Глаз как оптический прибор. Редуцированный глаз Редуцированный глаз вербицкого

Остроту зрения рассчитывают по формуле:

где V – острота зрения; d – расстояние от испытуемого до таблицы; D – расстояние, с которого данная строка правильно читается нормальным глазом.

Например, если испытуемый правильно называет буквы, расположенные в 10-й строке (она должна быть правильно читаема нормальным глазом с расстояния 5 м), а сам находится на расстоянии 4 м, то острота его зрения равна:

т.е. ниже нормальной.

Задание: Определить остроту зрения для правого и для ле­вого глаза, а также при бинокулярном зрении.

Поле зрения. Если фиксировать глазом какую-либо точку, ее изобра­жение падает на желтое пятно; в этом случае мы видим точку централь­ным зрением. Точки, изображения которых падают на остальные места сетчатки, видимы периферическим зрением.

Совокупность точек, одновременно видимых глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы по­ля периферического зре­ния производят прибо­ром, называемым пери­метром.



Границы поля зрения для бесцветных предме­тов составляют книзу 70°, кверху 60° и кнаружи 90°. Поля зрения для раз­личных цветов неодина­ковы, больше всего поле зрения для бесцветных предметов. Для синего и желтого цветов поле зрения зна­чительно меньше, для красного - ещё меньше, а для зеленого простирает­ся только на 20 - 30 - 40°.

Зрение обоими глазами (бинокулярное зрение). При рассматривании предмета двумя глазами (рис.135) на сетчатках правого и левого глаз получаются различные изображения. Разница изображений двух точек тем больше, чем дальше расположены одна точка от другой. Однако, несмотря на это, у человека не получается впечатление двух разных предметов, в его пред­ставлении эти два изображения сливаются в одно. В том, что это действительно так, легко убедиться, надавливая слегка на один глаз сбоку; немедленно начинает «двоиться» в глазах, потому что наруши­лось это соответствие сетчаток.

Пространственное зрение. Чрезвычайно важную роль в анализе окружающего нас пространства играют наружные мышцы глазных яблок. Вращение глаза в его орбите совершается с помощью трёх пар мышц. Глаз человека может вращаться вокруг любой оси, проходящей через центр вращения глаза. Глаз из первичного положения, когда он смотрит прямо вперед, может повернуться кнаружи на 42°, внутрь на 45°, вверх на 54° и вниз на 57°.

Отчётливое изображение предметов, находящихся на одинаковом расстоянии от глаз, обеспечивается свободными движениями глазных яблок в разных направлениях. Движения нормальных глаз всегда содружественны, а их зрительные оси направлены на фиксированную ими точку. Это обеспечивает попадание изо

Величина изображения предмета АВ на сетчатке (АВ) (см. рис.121, б ) рассчитывается на основании правила подобия треугольников. Пользуются формулой:

АВ = АВ● α 2 /α 1

где α 2 – расстояние от узловой точки до сетчатки (у взрослого ~ 17 мм, у новорожденного ~ 11 мм); α 1 – расстояние предмета до роговицы глаза плюс расстояние передней поверхности роговицы от узловой точки (у взрослого ~ 7 мм, у новорожденного 5,5 мм).


Когда человек смотрит на далекие предметы, то они видны ясно, если их изображение падает на сетчатку. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато. Это зависит от того, что лучи от ближних точек собираются за сетчаткой, а на ней получаются круги светорассеяния. Видеть одновременно одинаково ясно пред­меты, удаленные от глаза на разное расстояние, невозможно. В этом легко убедиться, читая через марлевую сетку книгу, находящуюся доста­точно далеко от сетки. В этом случае можно ясно видеть либо шрифт книги, либо марлевую сетку, но нельзя видеть их одновременно одина­ково ясно.

Приспособление глаза к ясному видению разноудаленных предметов называется аккомодацией.



Силой аккомодации глаза называется разность оптических сил хрусталика при максимальной аккомодации и ее отсут­ствии. При отсутствии аккомодации (глаз смотрит на бес­конечно удаленную светящуюся точку) параллельные лучи сходятся на сетчатке. При этом фокусное расстояние глаза будет равно расстоянию от сетчатки до точки, называемой узловой точкой глаза (точка О на рис. 121, а). Для среднего (редуцированного) глаза оно равно 17 мм, а соответствующая ему оптическая сила D = 59 дптр.

