Клеточные культуры. I. Культуры клеток Что подразумевают под термином рост клеточной культуры


Клеточные культуры


Технология клеточных культур заключается в выращивании клеток вне живых организмов.


Культуры растительных клеток


Культуры растительных клеток не только являются важным этапом создания трансгенных растений, но и экологически приемлемым и экономически оправданым источником природных продуктов, обладающих терапевтическими свойствами, как, например, паклитаксель (paclitaxel), содержащийся в тисовой древесине и выпускаемый как препарат для химиотерапии под названием Таксол (Taxol). Культуры растительных клеток также применяются для производства веществ, используемых пищевой промышленностью в качестве ароматизаторов и красителей.


Культуры клеток насекомых


Изучение и применение культур клеток насекомых расширяет возможности разработки и использования человеком биологических агентов, уничтожающих насекомых-вредителей, но не влияющих на жизнеспособность полезных насекомых, а также не накапливающихся в окружающей среде. Несмотря на то, что достоинства биологических методов борьбы с вредителями были известны уже давно, производство таких биологически активных веществ и патогенных для насекомых и микроорганизмов в промышленных количествах очень затруднено. Использование культур клеток насекомых способно полностью решить эту проблему. Кроме того, так же как и растительные клетки, клетки насекомых могут быть использованы для синтеза лекарственных препаратов. Эта перспектива в настоящее время активно изучается. Кроме того, изучается возможность использования клеток насекомых для производства VLP-вакцин (VLP – virus-like particle – вирусоподобные частицы) для лечения инфекционных заболеваний, таких как атипичная пневмония и грипп. Эта методика могла бы сильно снизить затраты и исключить проблемы безопасности, связанные с традиционным методом, использующим куриные яйца.


Культуры клеток млекопитающих


Клеточные культуры млекопитающих являются одним из главных инструментов, используемых специалистами племенного животноводства в течение уже не одного десятилетия. В лабораторных условиях яйцеклетки, полученные от коров, обладающих выдающимися качествами, оплодотворяются сперматозоидами соответствующих быков. Образующиеся при этом эмбрионы в течение нескольких дней выращиваются в пробирке, после чего имплантируются в матки суррогатных коров-матерей. Этот же прием является основой экстракорпорального оплодотворения человека.


В настоящее время использование культур клеток млекопитающих выходит далеко за рамки искусственного оплодотворения. Клетки млекопитающих могут дополнять, а возможно, когда-нибудь и заменят использование животных для тестирования безопасности и эффективности новых лекарственных препаратов. Кроме того, так же как клетки растений и насекомых, клетки млекопитающих могут быть использованы для синтеза лекарственных веществ, особенно некоторых животных белков, слишком сложных для того, чтобы синтезировать их с помощью генетически модифицированных микроорганизмов. Например, моноклональные антитела синтезируются именно культурами клеток млекопитающих.


Ученые также рассматривают возможность использования клеток млекопитающих для производства вакцин. В 2005 году Министерство здравоохранения и социальных услуг США заключило с компанией Sanofi Pasteur контракт на 97 миллионов долларов США. Задачей специалистов компании является разработка методик культивирования клеток млекопитающих с целью ускорения процесса разработки вакцин против гриппа и, соответственно, повышения готовности человечества к пандемии.


Методы терапии, основанные на использовании культур взрослых стволовых клеток , обнаруженных в некоторых тканях организма (костном мозге, жировой ткани, мозге и др.), также скоро займут достойное место в клинической практике. Исследователи установили, что стволовые клетки могут быть использованы организмом для восстановления поврежденных тканей. Взрослые гемопоэтические стволовые клетки уже давно используются в качестве трансплантатов костного мозга. Они необходимы для восстановления процессов созревания и формирования всех типов клеток крови. Такие клетки могут быть в больших количествах получены из пуповинной крови, однако их выделение является довольно сложным процессом.


В настоящее время исследователи работают над методами выделения стволовых клеток из плаценты и жировой ткани. Ряд специалистов занят разработкой методов клеточного ре-программирования – возвращения в недифференцированное состояние зрелых клеток организма, например, клеток кожи, и последующей стимуляции их дифференцирования в клетки необходимого типа ткани.


Эмбриональные стволовые клетки


Использование эмбриональных стволовых клеток также рассматривается в качестве потенциального метода терапии многих заболеваний. Как понятно из названия, эмбриональные клетки получают из эмбрионов, в частности, тех, что развиваются из яйцеклеток, оплодотворенных in vitro (в клиниках, занимающихся экстракорпоральным оплодотворением) и, с согласия доноров, переданных исследователям для использования в научных целях. Обычно используются бластоцисты – 4-5-дневные эмбрионы, выглядящие под микроскопом как шарики, состоящие из нескольких сотен клеток.


