Стволовые клетки. Стволовые клетки про запас

Стволовыми клетками называют клетки-предшественники, из которых образуются при необходимости все другие типы клеток, составляющие различные органы и ткани человека. Термин "стволовая клетка" впервые ввел в 1908 году русский гематолог из Санкт-Петербурга А. Максимов. Значительный объем исследований стволовых клеток проведен биологами А. Фриденштейном и И. Чертковым в России, в 60-х годах прошлого века. Именно они открыли мезенхимальные стволовые клетки (МСК) в костном мозге, обладающие уникальной регенерационной способностью. Отличие эмбриональных и мезенхимальных стволовых клеток заключается в том, что первые могут быть получены на ранней стадии развития эмбриона человека (из внутренней массы бластоцисты - оплодотворенной яйцеклетки - или из зачатков половых органов на самых ранних этапах развития, буквально в первые дни), а вторые встречаются в течение всей жизни человека во всех его органах и тканях. Эмбриональные СК значительно активнее мезенхимальных, обладают более высокой способностью размножения, большим потенциалом дифференцировки. Помимо мезенхимальных СК выделяют еще гемопоэтические клетки - предшественники клеток крови. Они встречаются в кровеносном русле в отличие от мезенхимальных, которые в крови циркулируют только при серьезных повреждениях организма.

Стволовые клетки способны восстанавливать кроветворение у облученных животных (радиозащитное действие), длительно поддерживать кроветворение и образовывать колониеобразующие единицы селезенки (двенадцатидневные селезеночные колонии), дающие начало гранулоцитарным, моноцитарным, эритроидным, мегакариоцитарным и лимфоидным колониям. Все клетки гемопоэтического происхождения образуются из примитивных стволовая кроветворная клеток (пСКК), локализованных в костном мозге и дающих начало клеткам четырех основных направлений дифференцировки:

эритроидного (эритроциты),

мегакариоцитарного (тромбоциты),

миелоидного (гранулоциты и моноядерные фагоциты)

лимфоидного (лимфоциты).

Дивергенция общего стволового элемента происходит на самом раннем этапе костномозговой дифференцировки.

Антигенпрезентирующие клетки в основном, но не исключительно, развиваются из миелоидных клеток-предшественников.

Клетки миелоидного и лимфоидного ряда наиболее важны для функционирования иммунной системы.

Лимфопоэтическая своловая клетка определяет две самостоятельные линии развития, приводящие к образованию Т-клеток и В-клеток.

Первая образующаяся из ГСК клетка-предшественник представляет собой колониеобразующуюся единицу (КОЕ) , которая определяет линии развития, приводящие к образованию гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Созревание этих клеток происходит под влиянием колониестимулирующих факторов (КСФ) и ряда интерлейкинов, в том числе ИЛ-1, ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6. Все они играют важную роль в положительной регуляции (стимуляции) гемопоэза и продуцируются, главным образом, стромальными клетками костного мозга, но также и зрелыми формами дифференцированных миелоидных и лимфоидных клеток. Другие цитокины (например, ТРФ-бета) могут осуществлять понижающую регуляцию (подавление) гемопоэза).

У всех клеток как лимфоидного, так и миелоидного ряда время жизни ограничено, и все они непрерывно образуются.

У млекопитающих в период внутриутробного развития ГСК присутствуют в желточном мешке, печени, селезенке и костном мозге. Во взрослом организме гемопоэтические стволовые клетки находятся в основном в костном мозге, где они в норме довольно редко делятся, производя новые стволовые клетки (самообновление). Животное можно спасти от последствий облучения в летальных дозах введением клеток костного мозга, которые заселяют его лимфоидную и миелоидную ткани.

Плюрипотентные стволовые клетки дают начало коммитированным клеткам-предшественницам, которые уже необратимо определились как предки кровяных клеток одного или нескольких типов. Полагают, что коммитированные клетки делятся быстро, но ограниченное число раз, при этом делятся они под воздействием факторов микроокружения: соседних клеток и растворимых или мембраносвязанных цитокинов. В конце такой серии делений клетки эти становятся терминально дифференцированными, обычно больше не делятся и погибают через несколько дней или недель. Плюрипотентные стволовые клетки малочисленны, их трудно распознавать, и все еще неясно, как они выбирают свой путь среди разных вариантов развития. Программирование клеточных делений и выведение клеток на определенный путь дифференцировки (коммитирование), видимо, включают в себя и случайные события. Стволовая клетка плюрипотентна, т.к. дает начало многим видам терминально дифференцированных клеток. Что касается клеток крови, то эксперименты показывают, что все классы клеток крови - и миелоидных и лимфоидных - происходят от общей гемопоэтической стволовой клетки.

Гемопоэтическая стволовая клетка развивается следующим образом. У эмбриона гемопоэз начинается в желточном мешке, но по мере развития эта функция переходит к печени плода и, наконец, к костному мозгу, где и продолжается в течение всей жизни. Гемопоэтическая стволовая клетка, дающая начало всем элементам крови, плюрипотентна и заселяет другие гемо - и лимфопоэтические органы и самовоспроизводится, превращаясь в новые стволовые клетки. Животное можно спасти от последствий облучения в летальных дозах введением клеток костного мозга, которые заселяют его лимфоидную и миелоидную ткани.

Во взрослом организме гемопоэтические стволовые клетки находятся главным образом в костном мозге, где они в норме довольно редко делятся, производя новые стволовые клетки (самообновление).

Клетку-предшественницу, дающую в культуре клеток начало колонии эритроцитов, называют колониеобразующей единицей эритроидного ряда, или КОЕ-Э, и она дает начало зрелым эритроцитам после шести или даже меньшего числа циклов деления. КОЕ-Э еще не содержит гемоглобин.

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период

и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови. Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранулоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито - и иммуноцитопоэзом.

Эмбриональный гемопоэз.