При далёком расположении предмета и покое аккомодации оптическая сила глаза ~ 60 дптр, при близком расположении (~ 25 см) и пределе напряжения аккомодации 70 – 74 дптр.

Аккомодация осуществляется путем изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря че­му расходящиеся лучи от светящейся точки сходятся на сетчатке.

Левая половина рис. 123 изображает хрусталик при рассматривании далёкого предмета; правая – при рассмотрении близкого предмета, т.е. при аккомодационном усилии. Видна большая выпуклость хрусталика справа.

Гельмгольц показал, что в механизме акко­модации глаза существенная роль принадлежит сокращению цилиарных (ресничных) мышц, которые изменяют выпуклость хрусталика. Хрусталик заключен в капсулу, переходящую по краям в волокна цинновой связки, прикреп­ленной к ресничному телу. Цинновы связки всегда натя­нуты и их натяжение передается капсуле, сжимающей и уплотняющей хрусталик. В ресничном теле находятся гладкие мышечные волокна. При их сокращении наступает ослабление тяги цинновых связок, а зна­чит уменьшение давления на хрусталик, который вследствие своей эла­стичности принимает более выпуклую форму. Таким образом, цилиарные мышцы явля­ются аккомодационными мышцами.


Рис.124. Механизм аккомодации.


Поскольку ближняя точка ясного видения соответствует состоянию хрусталика с наибольшим напряжением мышцы , длительное пребывание в этом состоянии крайне утоми­тельно для глаза. Расстояние, при котором глаз может находиться в аккомодированном состоянии достаточно дли­тельное время, а качество изображения на сетчатке по­лучается хорошим, называется расстоянием наилучшего зрения. Его значение для нормального глаза примерно равно 25 см. Если необходимо рассматривать мелкие де­тали, расстояние между предметом и глазом можно на короткое время уменьшить, оставаясь в пределах области аккомодации глаза.

С возрастом сила аккомодации умень­шается, поэтому ближайшая точка ясного видения отодвигается от глаз. Это происходит потому, что хрусталик с возрастом становится менее эластичным и при ослаблении цинновых связок его выпуклость или не изме­няется, или лишь незначительно увеличивается. Это состояние называ­ется старческой дальнозоркостью. Поэтому пожилые люди отодвигают от глаз книгу, когда читают, или же, если это уже не помогает , исправляют недостаток аккомодации с помощью двояковыпук­лых очков.

§2. Аномалии рефракции глаза. Зрачковый рефлекс. Фотохимические реакции в рецепторах сетчатки . Цветовое зрение.

Существуют две главные аномалии преломления лучей (рефракции) в глазу: близорукость, иначе говоря, миопия, и дальнозоркость - гиперметропия. Эти аномалии обусловлены, как правило, не недостаточностью преломляющих сред, а ненормальной длиной глазного яблока (рис.125).



Близорукость. Если продоль­ная ось глаза слишком длинна, то главный фокус будет нахо­диться не на сетчатке, а перед ней, в стекловидном теле. В этом случае , параллельные лучи сходятся в одну точку не на сетчатке, а где-то ближе нее, а на сетчатке вместо точ­ки возникает круг светорас­сеяния. Такой глаз называет­ся близоруким - миопическим. У близорукого дальняя точка ясного видения придвинется из бесконечности, на ко­нечное (и довольно близкое) расстояние. Близорукость устраняется применением очков с рассеивающими линзами (рис. 126).

Дальнозоркость. Противоположностью близорукости является дальнозоркость - гиперметропия. В дальнозорком глазу продольная ось глаза коротка и поэтому параллельные лучи, идущие от далеких пред­метов, собираются сзади сетчатки. На сетчатке же получается круг све­торассеяния, т. е. неясное, расплывчатое изображение предмета. Этот недостаток рефракции может быть компенсирован путем аккомодацион­ного усилия, т. е. увеличения выпуклости хрусталика. Поэтому дально­зоркий человек напрягает аккомодационную мышцу, смотря не только вблизи, но и вдаль.

У дальнозорких людей ближайшая точка ясного видения отстоит от глаза дальше, тем у лиц с нормальным зрением. Поэтому аккомодаци­онные усилия при рассматривании близких предметов оказываются не­достаточными. В результате для чтения дальнозоркие люди должны на­девать двояковыпуклые очки, усиливающие преломление лучей.










Рис.127. Дальнозоркость и её коррекция.