Для выделения человеческих эмбриональных стволовых клеток внутренняя клеточная масса бластоцисты переносится в богатую питательными веществами культуральную среду, где клетки начинают активно делиться. В течение нескольких дней клетки покрывают всю поверхность культуральной плашки. После этого исследователи собирают делящиеся клетки, делят их на части и помещают в новые плашки. Процесс перемещения клеток в новые плашки называется пересевом и может многократно повторяться в течение многих месяцев. Цикл пересева клеток называется пассаж . Эмбриональные стволовые клетки, просуществовавшие в культуре в течение шести и более месяцев без дифференцировки (т.е. остающиеся плюрипотентными – способными дифференцироваться в клетки любой ткани организма) и сохранившие нормальный набор генов, называются линией эмбриональных стволовых клеток .


Внутренняя поверхность культуральной плашки зачастую покрывается клетками кожи мышиных зародышей, генетически модифицированных на неспособность к делению. Эти клетки образуют фидерный слой – «питательную подложку», благодаря которой эмбриональные клетки прикрепляются к поверхности. Ученые пытаются усовершенствовать существующий метод и исключить необходимость использования мышиных клеток, так как их присутствие всегда привносит риск попадания в культуру человеческих клеток вирусных частиц и мышиных белков, способных вызвать аллергическую реакцию.


Максимальная ценность терапии с использованием стволовых клеток и тканевой инженерии может быть достигнута в том случае, если терапевтические стволовые клетки и ткани, выращенные из них, являются генетически идентичными клеткам реципиента. Поэтому, если сам пациент не является их источником, стволовые клетки должны быть модифицированы методом замещения их генетического материала генами реципиента и только потом дифференцированы в клетки специфического типа. На настоящее время процедура замещения генетического материала и ре-программирования может быть успешно проделана только с эмбриональными стволовыми клетками.

Тема 10. Использование в вирусологии культур клеток. Типы культур клеток

Контрольные вопросы

Задание к следующему занятию.

Подведение итогов занятия.

Задания

1. Подготовить куриные эмбрионы к заражению.

2. Заразить куриные эмбрионы вирусами ньюкаелской болезни и оспы голубей (кур).

3. Вскрыть зараженные куриные эмбрионы, получить ХАО и аллантоисную жидкость.

4. Поставить капельную РГА с аллантоисной жидкостью.

Самостоятельная работа студентов:

а) подготовка рабочих мест и спецодежды к вскрытию куриных эмбрионов, зараженных на предыдущем занятии;

б) вскрытие куриных эмбрионов, зараженных вирусом ньюкаслской болезни, отсасывание аллантоисной и амниотической жидкостей, постановка капельной РГА;

в) вскрытие куриных эмбрионов, зараженных вирусом оспы, извлечение ХАО, подсчет и зарисовка оспин;

г) подготовка к обеззараживанию инструментов, эмбрионов, посуды.

1. Что вы знаете о методах индикации вирусов в куриных эмбрионах?

2. Какие способы получения вируссодержащего материала от куриных эмбрионов вы знаете?

3. Каковы гемагглютинирующие свойства вирусов и их использование? Каков механизм гемагглютинации?

Цель занятия: изучить различные виды культур, их номенклатуру. Изучить материальное обеспечение при производстве клеточных культур.

Оборудование и материалы: растворы Хенкса. Эрла, питательная среда 199, Игла, гидролизат лактальбумина, матрасы, флаконы, стеклянная посуда, готовые культуры клеток, мультимедийное оборудование, презентации MS Office Power Point по теме занятия.

Объяснение преподавателя. Выращивание культур клеток для получения различных биологических про­дуктов, проведения научно-исследовательских или диагностических работ явля­ется революционизирующим моментом XX в. Признание идеи о том, что клетки тканей высших животных можно выделить из организма и затем создать условия для роста и воспроизводства их in vitro, датируется первым десятилетием XX в. После того как стало известно, что подобные процессы реальны, наступил вто­рой этап работ – выращивание клеток и репродукция в них вирусов. Третий и четвертый этапы начинаются с появлением возможности вставить в клетки экзогенно полученные гены и получить их экспрессию и подтверждения возмож­ности выращивания из одиночной клетки целой популяции (гибридом что знаменуют собой возможность получения трансгенных систем и клонирования организмов. В настоящее время ни одна вирусологическая лаборатория не может обойтись без культуры клеток. Культуры клеток имеют следующие преимущества перед лабораторными животными и куриными эмбрионами:


можно добиться заражения практически всех культур клеток, что позволяет получать вируссодержащий материал с наивысшей концентрацией вируса при наименьшем содержании белкового балласта;

поскольку можно получить культуры клеток любого вида животного, снимаются видовые ограничения культивирования вирусов;

возможно вмешательство в инфекционный процесс в любой момент, не нарушая целостности живой системы;

можно непрерывно контролировать ход инфекционного процесса;

возможно получение готовой суспензии вируса в виде культуральной жидкости;

соблюдается полная стерильность культуральном жидкости в отношении грибов и бактерий;

предельно просты техника заражения и получение вируссодержащего материала;

относительная дешевизна.