В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга:

1) мезобластический, когда начинается развитие клеток крови во внезародышевых органах - мезенхиме стенки желточного мешка, хориона и стебля (с 3-й по 9-ю неделю развития зародыша человека) и появляется первая генерация стволовых клеток крови (СКК);

2) печеночный, который начинается в печени с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК.

Кроветворение в печени достигает максимума через 5 месяцев и завершается перед рождением. СКК печени заселяют тимус (здесь, начиная с 7-8-й недели, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й недели) и лимфатические узлы (гемопоэз отмечается с 10-й недели);

3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й недели эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируется в первичные клетки крови (бласты), крупные клетки с базофильной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки. Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем оксифилъные эритробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие). Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоциты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека. Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов - нейтрофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируются гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе . Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 1-8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах . Первые закладки лимфатических узлов человека появляются на 7-8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9-10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов. Появление единичных лимфоцитов происходит уже в течение 8-15-й недели развития, однако массовое "заселение" лимфатических узлов предшественниками Т - и В-лимфоцитов начинается с 16-й недели, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лимфобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т - и В-лимфоцитов происходит в Т - и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.

Постэмбриональный гемопоэз. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток.

Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей.

Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов.

В миелоидной ткани находятся стволовые клетки крови и соединительной ткани.

Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т - и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии - клетки ретикулярной ткани и гемопоэтические.

Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом (матрикс) формируют микроокружение для

гемопоэтических элементов. Структуры микроокружения и гемопоэтические

клетки функционируют в неразрывной связи. Микроокружение оказывает

воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

Для миелоидной и всех разновидностей лимфоидной ткани характерно

наличие стромальных ретикулярных и гемопоэтических элементов,

образующих единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпителиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т - и В-зонах Т - и В-лимфоцитов и плазмоцитов.

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в.А. А. Максимов, который считал, что по своей морфологии они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода колониеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С).

Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток, из селезенки - 3,5 клетки, среди лейкоцитов крови - 1,4 клетки.

Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет считать, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке - родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнице лимфопоэза (КОЕ-Л). Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки.

Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественницы для В-лимфоцитов и соответственно для Т - лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмена: I - стволовые клетки крови (плюрипотентные, полипоте нтные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественницы происходит образование конкретного вида клеток. Созревание каждого вида клеток проходит ряд стадий, которые в совокупности образуют компартмент созревающих клеток (V).

Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать.

Рис.18. Постэмбриональный гемопоэз, окраска азур 11-эозином (схема по НАЮриной). Стадии дифферениировки крови: I-IV - морфологически неидентифицируемые клетки; V - VI - морфологически идентифицируемые клетки. Б - базофил; БОЕ - бурстобраэуюшая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующ! единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лек - mt фоидная стволовая клетка; М - моноцит; Мет - мегакариошгг; Эо - эозинофил; Э - эритроцит.

Рис. 19.

А - сегментоядерный нейтрофильный гранулоцит; Б - эозинофильный (ацидофильный) гранулоиит; В - базофильный фанулоцит: 1 - сегменты ядра; 2 - тельце полового хроматина; 3 - первичные (азурофильные) гранулоциты; 4 - вторичные (специфические) гранулы; 5 - зрелые специфические гранулы эозинофила, содержащие кристаллоиды; б - гранулы базофила различной величины и плотности; 7 - периферическая зона, не содержащая органелл; 8 - микроворсинки и псевдоподии.

Рис. 20. Эмбриональный гемоппэп (по А.А. Максимову).

А - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - меэенхималыгые клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотическос деление бластов; Б - поперечный срез кровяного островка зародыша кролика S"/j сут: I - полость сосуда; 2 - эндотелий; 3 - интраваскулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы. В - развитие вторичны); эритробластов в сосуде зародыша кролика 13"Д сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - оксифильные эритробласты (нормобласты); 6 - оксифильный эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного эритробласта (нормобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит. Г - кроветворение в костном мозге зародыша человека с длиной тела 77 мм. Экстра во скул я рное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эоэинофильный миелоцит.

Представляют собой незрелые (недифференцированные) структуры. Из стволовых клеток в процессе дозревания могут формироваться более зрелые клетки различных тканей. Это зависит от того, какие биологически активные соединения (факторы роста) оказывают на них влияние, а также от наличия рядом другихорганов и тканей.

Эти особенности стволовых клеток дали возможность их использования в медицине. Наиболее широкое распространение они получили в трансплантологии.

Свойства стволовых клеток

За счет того, что стволовые клетки являются недифференцированными структурами, они обладают рядом определенных свойств, к которым относятся:

  • Полипотентность - основное свойство данных клеток, благодаря которому они получили широкое применение в практической медицине. Данное свойство обуславливает возможность дифференцировки стволовых клеток в практически любую ткань, что зависит от их окружения.
  • Неограниченная пролиферация - стволовые клетки обладают способностью к делению на искусственных питательных средах без дозревания. Это позволяетискусственно увеличивать их количество в лабораторных условиях.
  • Длительный период жизни -клетки могут длительный период времени сохранять свою жизнеспособность.

Все эти свойства стволовых клеток дают возможность активно применять их в трансплантологии для получения тканей, подлежащих пересадке.

Виды стволовых клеток

В зависимости от того, где стволовые клетки были взяты, а также от степени их зрелости, выделяют несколько их типов:

  • Эмбриональные клетки - берутся из эмбриобласта зародыша еще до имплантации эмбриона в слизистую оболочку матки. Они обладают наименьшей зрелостью, поэтому могут давать начало любой ткани организма человека.
  • Фетальные клетки - находятся в организме плода, их получают после выполненного по медицинским показаниям аборта или из пуповинной крови. Они обладают меньшей потентностью, поэтому могут дифференцироваться не во все ткани.
  • Постанатальные клетки - данные структуры находятся в организме человека после рождения. В зависимости от их локализации выделяются гемопоэтические (дают начало клеткам крови), стромальные (предшественники соединительной ткани) и тканеспецифические (обладают наименьшей потентностью, находятся практически во всех тканях организма человека) клетки.