Гиперметропию не следует смешивать со старческой дальнозоркостью. Эти два недостатка имеют общим только то, что при них необходимо пользоваться двояковыпуклыми очками.

Для коррекции зрения пользуются очками. Формула линзы позволяет рассчитать необходимую оптическую силу линзы очков:

где 1/ f = Dочк – преломляющая сила линзы очков

F расстояние наилучшего зрения нормального глаза (F = 25 см = 0,25 м)

d – расстояние наилучшего зрения глаза пациента.
Примеры:

1. Определить оптическую силу очков, восполняющих недостатки глаза пациента, расстояние наилучшего видения которого 15 см.

Решение: 1/f = 1/F – 1/d = 1/0,25 – 1/0,15 = – 2,67 дптр.

Знак «–» характерен для близорукого глаза.

2.Определить оптическую силу очков, восполняющих недостатки глаза пациента, расстояние наилучшего видения которого 100 см.

Решение: 1/f = 1/F – 1/d = 1/0,25 – 1/1,0 = + 3 дптр.

Знак «+» характерен для дальнозоркого глаза.


Зрачок и зрачковый рефлекс. Зрачком называется отверстие в центре радужной оболочки , через которое проходят все лучи света, попадающие внутрь глаза (рис.128, а). Зрачок способствует четкости изображения предметов на сетчатке, пропуская только центральные лучи и устраняя так называемую сферическую аберрацию.


Рис.128. Зрачок (а), сферическая аберрация (б) и схема иннервации радужной оболочки глаза (в).

Сферическая аберрация состоит в том, что лучи, попавшие на периферические части хрусталика, преломляются сильнее центральных лучей (рис.128, б). Центральные лучи 1-1 собираются в фокусе f3 , лежащем на сетчатке; краевые лучи 2-2 и 3-3 собираются в фокусе f2 - f1, лежащих перед сетчаткой. Вертикальные линии А-А перед хрусталиком изображает радиусную оболочку, не пропускающую красных лучей, что способствует чёткости изображений.

Поэтому, если не устранять периферических лучей, на сетчат­ке должны получаться круги светорассеяния. Мускулатура радужной оболочки способна изменять величину зрачка и тем самым регулировать приток света в глаз. Если прикрыть глаз от света, а затем открыть его: расширившийся при затемнении зрачок быстро суживается. Это сужение происходит рёфлекторно.

На рис.128, в - схема иннер­вации радужной оболоч­ки и ресничной мышцы. В радужной оболочке имеется два вида мышечных волокон, окружаю­щих зрачок: одни - кольцевые, другие - радиальные. Сокращение первых вызывает сужение зрачка, сокращение вторых - его расширение.

Обычно зрачки обоих глаз имеют круглую форму и одинаковый диаметр. Средний диаметр зрачка умень­шается с возрастом.

Реакция на свет . При постоянном внеш­нем освещении количество света, попадаю­щее в глаз за единицу времени, пропорцио­нально площади зрачка. При снижении интенсивности внешнего освещения зрачок рефлекторно расширяется. Если при днев­ном освещении человек закроет глаза на 10-20 с, то зрачок увеличится. Когда же он снова откроет глаза, зрачок сократится. Эту реакцию на свет можно исследовать еще бо­лее детально, если освещать оба глаза по отдельности (рис. 129). Если осветить один глаз, то через 0,3-0,8 с его зрачок сократится (прямая реакция на свет). Сократится также и зрачок неосвещенного глаза (содруже­ственная реакция на свет).




Рис.129. Схема зрачковых рефлексов. Показана прямая и содружественная реакция на свет. Стрелками изображается освещение одного глаза.

Ясно, что реакция на свет является полезным регуляторным механизмом, поскольку при этом в условиях слишком сильного внешнего освещения (на­пример, в яркий солнечный день) умень­шается количество света, падающего на сет­чатку, тогда как при слабом освещении за счет расширения зрачка количество света, падающего на сетчатку, увеличивается. В этой регуляторной цепи с отрицательной обратной связью датчиком являются рецеп­торы сетчатки, а объектом регуляции -диа­метр зрачка. У молодых людей диаметр зрачка может изменяться примерно от 1,5 до 8 мм, что приводит к изменению уровня освещенности сетчатки примерно в 30 раз.

Фотохимические реакции в рецепторах сетчатки. Цветовое зрение.

Во внутренней оболочке глаза расположены зрительные рецепторные клетки – палочки и колбочки.