Культуры клеток – наиболее совершенная из лабораторных система для культивирования вирусов. В вирусологической практике культуры клеток чаще всего используют для первичного обнаружения вирусов и их выделения из патологического материала, накопления вируса при изготовлении вакцин и диагностикумов, поддержания вирусных штаммов в лаборатории, титрования вирусов и как тест-объект в реакции нейтрализации.

Для успешного выделения вируса необходимо соблюдать следующие требования:

используемая культура клеток должна быть чувствительной к предполагаемому вирусу. Чувствительность ее повышается, если клетки получены от молодых животных (лучше эмбрионов);

10.1 Типы культур клеток. Культура клеток – это клетки многоклеточного организма, живущие и размножающиеся в искусственных условиях вне организма (in vitro).

Методика культивирования клеток особенно успешно стала развиваться после 40-х годов текущего столетия. Этому способствовали следующие обстоятельства: открытие антибиотиков, предотвращающих бактериальное заражение культур клеток, открытие Хуангом (1943) и Эндерсом (1949) способности вирусов вызывать специфическую деструкцию клеток (цитопатический эффект) – удобный метод индикации вирусов в культурах клеток, и, наконец, Дульбекко и Фогт (1952) предложили методику трипсинизации тканей и получения однослойных культур клеток.

В вирусологической практике применяют следующие культуры клеток.

Первично-трипсинизированные культуры клеток – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой (рис. 26). Культуру клеток можно получить практически из любого органа или ткани человека или животного (взрослого или эмбриона). Однако лучше это удается сделать из эмбриональных органов, так как клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для этих целей используют почки, легкие, кожу, тимус, тестикулы эмбрионов или молодых животных.

Рисунок 26. Первичная культура клеток легких эмбриона овцы (по Троценко Н.И. и др.)

Для получения первичных клеток от здорового животного не позднее 2-3 ч после убоя берут соответствующие органы или ткани, измельчают их на кусочки (1-4 мм) и обрабатывают ферментами: трипсином, панкреатином, коллагеназой и другими (чаще трипсином). Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37 °С.

Клетки прикрепляются к стеклу и начинают делиться. В развитии культур клеток различают несколько фаз: адаптации, логарифмического роста, стационарную и старения (гибель клеток). Размножаясь, клетки размещаются на поверхности стекла и при полном покрытии его в один слой контактируют друг с другом и прекращают делиться (контактная ингибиция). На стекле формируется слой толщиной в одну клетку (поэтому эти культуры клеток называют однослойными или монослойными).

Обычно монослой формируется через 3–5 дней. Скорость его формирования зависит от вида ткани, возраста животного, качества питательной среды, посевной концентрации клеток и других факторов.

Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохраняет жизнеспособность в течение 7–21 дня (в зависимости от вида клеток и состава питательной среды).

Интенсивность размножения клеток и состояние монослоя контролируют визуально под малым увеличением микроскопа (объектив х10). Лучше для этой цели использовать инвертированный микроскоп.

Для культивирования вирусов используют молодые культуры клеток (как только сформировался монослой).

Субкультуры. В вирусологической практике часто используют субкультуры, которые получают из первичных клеток, выращенных в матрасах, путем снятия их со стекла раствором версена или трипсина, ресуспендирования в новой питательной среде и пересева на новые матрасы или пробирки. Через 2–3 сут формируется монослой.

Практически субкультуру можно получить из всех первичных культур клеток. (Хуже субкультивируются куриные фибробласты.) Субкультуры по чувствительности к вирусам не уступают первичным культурам клеток, кроме того, они более экономичны, и есть возможность выявления контаминации клеток вирусами. Субкультуры получают от 2–5 пассажей (перевивок) и очень редко до 8–10. Последующие пассажи приводят к изменению морфологии клеток и их гибели.

Если клеточные культуры прошли более 10 пассажей, они уже на стадии перехода к перевиваемым культурам клеток.