В трансплантологии могут использоваться различные типы стволовых клеток, что зависит от тканей или органа, которые требуют пересадки.

Основные направления применения стволовых клеток

Основной целью использования стволовых клеток в различных областях медицины является замещение поврежденных тканей (трансплантация), которая включает несколько направлений:

  • Матриксиндуцированный хондрогенез для восстановления хрящей суставной поверхности
  • Получение («выращивание») сетчатки глаза для имплантации в офтальмологии
  • Восстановление нервов
  • Трансплантация сосудов
  • Получение структур бронхолегочной системы на специальном матриксе с последующей имплантацией

Перспективными являются направления трансплантации «выращенных» частей почек и других органов мочевыделительной системы, а также желез внутренней секреции.

Все виды медицинских программ бронируйте на

Booking Health - это международный интернет-портал, где можно изучить информацию о ведущих мировых клиниках и забронировать медицинскую программу в режиме онлайн. Благодаря продуманной структуре и доступному изложению информации, сайтом с легкостью пользуются тысячи людей без медицинского образования. На портале представлены программы по всем основным направлениям медицины. Прежде всего, это диагностические программы, или чек-ап. Также это полный спектр программ лечения, от консервативной терапии до специальных хирургических вмешательств. Программы реабилитации закрепляют результаты проведенного лечения или используются самостоятельно. Интернет-портал Booking Health дает возможность сравнить квалификацию специалистов, методики лечения и стоимость медицинской помощи в разных клиниках. Пациент выбирает наиболее подходящий для него вариант самостоятельно или после бесплатной консультации доктора Booking Health.

Кандидат физико-математических наук Е. ЛОЗОВСКАЯ.

Кровь, оставшаяся внутри пуповины, содержит ценнейшие стволовые клетки, которые можно использовать для лечения многих заболеваний.

Перед закладкой на хранение кровь освобождают от балластных фракций - эритроцитов и зрелых лейкоцитов, чтобы получить максимально обогащенный концентрат стволовых клеток.

Пробирки с подготовленными образцами пуповинной крови погружают в жидкий азот.

Со стволовыми клетками - родоначальницами всех клеток организма - связаны многие надежды медицины. Эти клетки, не имеющие выраженной специализации, способны многократно делиться и созревать, превращаясь в компоненты крови и клеточные элементы самых разных тканей - от мышечной и хрящевой до жировой и нейрональной.

В организме взрослого человека стволовых клеток немного и с возрастом становится еще меньше. Больше всего их в костном мозге, и именно с трансплантации костного мозга начинается история успешного применения стволовых клеток в медицине.

Впервые пересадку костного мозга пациенту с лейкемией провел американский врач Дон Томас в 1969 году, за что в 1990-м был удостоен Нобелевской премии. Фактически при такой процедуре происходит замена всех элементов кроветворной системы: собственные кроветворные клетки больного уничтожаются химическими или радиационными средствами, а гемопоэтические (кроветворные) стволовые клетки, содержащиеся в пересаженном костном мозге, дают начало новым здоровым элементам крови. С тех пор этот метод лечения лейкозов получил широкое распространение.

Технология трансплантации хорошо отработана. Сегодня главная задача - найти донора, чьи клетки будут совместимы с организмом пациента. В США и других развитых странах существует целая армия доноров - 6-7 миллионов здоровых людей, которые прошли специальное обследование и согласились в случае необходимости отдать часть своего костного мозга тому, кто будет в этом нуждаться. Но даже при наличии такого огромного числа потенциальных доноров подобрать совместимый костный мозг непросто, и значительная часть больных лейкозом умирает, так и не дождавшись трансплантации.

Вполне правомерный вопрос: есть ли альтернатива пересадке костного мозга? Стволовые клетки, пригодные для клинического использования, можно получать, например, из жира, удаляемого при липосакции, или из крови пациента, а также из крови, остающейся после родов внутри пуповины и плаценты. Именно пуповинную кровь специалисты считают наиболее удобным, безопасным, можно даже сказать, универсальным источником стволовых клеток.

В Институте экспериментальной кардиологии Российского кардиологического научно-производственного комплекса исследование клеток пуповинной крови проводится уже несколько лет. Директор института, член-корреспондент РАН Владимир Николаевич Смирнов убежден, что пуповинная кровь - материал уникальный и очень перспективный для клеточной терапии.

Концентрация стволовых клеток в пуповинной крови несколько ниже, чем в костном мозге, но зато это клетки новорожденного - молодые, не исчерпавшие своего потенциала. А потому они быстрее приживаются, более активно начинают восстанавливать систему кроветворения. У них очень высокая способность к размножению и дифференцировке (превращению в клетки других видов), причем разнонаправ ленной. Среди стволовых клеток пуповинной крови много так называемых наивных Т-лимфоцитов, то есть "необученных", проще говоря, еще не знающих, против чего им бороться. Такие клетки при введении в организм не должны вызывать отторжения. Поэтому трансплантацию пуповинной крови можно проводить и при частичной тканевой несовместимости.

Использование стволовых клеток пуповинной крови не вызывает никаких этических возражений, но это не единственное их преимущество перед эмбриональными клетками. Дело в том, что пуповинные клетки - отнюдь не "младенцы". "Эмбриональные и взрослые клетки отличаются набором рецепторов на внешней мембране, то есть "говорят" на разных языках, - поясняет В. Н. Смирнов. - Эмбриональ ные клетки, образно говоря, первоклашки, а пуповинные - уже взрослые, студенты. И задачи у них разные: взрослые клетки обеспечивают функционирование системы, а эмбриональные эту систему создают. Можно провести такое сравнение: клетки эмбриональные - те, кто строит дом, взрослые - те, кто его эксплуатирует". Неспособность эмбриональных клеток понимать сигналы взрослого окружения может привести к тому, что их развитие пойдет по неправильному пути и образуется опухоль. С клетками пуповинной крови этот риск гораздо меньше.