В палочках сетчатки человека содержится пигмент родопсин , или зрительный пурпур . Родопсин представляет собой высокомолекулярное соединение (молекулярный вес 270 000), состоящее из ретинена – альдегида витамина А и белка опсина . При действии света происходит цикл химических превращений этого вещества. Поглощая свет, ретинен переходит в свой геометрический изомер, характеризующийся тем, что его боковая цепь выпрямляется, а это приводит к нарушению связи ретинена с белком. При этом вначале образуются некоторые промежуточные вещества – люмиродопсин и метародопсин, после чего ретинен отщепляется от опсина. Под влиянием фермента, названного редуктазой ретинена , последний переходит в витамин А , который поступает из наружных члеников палочек в клетки пигментного слоя.

При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого этого процесса необходимо, чтобы сетчатка получала изомер витамина А, из которого образуется ретинен. Если же витамин А в организме отсутствует, образование ретинена из родопсина резко нарушается , что приводит к заболеванию – куриной слепоте. Образование ретинена из витамина А представляет собой окислительный процесс, происходящий при участии ферментной системы.



Способность глаза по разному воспринимать свет различной длины волны называется цветовым зрением. Ещё в конце прошлого века было установлено , что палочки сетчатки являются рецепторами системы монохроматического (черно-белого или серого) зрения, а колбочки – рецепторами системы полихроматического (цветового) зрения.

Наибольшим признанием пользуется трёхкомпонентная теория цветового зрения, предложенная ещё М.В.Ломоносовым, и разработанная в прошлом столетии Юнгом и Гельмгольцем. Согласно этой теории, колбочки сетчатки делятся на три вида и содержат различные светочувствительные вещества. Всякий цвет оказывает действие на все три вида рецепторов, но в различной степени. При изолированном возбуждении колбочек одного вида возникло бы ощущение насыщенного красного, при изолированном возбуждении другого – насыщенного зелёного, а при изолированном возбуждении третьего – насыщенного синего. Если одновременно возбуждаются два вида рецепторов, то возникает ощущение промежуточного цвета. Например, при возбуждении рецепторов зелёного и синего цвета возникает ощущение голубого цвета. При одновременном возбуждении всех видов рецепторов возникает ощущение белого или серого цвета. Таким образом, согласно данной теории, кодирование длины волны света обусловлено наличием фоторецепторов, обладающих избирательной чувствительностью к электромагнитным колебаниям определённой длины волны. Всё многообразие цветовых ощущений обусловлено соотношением количества возбуждаемых рецепторов разных видов.

Практическая работа №16. Реагирование зрачков на свет.

Сажают испытуемого лицом к свету. Через 1-2 мин отмечают ширину его зрачков. После этого проделы­вают следующие наблюдения.

1. Испытуемый закрывает один глаз рукой, на­блюдают за возникающим вслед за этим изменением ширины зрачка открытого глаза.

2. Открывают и наблюдают за изменением ширины зрачков обоих глаз.

3. Закрывают оба глаза на 30-60 с. Открывают глаза, отмечают, что зрачки расширены. Сравнивают степень расширения зрачков при закрытии обоих глаз с той, которая наблюдалась при закрытии одного гла­за. Наблюдают сужение зрачков, которое происходит после открытия глаз.

Сделать вывод о прямой и содружественной рефлекторных реакциях зрачков на свет.


§3. Острота зрения, поле зрения, бинокулярное зрение. Пространственное зрение. Иллюзии восприятия. Глазомер.

Острота зрения. Остроту зрения определяет то наименьшее расстояние между двумя точками, которое глаз может различить.

Мерилом остроты зрения служит угол, который образуется между лучами, идущими от двух точек предмета к глазу, - угол зрения. Чем меньше этот угол, тем выше острота зрения. Чем больше угол зрения, тем больше число деталей на поверхности предмета различимо глазом.



У большинства людей минимальная величина угла зрения составляет 1 (одну минуту). Принято считать этот угол нормой, а остроту зрения глаза, имеющего наименьший угол зрения 1 мин., - единицей остроты зрения.

Острота зрения измеряется при помощи специальных таблиц (рис.133), которые состоят из нескольких рядов букв, фигур или незамкнутых окружностей различной величины. Против каждой строчки стоит число, означающее то расстояние в метрах, с которого нормальный глаз должен различить фигуры этой строчки под углом в 1.