Перевиваемые культуры клеток – это клетки, способные к размножению вне организма неопределенно длительное время. В лабораториях их поддерживают путем пересевов из одного сосуда в другой (при условии замены питательной среды).

Получают перевиваемые клетки из первичных культур клеток с повышенной активностью роста путем длительных пересевов в определенном режиме культивирования. Обычно работа по получению новых клеточных линий продолжается несколько месяцев. Полагают, что механизм происхождения перевиваемых культур клеток – результат генетической изменчивости клеток или селекции единичных клеток, присутствующих в первичной исходной культуре.

Клетки перевиваемых культур имеют одинаковую форму, гетероплоидный набор хромосом (у первичных клеток он диплоидный), стабильны в условиях роста in vitro, некоторые из них обладают онкогенной активностью. Последнее свойство ограничивает использование перевиваемых культур клеток для культивирования вирусов при производстве вакцин.

Перевиваемые культуры клеток можно получать как из здоровых тканей животных, так и из опухолевых. Среди них наиболее широко используют следующие линии клеток: HeLa (из раковой опухоли шейки матки женщины); Нер-2 (из карциономы гортани человека); KB (из раковой опухоли полости рта); ВНК-21 (почка новорожденного хомячка); ППЭС (перевиваемая почка эмбриона свиньи); ППТ (перевиваемая почка теленка); ППО (перевиваемая почка овцы); TR (из слизистой трахеи коровы); L (мышиные фибробласты); СОЦ (из сердца обезьяны циномольгус) и др.

Перевиваемые клетки имеют преимущества перед первичными: их приготовление значительно проще, экономятся труд и материальные средства; эти культуры заранее можно проверить на наличие латентных вирусов и микрофлоры; клональные линии обеспечивают более стандартные условия для размножения вирусов, чем первичные, представляющие смешанную популяцию клеток. Большинство перевиваемых клеток обладает более широким спектром чувствительности к вирусам, чем соответствующие первичные культуры.

Однако перевиваемые клетки имеют и недостатки: они склонны к малигнизации, т. е. злокачественное перерождение независимо отпроисхождения и снижения чувствительности к вирусам у них происходит быстрее, чем у первичных, поэтому необходимо применять клональные линии перевиваемых клеток.

Поддерживают перевиваемые клетки путем периодических пересевов. Чаще используют бесцентрифужный метод. Для очередного пересева отбирают 2–3-дневную культуру с хорошим монослоем, сливают питательную среду, а клеточный монослой покрывают подогретым до 35-37°С 0,02%-ным раствором версена. Диспергирующее действие версена объясняется связыванием им двухвалентных катионов (Mg ++ , Ca ++), которые способствуют прикреплению клеток к стеклу и обеспечивают целостность клеточной культуры. Под действием версена клетки округляются, отделяются от стекла.

Через 10–15 мин после округления клеток версен сливают, оставляя небольшое количество его (в 1-литровом матрасе – 5-–10 мл, в 0,1-литровом – 2–3 мл), и выдерживают еще 5–10 мин, периодически омывая клетки версеном, затем добавляют небольшое количество питательной среды. После встряхивания подсчитывают клетки в камере Горяева, исходную клеточную взвесь разводят ростовой питательной средой до необходимой концентрации (80–200 тыс. в 1 мл) и разливают при помешивании в пробирки или матрасы, закрывают резиновыми пробками и культивируют в термостате при 37 °С в течение 3–4 дней до образования сплошного монослоя. Обычно клетки в камере Горяева не подсчитывают, а пересевают с коэффициентом от 1:2 до 1:6 в зависимости от вида клеток. Состав питательной среды также зависит от вида клеток, но чаще при культивировании перевиваемых клеток используют среды Игла, 199 или смеси этих сред с гидролизатом лактальбумина.

Важно отметить, что при поддержании перевиваемых клеток путем их систематического пересева в лаборатории оставляют не менее одного матраса без пересева на случай непригодности последнего пассажа.

Диплоидные культуры клеток. Международный комитет по клеточным культурам дал следующее определение диплоидным клеткам: это морфологически однородная популяция клеток, стабилизированная в процессе культивирования in vitro, имеющая ограниченный срок жизни, характеризующаяся тремя фазами роста, сохраняющая в процессе пассирования кариотип, свойственный исходной ткани, свободная от контаминантов и не обладающая туморогенной активностью при трансплантации хомячкам.

Диплоидные культуры клеток, так же как и перевиваемые, получают из первичных культур клеток. Кариотип клеток очень лабилен и при обычных методах культивирования клеток он изменяется в первые дни. Поэтому потребовались специальные методы обработки ткани, высокого качества питательные среды, фетальная сыворотка для длительного поддерживания клеток in vitro в диплоидном состоянии. Эту задачу впервые успешно решили американские ученые Хейфлик и Мурхед (1961).

