внехромосомная локализация аденовирусного генома в клетке ограничивает продолжительность экспрессии трансгенов в активно делящихся клетках (например, клетках костного мозга или эпителия), так как деление клеток не сопровождается репликацией трансгена. Аденовирусные векторы, как способные, так и не способные к репродукции, могут найти применение в лечении злокачественных новообразований.

Безопасность. Основное побочное действие аденовирусных векторов - иммунный ответ, направленный против зараженных клеток. Обсуждение безопасности аденовирусных векторов особенно стимулировала смерть одного больного во время клинических испытаний. Имеются также сомнения, что в процессе получения вектора полностью исключено образование рекомбинантного вектора, способного к репродукции. Аденовирусные векторы, предназначенные для клинического использования, нуждаются в тщательной проверке.

Аденоассоциированные вирусы

Эти маленькие, лишенные оболочки вирусы, содержащие одноцепочечную ДНК, обладают рядом свойств, необходимых хорошему вектору. Они непатогенны, обеспечивают эффективную и стабильную трансфекцию неделящихся клеток, а кроме того, позволяют исключить экспрессию вирусных белков в зараженных клетках. Основные недостатки аденоассо-циированных векторов - маленькая емкость и трудности в концентрировании. Начались клинические испытания аденоассоциированных векторов, и есть основания рассчитывать на их пригодность для генотерапии.

Жизненный цикл. Для репродукции аденоассоциированные вирусы нуждаются в генетической информации вируса-помощника. В жизненном цикле аденоассоциированных вирусов выделяют две фазы. Такой вирус заражает клетку, включается в клеточный геном и в отсутствие вируса-помощника (аденовируса) остается там продолжительное время в латентном состоянии. В присутствии аденовирусов начинается активная фаза, приводящая к репродукции аденоассоциированного вируса и лизису клеток. Геном аденоассоциированного вируса содержит две открытые рамки считывания (гер и cap), ограниченные инвертированными концевыми повторами (ITR). Для репродукции вируса нужны только гены гер, кодирующие четыре белка, которые обеспечивают репродукцию аденоассоциированного вируса, транскрипцию вирусной ДНК и эндонуклеазную активность, необходимую для встраивания в клеточный геном. Структурные белки, образующие капсид вируса, кодируются геном cap. В районе инвертированных концевых повторов находятся точки начала репликации; эти повторы содержат сигналы для сборки вирусов, а также участвуют во встраивании вирусной ДНК в клеточный геном. Функция многих белков и другие особенности биологии вируса стали известны после изучения природных немодифицированных вирусов.

Заражение начинается с прикрепления вируса к его основному рецептору на клетке - протеогликану, содержащему гепарансульфат. В проникновении вируса в клетку участвуют также рецептор фактора роста фибробластов и сц, Р5-интегрин. Интернализация вируса осуществляется путем эндоцитоза через образование покрытых клатрином окаймленных ямок. Внутри клетки геном аденоассоциированного вируса замыкается в кольцо и образует кольцевые конкатемеры, находящиеся вне хромосом. Образование этих кольцевых форм вирусного генома сопровождается длительной экспрессией трансгена. Природный аденоассоциированный вирус может встраиваться в ДНК человека на одном участке 19-й хромосомы (19q 13.3-qter). Рекомбинантный вирус иногда утрачивает эту способность. Конструкция и получение вектора. Существующие аденоассоциированные векторы получают с помощью системы трех рекомбинантных плазмид. Первая плазмида содержит трансген, расположенный между двумя инвертированными концевыми повторами, вторая - гены гер и cap, а третья - участки генома аденовируса, необходимые для сборки аденоассоциированного вируса. Этот подход позволяет обойтись без дополнительного заражения продуцирующих клеток аденовирусом. Из-за небольшого размера генома аденоассоциированных вирусов в вектор можно включить не более 5200 пар нуклеотидов чужеродной ДНК. Это не только ограничивает размер потенциального трансгена, но и затрудняет использование специальных промоторов и энхансеров, регулирующих его экспрессию в зараженной клетке. При использовании двухвекторной системы можно вдвое увеличить емкость вектора: две половины трансгена соединяются in vivo из двух разных векторов, которые объединяются в кольцевой конкатемер внутри клетки. Таким же образом можно собирать большие гены или включать важные регуляторные элементы, слишком большие для одного вектора. В настоящее время основные проблемы в использовании аденоассоциированных векторов связаны с трудностями получения высокой концентрации вектора и определения его титра. Клетки-мишени. Аденоассоциированные векторы способны заражать различные клетки. В доклинических исследованиях показана эффективная трансфекция клеток скелетных мышц, ЦНС, легких, печени, ЖКТ и глаза.