При определении остроты зрения человек должен находиться на расстоянии 5 м от висящей на стене таблицы. Показателем остроты считается та строка с наименьшими по размеру буквами, на которой испытуемый может отличить несколько букв или фигур.

Практическая работа №17. Определение остроты зрения.

Для определения остроты зрения пользуются таб­лицей доктора Сивцева, составленной из 12 строк букв разной величины. Величина букв каждой строки убывает сверху вниз.

Глаз по строению оптически эквивалентен обычной фотокамере . Он имеет систему линз, систему меняющейся апертуры (зрачок) и сетчатку, соответствующую фотопленке.

Собственный индекс преломления воздуха равен 1, роговицы - 1,38, водянистой влаги - 1,33, хрусталика (в среднем) - 1,4 и стекловидного тела - 1,34.
Редуцированный глаз . Если алгебраически сложить все преломляющие поверхности глаза и рассматривать их как одну линзу, оптику глаза можно упростить и схематически представить как редуцированный глаз (это полезно для упрощения расчетов). Считают, что в редуцированном глазу существует одна преломляющая поверхность, ее центральная точка расположена на расстоянии 17 мм впереди сетчатки, а общая преломляющая сила составляет 59 дптр при условии аккомодации хрусталика к фиксации взора на дальнем расстоянии.

Примерно 2/3 из 59 дптр общей преломляющей силы глаза приходится на долю передней поверхности роговицы (не хрусталика глаза). Это связано с тем, что показатель преломления роговицы значительно отличается от этого показателя для воздуха, тогда как индекс преломления хрусталика не очень отличается от индексов для водянистой влаги и стекловидного тела.

Общая преломляющая сила хрусталика глаза , когда он нормально расположен в глазу и окружен со всех сторон жидкостью, составляет только 20 дптр, т.е. на его долю приходится примерно 1/3 от общей преломляющей силы глаза. Но значение хрусталика в том, что под влиянием нервной регуляции его кривизна может значительно увеличиваться, обеспечивая аккомодацию, что обсуждается далее в этой главе.

Формирование изображения на сетчатке . Точно так же, как стеклянная линза фокусирует изображение на листе бумаги, оптическая система глаза фокусирует изображение на сетчатке. Хотя изображение объекта на сетчатке перевернуто, наш разум правильно воспринимает объект, потому что мозг «обучен» рассматривать перевернутое изображение как нормальное.

У детей преломляющая сила хрусталика глаза может увеличиваться от 20 дптр до 34 дптр, т.е. аккомодация составляет примерно 14 дптр. Это происходит в результате изменения формы хрусталика от умеренно выпуклой линзы до очень выпуклой. Механизм аккомодации следующий.

У молодого человека хрусталик состоит из прочной эластичной капсулы, заполненной вязкой белковой, но прозрачной жидкостью. Если капсула не натянута, хрусталик имеет почти сферическую форму. Однако, вокруг хрусталика радиально расположены около 70 подвешивающих связок, которые тянут края хрусталика к внешней орбите глазного яблока. Эти связки прикреплены к передней границе сосудистой оболочки и сетчатки глаза и постоянно натянуты. Натяжение связок ведет к тому, что при нормальных условиях хрусталик остается относительно плоским.

Однако в месте прикрепления связок к глазному яблоку находится ресничная мышца, содержащая два отдельных набора гладкомышечных волокон - меридиональные и циркулярные. Меридиональные волокна идут от периферических концов поддерживающих связок к месту соединения роговицы со склерой. При сокращении этих мышечных волокон периферические участки связок хрусталика в месте их прикрепления смещаются в медиальном направлении, к краям роговицы, при этом снижается степень их натяжения и хрусталик освобождается от их тяги.

Циркулярные волокна располагаются вокруг места прикрепления связок, и при их сокращении осуществляется сфинктерподобное действие, уменьшающее диаметр круга, по периметру которого прикреплены связки; это также ведет к ослаблению натяжения связок и освобождению капсулы хрусталика.

Таким образом, сокращение любого набора гладкомышечных волокон ресничной мышцы снижает натяжение связок и, следовательно, капсулы хрусталика, форма которого благодаря его естественной эластичности приближается к сферической.