Диплоидные клетки получены из различных тканей эмбриона человека (легкие, почки, кожно-мышечная ткань, сердце и др.) и животных (почка эмбриона крупного рогатого скота, свиней, ВНК-21 – почка хомяка и др.).

Диплоидные клетки в отличие от перевиваемых имеют ограниченные возможности пассирования. Максимальное число пассажей 50±10, затем количество делящихся клеток резко уменьшается и они гибнут. Однако диплоидные клетки могут быть использованы в течение длительного времени, так как при каждом пассаже часть клеток можно заморозить (минус 196 °С) и при необходимости восстановить.

Диплоидные клетки имеют преимущества перед перевиваемыми и первичными клетками: 10–12 дней они могут быть в жизнеспособном состоянии без смены питательной среды; при смене среды один раз в неделю остаются жизнеспособны в течение 4 нед; особенно пригодны для длительного культивирования вирусов, у них сохранена чувствительность исходной ткани к вирусам.

Суспензионные культуры клеток. В 1953 г. Оуэне с сотр. показали способность клеток размножаться в свободно суспендированном состоянии. В последующие годы этот метод был значительно усовершенствован: была создана современная аппаратура, обеспечивающая размножение клеток со строго заданными параметрами (температура, рН, скорость перемешивания), а также адаптированы многие линии перевиваемых клеток к размножению в этих условиях (ВНК-21, Нер-2, МДВК и др.). Выращивание вирусов в суспензионных культурах клеток открывает большие возможности в промышленном производстве вакцин и диагностикумов. Однако только перевиваемые клетки хорошо культивируются в суспензии.

Новый подход к культивированию клеток в суспензии – применение микроносителей (сефадекс, силикагель, цитолар и др.). На микроносителях культивируемые клетки формируют монослой. Таким образом, этот способ позволяет методами суспензионного культивирования выращивать зависимые от прикрепления к твердому субстрату клетки: первичные, субкультуры, диплоидные. Эти клетки принято называть поверхностно зависимыми.

Способ культивирования на микроносителях (рис. 27) в настоящее время чрезвычайно популярен, так как он открывает большие перспективы в клеточной биотехнологии, в получении вакцин и других биологически активных веществ (интерферон, гормоны и т. д.).

Рисунок 27. Культивирование клеток на микроносителях (схема)

10.2 Хранение культур клеток. Каждый из трех основных типов клеточных культур – первичных культур, диплоидных штаммов и перевиваемых линий клеток, используемых в вирусологических исследованиях, часто приходится консервировать, так как при продолжительном пассировании клеток in vitro есть опасность бактериального загрязнения и неконтролируемых (генетических) изменений самих клеток.

Наиболее простой метод консервирования культур клеток – хранение их при 4 °С до 1–6 нед. Успешно применяют хранение клеточных штаммов в условиях сухого льда (минус 78 °С) и жидкого азота (минус 196 °С). Для этого клетки снимают с матрасов, суспендируют в концентрации 10 6 в 1 мл питательной среды, содержащей в качестве защитных веществ 10–40 % сыворотки и 10 % очищенного стерильного глицерина (вместо глицерина успешно применяют ДМСО – диметилсульфоксид). Затем клеточную суспензию разливают в ампулы, запаивают и выдерживают 1–3 ч при 4 °С, после чего замораживают клетки в смеси этилового спирта с сухим льдом. Скорость охлаждения не должна превышать 1 °С в 1 мин. При снижении температуры до минус 25 °С ампулы помещают для хранения в сухой лед. Если для хранения используют жидкий азот, то ампулы с клетками охлаждают до минус 70 °С и кладут в жидкий азот. Хранение клеток в жидком азот е в течение ряда лет не изменяет их пролиферативную активность и чувствительность к вирусам.

Восстанавливают замороженные клетки следующим образом: ампулу с замороженными клетками быстро погружают в водяную баню на 1–2 мин при легком встряхивании, затем клетки выливают в матрас, добавляют соответствующее количество ростовой среды и культивируют в термостате при 37 °С. Для удаления глицерина или ДМСО питательную среду заменяют на следующий день после посева.

При транспортировке клеток матрасы с выросшим монослоем заливают средой доверху и закрывают резиновой пробкой. В лаборатории питательную среду сливают и используют при культивировании этих клеток в виде добавок к питательной среде, применяемой в данной лаборатории.

Можно транспортировать и клеточную суспензию при 4 °С. При благоприятных условиях транспортировки, исключающих перегревание и замораживание клеток, 80–90 % из них сохраняют жизнеспособность до 7–8 дней.