Стволовые клетки условно разделяют на гемопоэтические и мезенхимальные - те, что дают начало соединительной ткани, сосудам, гладким мышцам. Основную массу стволовых клеток пуповинной крови составляют гемопоэтические клетки. Но есть там и клетки - предшественники эндотелия, способные формировать стенки сосудов и капилляров.

Недавно в исследованиях, которые провел доктор биологических наук Юрий Аскольдович Романов, установлено, что в стенке пуповины, в так называемом Вартоновом геле, тоже имеются стволовые клетки. И что особенно интересно - эти клетки обладают спонтанной способностью превращаться в нейроны. Некоторое количество клеток с нейрональной ориентацией есть и в самой пуповинной крови.

"Давайте немного пофантазируем, - предлагает В. Н. Смирнов. - Если смешать клетки-предшественницы кровеносных сосудов и клетки, которые почти готовы стать нейронами, то получится очень подходящая смесь для лечения инсультов. Ведь при инсультах, во-первых, нужно восстановить кровоток вокруг места повреждения - гематомы, а во-вторых, воссоздать нейроны, чтобы поддержать функции мозга. В модельных экспериментах на животных показано, что процесс восстановления идет, даже если вводить просто пуповинную кровь, а не смесь стволовых клеток".

Способность стволовых клеток пуповинной крови превращаться в нейроны подтверждает успешный клинический эксперимент южнокорейских ученых, сообщение о котором появилось в конце ноября 2004 года. Тридцатисемилетняя женщина, которая из-за травмы позвоночника в течение 19 лет была прикована к инвалидному креслу, вновь обрела возможность ходить. Восстановить поврежденный участок спинного мозга пациентки удалось благодаря пересадке стволовых клеток, выделенных из пуповинной крови.

Мезенхимальные клетки обладают крайне важным свойством - они подавляют реакцию иммунной системы на свое присутствие. Если в культуре смешать мезенхимальные клетки и Т-лимфоциты, то последние потеряют часть рецепторов иммунной системы и перестанут отвечать на присутствие "чужака". Поэтому есть шанс использовать для лечения не только собственные стволовые клетки, но и чужие (аллогенные), не добиваясь полной совместимости. "Такой подход наиболее перспективен для лечения органов, которые отделены от организма внутренним барьером, - считает Владимир Николаевич Смирнов. - Это, прежде всего, мозг, защищенный гематоэнцефалическим барьером, а также суставные хрящи. Суставная сумка достаточно хорошо изолирована от окружающих тканей, а значит, иммунная система там не всевластна. И это позволяет надеяться, что для восстановления хряща могут подойти чужие мезенхимальные стволовые клетки. Не исключено, что это можно будет делать достаточно просто - путем инъекций в суставную сумку. А если удастся наладить технологию выращивания таких клеток в культуре, то из образца, взятого от одного донора, можно будет производить материал для лечения десятков пациентов. Как только появляется возможность вводить чужие клетки, не требующие специального подбора, получается препарат - как лекарство в аптеке".

Сейчас стволовые клетки пуповинной крови применяют для лечения более чем сорока заболеваний. Это не только лейкозы, но и некоторые болезни обмена, в том числе те, которые считаются несовместимыми с жизнью и приводят к смерти ребенка в раннем возрасте.

Процедура получения стволовых клеток пуповинной крови достаточно проста и безопасна для матери и ребенка. Во время родов пуповину пережимают специальными зажимами, и оставшаяся внутри кровь (ее объем составляет примерно 60-80 мл) стекает в шприц. Эту кровь в стерильных контейнерах доставляют в специализированную лабораторию, где образец подготавливают к замораживанию. В процессе подготовки из крови удаляют балластные элементы - эритроциты, зрелые лейкоциты, избыток плазмы. Параллельно проводят биохимические исследования, определяют характеристики, от которых зависит совместимость клеток при трансплантации. Кроме того, проверяют, не заражена ли кровь бактериями или вирусами. До окончания такого обследования замороженные образцы держат на "карантине", отдельно от остальных. Современные криогенные технологии позволяют сохранять клетки при низкой температуре практически неограниченное время. Уже доказано, что более 95% клеток остаются жизнеспособными после 15 лет хранения в жидком азоте при температуре -196оС.

Первый банк для хранения пуповинной крови был организован в Нью-Йорке десять с небольшим лет назад. Сейчас в мире насчитывается около сотни банков (только в США их более 30), в которых хранится более 400 тысяч образцов. Значительная часть этих банков именные, принимающие на хранение пуповинную кровь конкретного ребенка. Такой "банковский вклад" можно считать персональной биологической страховкой на случай, если самому ребенку либо его ближайшим родственникам: брату, сестре, родителям - понадобятся стволовые клетки для пересадки. Услуга эта платная, и именной образец пуповинной крови - собственность родителей малыша.

В дополнение к именным банкам в США и других странах организуются банки-регистры клеток пуповинной крови, которые пополняются за счет безвозмездного донорства. Национальные банки-регистры необходимы, прежде всего, для того, чтобы найти замену донорам костного мозга. При наличии примерно полумиллиона безымянных образцов, полностью обследованных, проверенных, оттипированных, можно будет помогать практически любому пациенту, уже не забирая костный мозг у доноров, а извлекая соответствующий образец из хранилища, что неизмеримо проще. В США ежегодно происходит примерно 4 миллиона родов, что дает возможность собрать полмиллиона образцов в обозримый период. Для этих целей из американского бюджета выделяется по 1000 долларов на каждый образец. И теперь задача американских врачей - убеждать родителей, которые не хотят сдавать именной образец для своего ребенка, разрешить использовать пуповинную кровь безымянно, с тем чтобы она помогла кому-то другому.