Применение. Аденоассоциированные векторы начали применять в клинике: сейчас проводятся клинические испытания доставки генов в легкие и в скелетные мышцы. По-видимому, эти векторы подходят для обеспечения длительной экспрессии трансгенов в скелетных мышцах, сердце, ЦНС и других тканях. Первые результаты клинического испытания, в котором с помощью аденоассоциированного вектора осуществляли доставку гена фактора IX в скелетные мышцы больных гемофилией, оказались успешными (см. ниже). Способность этих векторов обеспечивать длительную экспрессию трансгенов, не оказывая токсического действия на клетки и не вызывая иммунного ответа, делает их перспективным инструментом лечения некоторых наследственных заболеваний.

Безопасность. Аденоассоциированные вирусы непатогенны. Первые опыты с использованием соответствующих векторов показали, что они не активируют иммунную систему. Раньше высказывались опасения, что аденоассоциированный вектор может быть загрязнен вирусом-помощником (аденовирусом), но этот риск ликвидировали новые схемы получения векторов. Наконец, аденоассоциированные векторы могут встраиваться в геном клетки случайным образом, что теоретически может привести к инсерционному мутагенезу. Вероятно, необходимо сохранить в векторах способность специфического встраивания в 19-ю хромосому

Герпесвирусы

Этот вирус содержит большую (152 000 пар нуклеотидов) молекулу двухцепочечной ДНК, которая реплицируется в ядре зараженной клетки. Вирус заражает различные клетки, как делящиеся, так и неделящиеся; вирусный геном находится вне хромосом. В вирусный геном путем гомологичной рекомбинации или путем делеции и вставки можно встроить до 20 000-30 000 пар нуклеотидов чужеродной ДНК. Вирус простого герпеса типа 1 обладает тропностью к нейронам, поэтому его предложено использовать в качестве вектора для генотерапии нервных болезней, например болезни Паркинсона или злокачественных новообразований мозга. Основные недостатки такого вектора - цитотоксичность и возможность замолкания трансгена.

Жизненный цикл . Инфекция, вызванная вирусом простого герпеса типа 1, может быть активной, приводящей к лизису клеток, или латентной. При первичном заражении вирус проникает в клетки эпителия (кожи или слизистых), где репродуцируется. Новые вирусы, покидая зараженную клетку путем отпочковывания, получают внешнюю оболочку, состоящую из остатков клеточной мембраны. Затем вирусы внедряются в чувствительные нервы вблизи от очага первичной инфекции и ретроградно транспортируются по волокну в тело нейрона. В прикреплении вируса участвуют молекулы гепарансульфата, расположенные на поверхности клеточной мембраны. Попав в тело нейрона, вирус может продолжить активную репродукцию или перейти в латентное состояние. В последнем случае подавляется экспрессия большинства вирусных генов, но два промотора (LAPI, LAP2) активируют синтез транскриптов, связанных с латентностью (LAT-транскриптов). Позже вирус может реактивироваться, начать активную репродукцию и распространиться на очаг первичной инфекции или ЦНС.