Работа с культурой клеток требует абсолютной стерильности, тщательной подготовки посуды, соответствующих растворов, питательных сред и высокого качества воды.

10.3 Контаминация культур клеток. Работа с культурами клеток, их использование в вирусологических и других исследованиях, в биотехнологии требуют постоянного контроля на отсутствие посторонних агентов (контаминантов). Контаминантами могут быть вирусы, бактерии, грибы, микоплазмы и клетки других клеточных культур. Микоплазмы – одни из наиболее частых контаминантов, особенно в перевиваемых линиях клеток. Своевременное выявление их, других микроорганизмов или вирусов в культуре клеток – важное условие поддержания высокого качества последней. Паспортизация стабильных клеточных линий предусматривает в качестве необходимого теста контроль на отсутствие микоплазмоконтаминации, что должно стать обязательным для всех лабораторий, где работают с культурами клеток.

Резкое закисление питательной среды в культуральных флаконах и опалесценция ее могут быть следствием контаминации культур клеток микоплазмами. Для выявления последних используют следующие методы: посев на питательные среды, тест-культуры, цитологические, радиоавтографические и электронно-микроскопические.

В случае контаминации клеточные культуры уничтожают, а культивирование возобновляют из резервных расплодок, хранящихся в жидком азоте. Только редкие и уникальные культуры подлежат деконтаминации.

Предупредить размножение и подавить случайно попавшие в клеточную культуру бактерии удается с помощью противомикробных препаратов (антибиотиков и др.), добавляемых в ростовые среды непосредственно перед их использованием. Эти препараты следует строго дозировать и применять дифференцированно. Их использование – необходимое условие при возрастании риска контаминации в процессе получения первичных культур клеток при крупномасштабном суспензионном выращивании клеток, массовом производственном культивировании перевиваемых клеток, а также во всех случаях объединения клеточного материала.

При работе с культурами клеток используют многие антимикробные (нетоксичные) препараты в оптимальных дозах, характер действия которых приведен в таблице 5. Выбор эффективного препарата или комплекса препаратов зависит от чувствительности к ним конкретных контаминантов.

Таблица 5.

Противомикробные препараты для культур клеток (Л. П. Дьяконов и др.)

Наибольшее распространение имеют однослойные культуры клеток, которые можно разделить на первичные (первично трипсинизированные), полуперевиваемые (диплоидные), перевиваемые, трансфецированные.

По происхождению они подразделяются на эмбриональные, опухолевые и из взрослых организмов; по морфогенезу - на фибробластные, эпителиальные и др.

Первичные культуры клеток - это клетки какой-либо ткани человека или животного, способные культивироваться в виде монослоя на пластмассовой или стеклянной поверхности в специальной питательной среде, но не способные к длительному размножению. Срок жизни таких культур ограничен. В каждом конкретном случае их получают из ткани после механического измельчения, обработки протеолитическими ферментами и стандартизации количества клеток. Первичные культуры, полученные из почек обезьян, почек эмбриона человека, амниона человека, куриных эмбрионов, широко используются для выделения и накопления вирусов, а также для производства вирусных вакцин.

Полуперевиваемые (диплоидные ) культуры клеток - клетки одного генотипа, способные in vitro выдерживать до 50-100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные линии фибробластов эмбриона человека используются как для диагностики вирусных инфекций, так и при производстве вирусных вакцин.

Перевиваемые клеточные линии характеризуются бессмертием и гетероплоидным кариотипом. Источником перевиваемых линий могут быть первичные клеточные культуры (например, СОЦ - из сердца обезьяны циномольгус, ПЭС - из почек эмбриона свиньи, ВНК-21 - из почек однодневных сирийских хомяков; ПМС - из почки морской свинки и др.), отдельные клетки которых обнаруживают тенденцию к бесконечному размножению in vitro. Совокупность изменений, приводящих к появлению в клетках таких свойств, называют трансформацией , а клетки перевиваемых тканевых культур - трансформированными .

Другой источник перевиваемых клеточных линий - злокачественные новообразования . В этом случае трансформация клеток происходит in vivo. Получены и наиболее широко в вирусологической практике применяются следующие линии перевиваемых клеток: HeLa - получена из карциномы шейки матки; Hep-2 - из карциномы гортани; Детройт-6 - из метастаза рака легкого в костный мозг; RH - из опухоли почки человека.