В России первый банк, принимающий на хранение именные образцы пуповинной крови, появился в 2002 году на базе Научного центра акушерства, гинекологии и перинатологии Российской академии медицинских наук. Сейчас организовано еще несколько таких банков.

"Нашей стране необходима государственная программа по созданию национального регистра стволовых клеток, аналогичная той, что проводится в США, - считает Владимир Николаевич Смирнов. - Для того чтобы банк - не именной, а безымянный - имел практическое значение, нужно по крайней мере 30 тысяч образцов. Тогда вероятность нахождения подходящих по всем параметрам стволовых клеток будет достаточно высокой, чтобы реально помогать значительному числу больных. Учитывая, что только в Москве происходит от 80 до 110 тысяч родов в год, за несколько лет вполне можно собрать необходимое количество образцов пуповинной крови. Если мы этого не сделаем, нам придется покупать такую кровь за рубежом и платить по 20-25 тысяч долларов за порцию - почти столько же, сколько за костный мозг, взятый у донора. Среднему гражданину России это не по карману".

На сегодняшний день в мировой клинической практике насчитывается уже более трех тысяч случаев трансплантации пуповинных стволовых клеток вместо клеток костного мозга. До последнего времени пуповинную кровь использовали главным образом для лечения детей. Для пересадки взрослому человеку такого количества стволовых клеток, которое содержится в порции крови, извлекаемой из одной пуповины, не всегда достаточно. Но оказалось, что, если подобрать два или даже три близких по типу образца, их можно смешать и ввести взрослому человеку. Это сразу расширяет поле применения стволовых клеток пуповинной крови.

Один из вдохновителей и горячих сторонников идеи создания банков пуповинной крови в России - член-корреспондент РАМН Валерий Григорьевич Савченко. В Гематологическом научном центре Российской академии медицинских наук, где он руководит отделением трансплантации костного мозга, пересадкой стволовых клеток занимаются более 20 лет.

"В России практически нет доноров костного мозга, - говорит он. - Поэтому сейчас, когда появилась технологическая возможность использовать клетки пуповинной крови для лечения не только детей, но и взрослых, надо это делать. Больные лейкозом - заложники биологии; часть популяции неизбежно подвержена подобным заболеваниям, и на месте этих людей может оказаться любой из нас. Современная медицина дает пациентам шанс выжить, и нельзя их лишать этого шанса. Пуповинная кровь - реальная альтернатива костному мозгу, поэтому нужно создавать и всячески поддерживать банки для ее хранения. Как только будет накоплено большое количество образцов, произойдет качественный скачок".

Вероятность того, что замороженные клетки понадобятся тому самому ребенку, из пуповины которого они получены, довольно низка. А вот для безымянных образцов она, напротив, высока, особенно, если считать не только лейкозы, которые лечат при помощи стволовых клеток уже сейчас, но и прибавить возможность потенциального применения - в кардиологии и онкологии. Пока что накопленная статистика по банкам стволовых клеток показывает, что в среднем востребованным оказывается каждый тысячный образец.

Применение стволовых клеток возможно на основе только хорошо отработанных технологий, эффективность которых доказана и подтверждена лицензией. "Лечение стволовыми клетками не такой простой вопрос, как кажется, - поясняет Валерий Григорьевич Савченко. - Например, при лечении лейкозов, прежде чем ввести донорские стволовые клетки, нужно освободить для них место, то есть уничтожить прежнее клеточное население - и больные клетки, и здоровые. И только потом, в "пустые квартиры", можно заселять новых "законопослушных" жильцов. Кроме того, пересаженным клеткам надо создать подходящие условия для роста, близкие к естественным. В противном случае либо начнется реакция отторжения, либо клетки станут размножаться неконтролируемо, формируя опухоль. К стволовым клеткам надо относиться, как к инструменту, с помощью которого можно создать "биологические костыли" и тем самым продлить жизнь больному. Например, очень перспективный метод лечения инсультов с помощью пуповинной крови, который пока опробован только на крысах, - это тоже не более чем попытка создать временный биологический протез, что-то вроде проволочного "жучка", которым заменяют перегоревшие пробки. Нейроны, образовавшиеся из донорских стволовых клеток, не сделают человека умнее, но свою электрическую функцию они выполнят. А это позволит пациенту начать двигаться, избежать потери мышечной массы и пролежней. Ведь при инсульте значительная часть пациентов умирает именно от последствий гиподинамии".

"Широко рекламируемые методики омоложения с помощью стволовых клеток к медицине никакого отношения не имеют, - подчеркивает Валерий Григорьевич. - Это миф, основанный на невежестве. Увлечение им пройдет, как прошло увлечение Чумаком и Кашпировским. К сожалению, мифы отвлекают общество от насущных проблем медицины. Есть реальные технологии (и трансплантация клеток пуповинной крови - одна из них), которые нужно развивать и тиражировать в регионах. Более того, технологии лечения серьезных заболеваний, например онкологических, следует рассматривать как национальное достояние. Вложение денег в медицину дает большую выгоду, но не в сиюминутном масштабе, а в долговременной перспективе".

В наши дни получила широкое распространение методика пересадки стволовых клеток с целью лечения серьезных патологий. В частности, незрелые гемопоэтические клетки используются для восстановления кроветворной функции у пациентов с лейкозом и лимфомами. Первая успешная трансплантация была осуществлена еще в 1988 году. Ребенку, страдающему анемией, были введены клетки, взятые из пуповинной крови, и это позволило добиться полного исцеления.

Стволовые клетки – это незрелые клетки, которые обладают способностью к самообновлению, а также дифференциации. Суть самообновления заключается в том, что после митотического деления данные клетки сохраняют свой фенотип, т. е. дифференцировки не происходит. Дифференциация - это трансформация в специфические клетки самых разных тканей и органов.

Стволовые клетки характеризуются удивительной способностью к асимметричному делению, после которого одна из новых клеток остается стволовой, а другая становится дифференцированной.