Аккомодация регулируется парасимпатическими нервами. Ресничная мышца почти полностью регулируется сигналами парасимпатических нервов, передаваемых к глазу по III паре черепного нерва от его ядра в стволе мозга. Возбуждение этих нервов ведет к сокращению обоих наборов волокон ресничной мышцы, что ослабляет натяжение связок, в результате хрусталик становится толще, и его преломляющая сила увеличивается. Это позволяет глазу фокусировать более близкие объекты, чем при меньшей преломляющей силе. Следовательно, для постоянного четкого фокусирования объекта по мере его приближения к глазу количество парасимпатических импульсов, прибывающих к ресничной мышце, должно постепенно возрастать.

16565 1

Глаз можно сравнить с техническим устройством, предназначенным для передачи изображений — фото- или кинокамерой, передающим устройством телевизионной системы.

Анатомически глазное яблоко человека представляет собой почти правильную сферу диаметром около 25 мм. Оно состоит из трех оболочек — наружной фиброзной, средней сосудистой и внутренней (сетчатки), которые окружают ядро глаза. Оно включает водянистую влагу, хрусталик и стекловидное тело.


В свою очереди, фиброзная оболочка состоит из непрозрачной части — склеры, охватывающей большую часть глазного яблока, и передней прозрачной части — роговицы. Роговица слегка возвышается над уровнем сферы глазного яблока, так как радиус ее кривизны меньше (около 8 мм), чем радиус склеры (около 12 мм).

В сосудистой оболочке выделяют три части: наибольшая по площади, собственно сосудистая, выстилает изнутри примерно 2/3 склеры. Спереди она переходит в более толстое ресничное (цилиарное) тело, а еще дальше кпереди, на уровне перехода склеры в роговицу, в радужку. Она представляет собой лежащую во внутриглазной жидкости круглую мембрану с отверстием в центре — зрачком. Радужка имеет две мышцы, одна из которых расширяет, а другая — сужает зрачок. Внутренняя оболочка глазного яблока— сетчатка — выстилает в виде тонкой пленки всю сосудистую оболочку от заднего полюса глаза до ресничного тела. Она является той оболочкой, на которой изображение формируется и преобразуется в нервный сигнал.

Клетки, в которых свет преобразуется в нервный импульс, называются фоторецепторами. Они бывают двух видов: палочки, которые чувствительны к слабому свету и возбуждаются при низкой освещенности; колбочки, которые чувствительны к перепадам освещенности при высоких ее значениях, обладают высокой разрешающей способностью и способностью воспринимать цвет.

Палочки рассредоточены по всей периферии сетчатки. В центральной ее части, занимающей задний полюс глазного яблока, расположены колбочки. Они заполняют особую зону сетчатки — овал размером примерно 3x2 мм. Эта зона называется желтым пятном. В центре его находится особо чувствительный к перепадам освещенности участок диаметром 0,3 мм — центральная ямка.

Центральная ямка обеспечивает способность к различению мелких деталей видимых предметов, т. е. остроту зрения. Острота зрения измеряется в десятичных дробях 0,1; 0,2...1,0; 1,1; 1,2 и т. д. За норму, соответствующую остроте зрения 1,0, принимается такая различительная способность глаза, при которой две точки видны как раздельные, если угол между лучами, идущими от них в глаз, равен 1".




При этом лучи от двух точек попадают как раз на две колбочки, между которыми расположена еще одна колбочка (невозбужденная). Острота зрения может быть гораздо выше, и это зависит от условий, в которых она исследуется. Но гипотеза двух несмежных колбочек не утратила своей силы.

Если угол между минимально различимыми точками равен 2", то острота зрения равна 0,5, если 10", то 0,1, и т. д. Иначе говоря, острота зрения равна обратной величине предельного угла различения, выраженного в минутах. Острота зрения — основная функция глаза, на которую ориентируются при подборе очков.

Внутренняя часть глазного яблока заполнена прозрачными внутриглазными средами: сегмент между роговицей и радужкой (передняя камера) заполнен водянистой влагой. Непосредственно за радужкой находится эластичное. плотное чечевицеобразное образование — хрусталик. Он подвешен к ресничному телу при помощи густой сети фиброзных тяжей, называемых ресничной (цинновой) связкой. Большая часть глазного яблока, находящаяся за хрусталиком, заполнена студнеобразной массой — стекловидным телом.

Роговица, водянистая влага, хрусталик и стекловидное тело являются преломляющими свет средами. Вместе они образуют оптическую систему глаза.

Наиболее удачное описание оптической системы среднего нормального человеческого глаза принадлежит шведскому оптику Гулльстранду.