Трансфецированные культуры клеток. Разработаны экспериментальные линии культур клеток методом трансфекции (переноса) генов вирусов, контролирующих биосинтез поверхностных антигенов. Такие культуры клеток экспрессируют поверхностный белок определенного вируса (HBs-антиген, gp120 и др.) на мембране клеток культуры. Такие культуры клеток используются с целью изучения иммунологических механизмов патогенеза вирусных инфекций, разработки химиотерапевтических и иммунобиологических препаратов.


Для обеспечения жизнедеятельности культивируемых клеток необходимы питательные среды . По назначению они делятся на ростовые и поддерживающие. В ростовых питательных средах должно содержаться больше питательных веществ, обеспечивающих активное размножение клеток и формирование монослоя. Поддерживающие среды обеспечивают переживание клеток в уже сформированном монослое в период размножения в них вирусов.

Широкое применение находят стандартные синтетические среды, например, синтетическая среда 199 и среда Игла. Независимо от назначения все питательные среды для культур клеток конструируются на основе сбалансированного солевого раствора. Чаще всего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред - сыворотка крови животных (телячья, бычья, лошадиная), без наличия 5-10% которой размножение клеток и формирование монослоя не происходит. В состав поддерживающих сред сыворотка не входит. С целью предотвращения возможного роста микроорганизмов в питательные среды вносят антибиотики.

Извлеченным из организма клеткам можно создать такие условия, при которых они будут жить и размножаться в искусственной среде (in vitro - вне организма, в отличие от in vivo - в организме), образуя культуру клеток. Клеточные культуры можно получать из таких клеток, которые в составе организма потеряли способность к делению, например из лейкоцитов периферической крови. Изучение поведения клеток в культуре помогает понять механизмы контроля деления клеток. Установлено, что в этом контроле главную роль играют клеточные взаимодействия. Наблюдение за клеточными культурами показало, что клетки активно делятся и расползаются по стеклу сосуда, в котором их культивируют до тех пор, пока они не начнут соприкасаться друг с другом. Контакт поверхностей соседних клеток приводит к остановке их движения и одновременно выключает клетки из размножения. Когда клетки плотным слоем покроют всю доступную им поверхность сосуда, деления прекратятся. Некоторое время клетки будут жить, потом в них начнут возникать всевозможные нарушения, и если часть клеток не пересадить в другой сосуд, на новую среду, то культура погибнет. Интересно, что пересев клеток на новую среду не всегда стимулирует клеточное размножение. Клетки, претерпевшие несколько пересевов, со временем не приступают к делению даже на новой среде. Специальные эксперименты показали, что клетки, взятые из тканей взрослых организмов, способны делиться in vitro меньшее число раз, чем клетки, полученные из эмбрионов. Причину этого явления, названного по имени открывшего его ученого феноменом Хейфлика , многие исследователи видят в старении клеток, и в настоящее время клеточные культуры служат объектом изучения механизмов старения на клеточном уровне. Клетки, взятые из раковых опухолей, ведут себя в культуре немного иначе. Контакт поверхностей клеток не останавливает их делений, они продолжают размножаться и культура становится многослойной. Не подчиняются опухолевые клетки и правилу Хейфлика: они могут претерпевать неограниченное число делений. Некоторые клетки в культуре остаются дифференцированными: синтезируют специфические белки, сохраняют морфологические особенности, например опухолевые клетки лимфоидного происхождения. Другие клетки при переносе их в искусственные условия становятся недифференцированными. Изменение условий выращивания иногда приводит к потере, иногда к приобретению свойств дифференцированных клеток. Это позволяет использовать клетки в культуре для изучения механизмов клеточной дифференцировки. Сохранение некоторыми клетками in vitro дифференцированного состояния послужило толчком для создания клеточных культур с практическими целями для получения из них веществ, которые синтезируются этими клетками. Так получают антитела к различным белкам. Можно получать и лекарственные вещества из клеток тех растений, которые плохо выращиваются на плантациях. Клеточные культуры нашли применение и в медицине. Для диагностики наследственных заболеваний иногда необходимо достаточно большое количество клеток организма для того, чтобы можно было провести биохимический анализ. Если диагноз нужно установить у эмбриона человека, то взятие материала на анализ представляет большую проблему. В этом случае на помощь приходит техника клеточных культур: несколько сотен клеток, взятых из ворсинок оболочки зародыша без вреда для него, достаточно, чтобы вырастить большую клеточную массу. Клеточные культуры используют и в вирусологии - для выращивания вирусов и изучения их свойств, а также в фармацевтической и химической промышленностях для исследования повреждающего действия на ДНК и хромосомы вновь синтезированных химических веществ.

I. Культуры клеток

Наибольшее распространение имеют однослойные культуры клеток, которые можно разделить на 1) первичные (первично трипсинизированные), 2) полуперевиваемые (диплоидные) и 3) перевиваемые.