Обратите внимание: развитие организма начинается с одной стволовой клетки – зиготы. В ходе многократного деления и дифференциации формируются все остальные типы клеток, характерные для конкретного биологического вида. В частности, у человека и приматов насчитывается более 220 типов клеток.

Стволовые клетки являются универсальным «строительным материалом» для тканей организма. Они содержат всю генетическую информацию. Благодаря незрелым клеточным элементам в организме осуществляются процессы регенерации. По мере старения количество недифференцированных клеток неуклонно снижается. Если у плода (эмбриона) имеется 1 стволовая клетка на каждые 10 тысяч дифференцированных, то к 60 годам соотношение многократно меняется, падая до 1 к 8 миллионам. Именно по этой причине поврежденные ткани значительно медленнее регенерируют у пожилых пациентов.

Обратите внимание: для сохранения такого уникального биологического материала, как кровь из пуповины, в ряде государств созданы специальные банки. Результаты многолетних исследований позволяют предполагать, что уже в скором времени универсальные незрелые клетки помогут справиться с тяжелейшими патологиями, которые сейчас не лечатся ни медикаментозно, ни хирургически.

Важно: лучшим источником для получения стволовых клеток служит кровь, полученная из пуповины сразу после появления ребенка на свет. Данные клетки также присутствуют в плаценте и эмбриональных тканях. У взрослого человека такие клеточные элементы есть в костном мозге.

К настоящему моменту времени исследователям удалось выделить следующие виды стволовых клеток:

  • гемопоэтические;
  • эндотелиальные;
  • нервные;
  • стволовые клетки миокарда;
  • кожные;
  • мезенхимные;
  • мышечные;
  • клетки кишечника;
  • эмбриональные.

Очень большое количество незрелых клеток можно получить из крови, взятой из пупочной вены. Уникальный биоматериал сохраняется в специальном банке при температуре -196 °C (в жидком азоте). Он может быть использован при необходимости восстановления практически всех вдов тканей человеческого организма. Банки заключают с родственниками родившегося ребенка договор о хранении биодепозита в течение 18-20 лет. Все это время материал сохраняет полную активность.

Обратите внимание: в плаценте недифференцированных клеток на порядок больше, чем в пуповинной крови. Однако для хранения биологического материала такого рода требуются особые условия, что связано с огромными материальными затратами.

Гемопоэтические клетки из пуповинной крови, имеют следующие преимущества:

  • материал получают легко и совершенно безболезненно;
  • биоматериал инфекционно безопасен;
  • трансплантация возможна в любое время;
  • клетки подходят для пересадки близким родственникам (идеальная биологическая совместимость);
  • возможна трансплантация другим пациентам (при условии отсутствия конфликта по антигенам).

Важно: применение данного биологического материала, равно как и его утилизация не приводят к возникновению проблем этического и юридического характера.

Источником стволовых клеток у взрослого человека служит красный костный мозг. Стромальные элементы получают посредством пункции. В специальной лаборатории из них выращивают целые колонии, которые затем трансплантируют пациенту. Попав в организм, они мигрируют в зону поражения, где заменяют погибшие высокодифференцированные элементы.

Важно: стволовые клетки у взрослых характеризуются относительно низкой функциональной активностью, если сравнивать их с эмбриональным материалом. К тому же, стромальные клетки можно трансплантировать только самому человеку, из костного мозга которого они получены; в противном случае практически неизбежно развивается реакция отторжения.

НСК обнаружены в отдельных участках головного мозга еще созревающего или уже окончательно сформировавшегося организма. Они характеризуются высокой способностью к трансформации в другие клетки и могут культивироваться в лабораторных условиях. Однако для лечения они в настоящий момент времени не используются. Для их получения необходимо разрушение мозга, поэтому об аутотрансплантации речь идти не может. В настоящее время изучается возможность использования тканей реципиента, но это может быть связано с этическими проблемами.

Уникальные стволовые клетки, которые обладают способностью к трансформации в кардиомиоциты, были обнаружены в конце прошлого столетия. Лечение человека с их помощью пока невозможно, поскольку для получения материала требуется разрушение миокарда, а возможность использования клеток реципиента только изучается.

Клетки кожи

Данную разновидность стволовых клеток получают из кожи эмбриона или уже взрослого человека. Такой биологический материал уже успешно применяется в специализированных центрах для лечения больных с обширными ожоговыми поражениями.

Мезенхимные стволовые клетки берут из костномозговой стромы. Они также обнаружены в крови, полученной из пуповины. Лечение посредством трансплантации МСК считается очень перспективным. Материал может быть получен от самого пациента; культивирование осуществляется в лабораторных условиях на питательных средах. После пересадки эти клетки превращаются в элементы различных тканей и органов. При необходимости материал замораживают и хранят в течение продолжительного времени. Несомненным достоинством лечения с помощью мезенхимных клеток является отсутствие осложнений в виде развития злокачественных новообразований. Минусом данной методики можно считать только необходимость строгого инфекционного контроля.

Источником материала являются ткани поперечнополосатой мускулатуры. Данные элементы обладают способностью к превращению в нервные, и жировые клетки, а также в хондроциты и миоциты. Установлено, что они представляют собой отдельную популяциею мезенхимных клеток, следовательно могут быть получены из пуповинной крови или собственного костного мозга пациента.

Клетки из абортивного материала

Так называемые фетальные клетки выделяют из абортивного материала при искусственном прерывании беременности на сроке от 9 до 12 недель. Использование этого источника связано со множеством технических проблем, не говоря уже об этической стороне вопроса.

Основные недостатки методики лечения эмбриональными стволовыми клетками:

  • высокий риск отторжения при пересадке материала;
  • наличие риска и заражения другими заболеваниями инфекционного генеза;
  • юридические проблемы.

Источником ЭСК является материал зародыша, взятый на первой неделе внутриутробного развития.