Конструкция и получение вектора . Герпесвирусный вектор не способен к репликации, поскольку у него нет нескольких необходимых для этого генов, таких, как сверхранние гены ICP4, 1СР22и ICP27. Удаление этих генов уменьшает также цитотоксичность вектора и увеличивает продолжительность экспрессии трансгена. Были разработаны методы, позволяющие без использования вирусов-помощников получить герпесвирусные векторы, хотя и с невысоким титром. Такие векторы способны заражать нервные клетки in vivo, не повреждая их. Наиболее эффективные способы получения вектора на основе вируса простого герпеса типа 1 позволяют включить в него два независимых трансгена.

Большим препятствием к использованию герпесвирусных векторов является кратковременность экспрессии, вызванная замолканием трансгена. Перспективный способ преодоления этой проблемы - использование промоторов, активирующих синтез LAT-транскриптов. Иногда для облегчения трансляции трансген сшивают с внутренним сайтом связывания рибосом (IRES) вируса энцефаломиокардита.

Клетки-мишени . Вирус простого герпеса типа 1 способен заражать различные клетки человека, но особенно выражена его тропность к нейронам. Для повышения специфичности удаляют вирусные гены, кодирующие гликопротеид (обеспечивает прикрепление к клетке); их можно заменить на другие аналогичные гены.

Применение. Емкость герпесвирусных векторов очень велика. Например, с их помощью в культуру мышечных клеток, полученных от мышей с экспериментальной мышечной дистрофией, была введена полная кДНК дистрофина из 14 000 пар нуклеотидов. Способные к репродукции герпесвирусные векторы сейчас разрабатываются для лечения злокачественных новообразований мозга и других органов. Безопасность. Основная опасность герпесвирусных векторов - цитотоксичность. Новейшие способы получения векторов, включающие удаление дополнительных вирусных генов, снижают этот риск.

Размещено на Allbest.ru

Подобные документы

    Обмен генетического материала у бактерий при трансформации, конъюгации и трансдукции. Перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте. Перенос, гены специальных и необходимых при конъюгации структур.

    реферат , добавлен 27.05.2010

    Основные положения и этапы процесса экспрессии генов. Перенос информации о нуклеотидной последовательности ДНК на уровень РНК. Процессинг РНК у прокариот. Генетический код, его назначение и порядок формирования. Общие особенности процесса трансляции.

    курсовая работа , добавлен 27.07.2009

    Эволюция представлений о гене. Основные методы идентификации генов растений. Позиционное клонирование (выделение) генов, маркированных мутациями. Выделение генов, маркированных делециями методом геномного вычитания и с помощью метода Delet-a-gen.

    контрольная работа , добавлен 25.03.2016

    Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат , добавлен 23.01.2010

    Описание комплементарного взаимодействия генов. Рассмотрение характерных особенностей модификационной и наследственной (комбинативной, мутационной) закономерностей изменчивости организма. Задачи и методы селекции растений, животных и микроорганизмов.

    реферат , добавлен 06.07.2010

    Этапы проведения экспериментов по переносу генетического материала, применение технологий для изучения процессов дифференцировки, канцерогенеза. Условия культивирования клеток. Виды и назначение селекции. Перенос генов, опосредованный хромосомами и ДНК.

    учебное пособие , добавлен 11.08.2009

    Инсерционный мутагенез как метод прямой и обратной генетики. Типы инсерционных мутагенов и их особенности. Использование инсерционного мутагенеза для инактивации генов на основе явления РНК-интерференции. Выделение генов, маркированных инсерцией.

    контрольная работа , добавлен 25.03.2016

    Жизненный цикл ретровирусов. Инфекция клеток ретровирусами. Спонтанные и индуцированные мутации. Основные процессы, приводящие к возникновению мутаций. Классификация мутаций по различным критериям. Последствия мутаций для организма, перенос генов.

    реферат , добавлен 21.05.2015

    Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция , добавлен 31.10.2016

    Латенция и вирогения как типы взаимодействия вируса с клеткой. Процесс адсорбции вируса и его проникновения в клетку, синтез вирусных белков. Этапы созревания дочерних вирусных частиц, способы их выхода из клетки, общие принципы сборки вирионов.