По происхождению они классифицируются на эмбрионштьные, опухолевые и из взрослых организмов; по морфогенезу - на фибробластные, эпителиальные и др.

Первичные культуры клеток - это клетки какой-либо ткани человека или животного, которые имеют способность расти в виде монослоя на пластмассо­вой или стеклянной поверхности, покрытой специальной питательной средой. Срок жизни таких культур ограничен. В каждом конкретном случае их получа­ют из ткани после механического измельчения, обработки протеолитическими ферментами и стандартизации количества клеток. Первичные культуры, полу­ченные из почек обезьян, почек эмбриона человека, амниона человека, куриных эмбрионов, широко используются для выделœения и накопления вирусов, а также для производства вирусных вакцин.

Полуперевиваемые (или диплоидные ) культуры клеток - клетки одного типа, способные in vitro выдерживать до 50-100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные штаммы фибробластов эмбриона человека используются как для диагностики вирусных инфек­ций, так и при производстве вирусных вакцин.

Перевиваемые клеточные линии характеризуются потенциальным бес­смертием и гетероплоидным кариотипом.

Источником перевиваемых линий бывают первичные клеточные культуры (к примеру, СОЦ, ПЭС, ВНК-21 - из почек однодневных сирийских хомяков; ПМС - из почки морской свинки и др.) отдельные клетки которых об­наруживают тенденцию к бесконечному размножению in vitro. Совокупность изменений, приводящих к появлению из клеток таких особенностей, называют трансформацией, а клетки перевиваемых тканевых культур - трансформиро­ванными.

Другим источником перевиваемых клеточных линий являются злокачест­венные новообразования. В этом случае трансформация клеток происходит in vivo. Наиболее часто в вирусологической практике применяются такие линии перевиваемых клеток: HeLa - получена из карциномы шейки матки; Нер-2 - из карциномы гортани; Детройт-6 - из метастаза рака лёгкого в костный мозг; RH - из почки человека.

Для культивирования клеток необходимы питательные среды, которые по своему назначению делятся на ростовые и поддерживающие. В составе росто­вых питательных сред должно содержаться больше питательных веществ, чтобы обеспечить активное размножение клеток для формирования монослоя. Поддерживающие среды должны обеспечивать лишь переживание клеток в уже сформированном монослое при размножении в клетке вирусов.

Широкое применение находят стандартные синтетические среды, напри­мер, синтетическая среда 199 и среда Игла. Независимо от назначения всœе пита­тельные среды для культур клеток конструируются на базе сбалансированно­го солевого раствора. Чаще всœего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред - сыворотка крови животных (телячья, бычья, лошадиная), без наличия 5-10% которой размножение клеток и форми­рование монослоя не происходит. В состав поддерживающих сред сыворотка не входит.

I. Культуры клеток - понятие и виды. Классификация и особенности категории "I. Культуры клеток" 2017, 2018.

  • - III. Радиорелейные средства связи

    II. Беспроводные средства связи I. Проводные средства связи Ø Городскую телефонную связь Ø Прямая телефонная связь (селекторная)Ø Радиотелефонная связь («Алтай») Ø Индуктивная связь (ЭКВ связь «Дистон», «Нальмэс») Ø... .


  • - Расход материалов на 1 км дороги с асфальтобетоном покрытием IV типа

    Таблица 15 Таблица 14 Таблица 13 Таблица 12 Таблица 11 Дороги Движения по сложным процентам в различные годы эксплуатации Величины коэффициентов m, K0, K0m при росте интенсивности Таблица... .


  • - III. Время 90 минут.

    Занятие №5 Тормозная система Тема №8 Механизмы управления По устройству автомобильной техники Проведения группового занятия План – конспект Преподаватель цикла ПОПОН подполковник Федотов С.А. "____"... .


  • - Определение Zmin и Xmin из условия отсутствия подрезания

    Рис.5.9. О подрезании зубьев колёс. Рассмотрим, как связан коэффициент сдвига x рейки с числом зубьев, которое может быть нарезано рейкой на колесе. Пусть рейка установлена в положении 1(рис.5.9.). В этом случае прямая головок рейки пересечёт линию зацепления N-N в т. и... .


  • - Verbos que terminan en –ить, -еть

    Los verbos irregulares Идти - ir Есть - comer Спать - dormir Хотеть - querer Я Иду Ем Сплю Хочу Ты Идёшь Ешь Спишь Хочешь Он, она Идёт Ест Спит Хочет Мы Идём Едим Спим Хотим Вы Идёте Едите Спите Хотите Они Идут...