F1 — передний главный фокус; F2 — задний главный фокус; f1 — переднее фокусное расстояние; f2 — заднее фокусное расстояние; Н1 и Н2— передняя и задняя главные плоскости; fвп — переднее вершинное (т. е. отсчитанное от вершины роговицы) фокусное расстояние; fвз — заднее вершинное фокусное расстояние


Предложены и более простые схемы оптической системы глаза, в которых имеется только одна преломляющая поверхность — передняя поверхность роговицы — и одна среда — усредненная внутриглазная субстанция. Показатели редуцированного глаза были рассчитаны советским офтальмологом В.К. Вербицким. Его основные характеристики: главная плоскость касается вершины роговицы, радиус кривизны роговицы составляет 6,82 мм, длина переднезадней оси — 23,4 мм, показатель преломления внутриглазной среды — 1,4, общая преломляющая сила глаза — 58,82 дптр.




Все эти характеристики относятся к среднему глазу. В действительности они значительно варьируют. Так, преломляющая сила роговицы колеблется в пределах 38—46 дптр, хрусталика — 15—23 дптр, общая преломляющая сила глаза — 52—71 дптр, длина оси глаза — 19—30 мм.

Как уже говорилось, глаз может быть сравним с прибором для передачи изображений, например с телевизионной передающей камерой — видиконом.


Как и технические оптические камеры, глаз снабжен устройством для наведения объектива на объект — глазодвигательным аппаратом — и регулирования резкости изображений предметов, находящихся на разном расстоянии,— аппаратом аккомодации.

Глазодвигательный аппарат включает наружные мышцы глаза — по 6 мышц в каждом глазу: внутреннюю, наружную, верхнюю и нижнюю прямые, верхнюю и нижнюю косые. Благодаря их согласованной работе глаз постоянно совершает поисковые движения и при появлении в поле зрения какого-либо нового объекта, привлекающего внимание, совершает поворот (скачок) таким образом, чтобы изображение этого объекта попало на центральную ямку.

Редуцированные глаза - встречаются у форм, ведущих паразитический или подземный образ жизни, живущих в пещерах и на больших глубинах, куда не проникает свет, и вообще в подобных условиях. Иногда на ряде близких видов, напр. морского ракообразного Cymonomus, можно проследить постепенную редукцию глаз в зависимости от глубины обитания данного вида. Между позвоночными Р. глаза представляют нам ведущие полупаразитический образ жизни круглоротые рыбы и некоторые пещерные. Между круглоротыми у личинки миноги - Ammocoetes глаз лежит под кожей и лишен склеротики и роговицы, так что двигающие глазом мускулы прикрепляются к слабо развитой сосудистой оболочке. Хрусталик, сохраняющий внутри эмбриональную полость и у взрослой миноги, заполняет громадную часть задней камеры, а впереди лежит полулунное тельце, которое рассматривается, как местное утолщение Десцеметиевой оболочки (membrana Descemetii), выстилающей во вполне развитом глазе заднюю поверхность роговицы. У взрослой миноги кожа над глазом делается прозрачной и животное начинает видеть. У Myxine, нередко проникающей во внутренние органы хозяина, нет уже ни хрусталика, ни радужины, ни глазных мышц и хориоидальная щель сохраняется в течение всей жизни, так что глаз представлен в сущности одним первичным пузырем. У пещерных форм закладываются главнейшие части глаза, т. е. как первичный пузырь, так и вторичный, т. е. хрусталик, причем оба эти зачатка подвергаются упрощению в различной степени у различных форм. Из костистых у Amblyopsis, y которой дегенерация идет далее, чем у других, хрусталик исчезает вовсе, стекловидное тело не развивается, а равно и первичный пузырь, совершенно утерявший связь с мозгом, сохраняется лишь в виде рудиментарного органа без полости внутри и с замкнутым зрачком. Склеротика и некоторые мускулы развиты. У других форм могут отсутствовать склеротика и мускулы, но сохраняться иные части. Вообще, в этом отношении замечается значительное разнообразие (Eigenmann, 1899 и 1902). Между амфибиями ведущие подземный образ жизни безногие Grymnophiona и некоторые пещерные формы представляют различные степени редукции глаза. Большой степени упрощения достигают глаза Proteus и еще большей см. Typhlomolge (Eigenmann, 1900). У них глаз лежит под кожей и представляет собой первичный пузырь с небольшим количеством соединительной ткани, представляющей собой стекловидное тело, и с соединительно-тканной оболочкой кругом, представляющей сосудистую и белковую оболочку. Ни радужины, ни хрусталика, ни глазных мускулов нет. Слои ретины также редуцированы и представляют по степени упрощения значительные индивидуальные колебания. Между рептилиями Р. глаза имеют некоторые ведущие подземный образ жизни змеи (Typhlopidae), a между млекопитающими у крота глаз лежит под кожей, а не в глазнице, имеет небольшую величину, а равно тоже несет в своем строении некоторые второстепенные, правда, черты редукции. У одного вида (Talpa coeca) веки срастаются, а у другого (Т. europaea) такое срастание бывает лишь иногда. Также очень малы глаза (а у некоторых видов тоже срастаются и веки) у слепышей (Spalax) из грызунов. Это же наблюдается и у мадагаскарского крота Chrysochloris, китообразного Platanista и др. Хотя связь между редукцией глаз и образом жизни весьма ясна, однако, было бы слишком поспешно заключать, что последний есть непосредственная причина редукции. По отношению к пещерным животным Гаманн (1896) приходит к заключению, что у них исчезли глаза вовсе не потому, что они живут в темноте, а только в зависимости от этого условия глаза могли исчезнуть без вреда для вида. Возможно даже, что у некоторых форм глаза исчезли еще тогда, когда они жили на поверхности земли. Точно то же рассуждение может быть применено к глубоководным формам. Глаза их редуцировались не потому, что они живут на такой глубине, куда не проникают световые лучи, а только в зависимости от этого условия. Причина же редукции, как и у пещерных форм, вероятно, лежала внутри организма. по-видимому, с наступлением условий, при которых глаза оказываются излишними, они становятся вне поддерживающего на известном уровне орган влияния подбора и вступает в права принцип панмиксии (см.), т. е. безразличного скрещивания и переживания форм, как имеющих тенденцию к нормальному или даже прогрессивному состоянию органа, так и имеющих тенденцию к регрессу органа, и в результате получается ослабление органа, сопровождающееся сильными индивидуальными колебаниями степени его развития.