Достоинства эмбриональных стволовых клеток:

  • способность к трансформации в самые разнообразные клетки;
  • минимальная вероятность отторжения культур.

К числу недостатков относятся:

  • наличие риска появления доброкачественных новообразований;
  • этические проблемы;
  • юридические препятствия.

Важно: в РФ применение ЭСК сейчас запрещено приказом Минздрава РФ. Использование данного биологического материала расценивается противниками методики как посягательство на жизнь еще не рожденного ребенка.

К настоящему времени в разных странах уже осуществлены десятки тысяч удачных пересадок пациентам различных возрастов.
Трансплантация культур стволовых клеток признана весьма эффективной методикой лечения последствий травм голвного и спинного мозга, обширных ожогов, инсультов и инфарктов. Клеточная терапия позволяет вылечить ребенка, страдающего серьезной патологией крови.

Обратите внимание: сейчас 75% больных, остро нуждающихся трансплантации органов, погибают, не дождавшись своей очереди на пересадку. Ученые полагают, что клеточная терапия уже в недалеком будущем даст им шанс на излечение.

Пересадка стволовых клеток эффективна при лечении следующих патологий:

  • иммунодефицитные состояния;
  • резистентный ювенильный артрит;
  • лейкемия;
  • неходжкинская лимфома;
  • анемия Фанкони;
  • талассемия;
  • идиопатическая апластическая анемия;
  • амегакариоцитарная тромбоцитопения;
  • коллагенозы;
  • миелодиспластический синдром;
  • нейробластома.

Введение стволовых клеток способствует восстановлению и улучшению состояния кожных покровов.

Важно: пациентам, которые хотят пройти курс омолаживающих процедур с применением стволовых клеток, рекомендуется пользоваться только услугами хорошо зарекомендовавших себя косметологических центров. На рынке появилось огромное количество поддельных препаратов, которые могут нанести непоправимый вред здоровью. Уже известны случаи гибели пациентов вследствие развившихся после процедур онкологических заболеваний.

Косметические проблемы, которые можно устранить посредством клеточной терапии:

  • рубцы на коже;
  • морщины;
  • следы от химических ожогов;
  • последствия лазеротерапии.

Обратите внимание: мезотерапия с введением препаратов, содержащих культуры стволовых клеток дает возможность значительно улучшить тонус кожных покровов и способствует росту здоровых волос и ногтей.

На курс лечения требуется введение 100 миллионов недифференцированных клеток. Стоимость курсовой терапии составляет около 300 тысяч рублей, что обусловлено техническими сложностями при культивировании материала для трансплантации.

Сеанс мезотерапии в косметологическом центре обходится гораздо дешевле (в среднем - порядка 20 тыс. рублей), но для достижения заметного и стойкого эффекта требуется от 5 до 10 процедур, поэтому их общая стоимость вполне сопоставима со стоимостью лечения серьезного заболевания.

Стволовые клетки - недифференцированные (незрелые) клетки, имеющиеся у многих видов многоклеточных организмов. Стволовые клетки способны самообновляться, образуя новые стволовые клетки, делиться посредством митоза и дифференцироваться в специализированные клетки, то есть превращаться в клетки различных органов и тканей.

Развитие многоклеточных организмов начинается с одной стволовой клетки, которую впрочем никто так не называет, а называют зиготой. В результате многочисленных циклов деления и процесса дифференцировки образуются все виды клеток, характерные для данного биологического вида. В человеческом организме таких видов клеток более 220. Стволовые клетки сохраняются и функционируют и во взрослом организме, благодаря им может осуществляться обновление и восстановление тканей и органов. Тем не менее, в процессе старения организма их количество уменьшается.

В современной медицине стволовые клетки человека трансплантируют, то есть пересаживают в лечебных целях. Например, трансплантация гемопоэтических стволовых клеток производится для восстановления процесса гемопоэза (кроветворения) при лечении лейкозов и лимфом.

Все стволовые клетки обладают двумя неотъемлемыми свойствами:

1) Самообновление , то есть способность сохранять неизменный фенотип после деления (без дифференцировки).

2) Потентность (дифференцирующий потенциал), или способность давать потомство в виде специализированных типов клеток.

Существуют два механизма, поддерживающих популяцию стволовых клеток в организме :

1) Асимметричное деление , при котором продуцируется одна и та же пара клеток (одна стволовая клетка и одна дифференцированная клетка).

2) Стохастическое деление : одна стволовая клетка делится на две более специализированных.

Дифференцирующий потенциал или потентность стволовых клеток - это способность производить определенное количество разных типов клеток. В соответствии с потентностью стволовые клетки делятся на следующие группы:

1) Тотипотентные (омнипотентные) стволовые клетки могут дифференцироваться в клетки эмбриональных и экстраэмбриональных тканей, организованные в виде трехмерных связанных структур (тканей, органов, систем органов, организма). Такие клетки могут дать начало полноценному жизнеспособному организму. К ним относится оплодотворённая яйцеклетка, или зигота. Клетки, образованные при первых нескольких циклах деления зиготы, также являются тотипотентными у большинства биологических видов. Однако к ним не относятся, например, круглые черви, зигота которых утрачивает тотипотентность при первом делении. У некоторых организмов дифференцированные клетки также могут обретать тотипотентность. Так, срезанную часть растения можно использовать для выращивания нового организма именно благодаря этому свойству.


2) Плюрипотентные стволовые клетки являются потомками тотипотентных и могут давать начало практически всем тканям и органам, за исключением экстраэмбриональных тканей (например, плаценты). Из этих стволовых клеток развиваются три зародышевых листка: эктодерма, мезодерма и энтодерма.

3) Мультипотентные стволовые клетки порождают клетки разных тканей, но многообразие их видов ограничено пределами одного зародышевого листка.