В. Шимкевич.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Редуцированные глаза" в других словарях:

    ОРГАН - (от греч. organon орудие), определенная совокупность нескольких тканей, обладающая особой функцией. Клетки животного организма, группируясь, образуют анат. единицы более высокого порядка ткани. Последние, соединяясь, в свою очередь дают анат.… …

    Иглокожие представляют собой самостоятельный и весьма своеобразный тип животного мира. По плану своего строения они совершенно не сравнимы ни с какими иными животными и благодаря особенностям своей внешней организации и оригинальной… … Биологическая энциклопедия

    - (Serpentes), подотряд пресмыкающихся отряда чешуйчатых (Squamata). Безногие животные с тонким, сильно удлиненным телом, лишенные подвижных век. Змеи произошли от ящериц, поэтому у них много общих с ними черт, но два очевидных признака позволяют… … Энциклопедия Кольера

    Термин, применяемый по отношению к организму, его органам или частям, обозначающий уменьшение их в размерах или упрощение в строении, связанное с утратой функций, напр., редуцированные тычинки у некоторых растений,… … Геологическая энциклопедия

    Liophloeus tessulatus … Википедия

    Acropyga acutiventris Рабочий муравей Acropyga acutiventris Научная классификация Царство: Животные … Википедия

    - (Dibamus) единственный род одноименного семейства (Dibamidae) чешуйчатых пресмыкающихся подотряда ящериц (см. ЯЩЕРИЦЫ). Род включает шесть видов, распространенных в Индокитае, на индо австралийских и Филиппинских островах, на Новой Гвинее. У… … Энциклопедический словарь

    ИНВОЛЮЦИЯ - (от лат. involutio свертывание), биологическ. ипатологическ. термин, служащий для обозначения явлений обратного развития клеточных элементов, тканей, органов или их частей, а также целых организмов, т. е. для обозначения регрессивных изменений во … Большая медицинская энциклопедия

    - (от Фото... и...метрия (См. …метрия) раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения (См. Оптическое излучение), испускаемого источниками, распространяющегося в различных средах и… …

    Орган восприятия светового раздражения у некоторых беспозвоночных животных (в частности, у головоногих моллюсков), всех позвоночных и у человека. У большинства беспозвоночных функцию Г. несут менее сложные органы зрения, например… … Большая советская энциклопедия