4) Олигопотентные клетки могут дифференцироваться лишь в некоторые, близкие по свойствам, типы клеток. К ним, например, относятся клетки лимфоидного и миелоидного рядов, участвующие в процессе кроветворения.

5) Унипотентные клетки (клетки-предшественницы, бластные клетки) - незрелые клетки, которые, строго говоря, уже не являются стволовыми, так как могут производить лишь один тип клеток. Они способны к многократному самовоспроизведению, что делает их долговременным источником клеток одного конкретного типа и отличает от не стволовых. Однако их способность к самовоспроизведению ограничена определённым количеством делений, что также отличает их от истинно стволовых клеток. К клеткам-предшественницам относятся, к примеру, некоторые из миосателлитоцитов, участвующих в образовании скелетной и мышечной тканей.

Классификация:

1) Эмбриональные стволовые клетки (ЭСК) образуют внутреннюю клеточную массу (ВКМ), или эмбриобласт, на ранней стадии развития эмбриона. Они являются плюрипотентными. Важный плюс ЭСК состоит в том, что они не экспрессируют HLA (human leucocyte antigens), то есть не вырабатывают антигены тканевой совместимости. Каждый человек обладает уникальным набором этих антигенов, и их несовпадение у донора и реципиента является важнейшей причиной несовместимости при трансплантации. Соответственно, шанс того, что донорские эмбриональные клетки будут отторгнуты организмом реципиента очень невысок. При пересадке иммунодефицитным животным эмбриональные стволовые клетки способны образовывать опухоли сложного (многотканевого) строения - тератомы, некоторые из них могут стать злокачественными. Достоверных данных, о том как ведут себя эти клетки в иммунокомпетентном организме, например, в организме человека, нет. Вместе с тем, следует отметить, что клинические испытания с применением дифференцированных дериватов (производных клеток) ЭСК уже начаты. Для получения ЭСК в лабораторных условиях приходится разрушать бластоцисту, чтобы выделить ВКМ, то есть разрушать эмбрион. Поэтому исследователи предпочитают работать не с эмбрионами непосредственно, а с готовыми, ранее выделенными линиями ЭСК.

Одним из главных недостатков ЭСК является невозможность использования аутогенного, то есть собственного материала, при трансплантации, поскольку выделение ЭСК из эмбриона несовместимо с его дальнейшим развитием.

Характеристики эмбриональных стволовых клеток

- Плюрипотентность - способность образовывать любой из примерно 350 типов клеток взрослого организма (у млекопитающих);

- Хоуминг - способность стволовых клеток, при введении их в организм, находить зону повреждения и фиксироваться там, исполняя утраченную функцию;

- Тотипотентность - способность дифференцироваться в целостный организм (11 дней после оплодотворения);

- Факторы , которые определяют уникальность стволовых клеток, находятся не в ядре, а в цитоплазме. Это избыток мРНК всех 3 тысяч генов[источник не указан 1360 дней], которые отвечают за раннее развитие зародыша;

- Теломеразная активность. При каждой репликации часть теломер утрачивается. В стволовых, половых и опухолевых клетках есть теломеразная активность, концы их хромосом надстраиваются, то есть эти клетки способны проходить потенциально бесконечное количество клеточных делений, они бессмертны.

2) Фетальные стволовые клетки получают из плодного материала после аборта (обычно срок гестации, то есть внутриутробного развития плода, составляет 9-12 недель). Естественно, изучение и использование такого биоматериала также порождает этические проблемы. В некоторых странах, например, на Украине и в Великобритании, продолжаются работы по их изучению и клиническому применению. К примеру, британская компания ReNeuron исследует возможности использования фетальных стволовых клеток для терапии инсульта. Эти клетки уже начали дифференцировку, и, следовательно, каждая из них, во-первых, может пройти только ограниченное число делений, и, во-вторых, дать начало не любым, а достаточно определенным видам специализированных клеток. Так, из клеток фетальной печени могут развиться специализированные клетки печени и кроветворные клетки. Из фетальной нервной ткани, соответственно, развиваются более специализированные нервные клетки.

3) Постнатальные стволовые клетки. Несмотря на то, что стволовые клетки зрелого организма обладают меньшей потентностью в сравнении с эмбриональными и фетальными стволовыми клетками, то есть могут порождать меньшее количество различных типов клеток, этический аспект их исследования и применения не вызывает серьёзной полемики. Кроме того, возможность использования аутогенного материала обеспечивает эффективность и безопасность лечения. Стволовые клетки взрослого организма можно подразделить на три основных группы: гемопоэтические (кроветворные), мультипотентные мезенхимальные (стромальные) и тканеспецифичные прогениторные клетки.

Иногда в отдельную группу выделяют клетки пуповинной крови, поскольку они являются наименее дифференцированными из всех клеток зрелого организма, то есть обладают наибольшей потентностью. Пуповинная кровь в основном содержит гемопоэтические стволовые клетки, а также мультипотентные мезенхимальные, но в ней присутствуют малые количества других разновидностей стволовых клеток, при определённых условиях способные дифференцироваться в клетки различных органов и тканей.

4) Гемопоэтические стволовые клетки (ГСК) - мультипотентные стволовые клетки, дающие начало всем клеткам крови миелоидного (моноциты, макрофаги, нейтрофилы, базофилы, эозинофилы, эритроциты, мегакариоциты и тромбоциты, дендритные клетки) и лимфоидного рядов (Т-лимфоциты, В-лимфоциты и естественные киллеры). Определение гемопоэтических клеток было основательно пересмотрено в течение последних 20 лет. Гемопоэтическая ткань содержит клетки с долгосрочными и краткосрочными возможностями к регенерации, включая мультипотентные, олигопотентные и клетки-предшественники. Миелоидная ткань содержит одну ГСК на 10 000 клеток. ГСК являются неоднородной популяцией. Различают три субпопуляции ГСК, в соответствии с пропорциональным отношением лимфоидного потомства к миелоидному (Л/M). У миелоидно ориентированных ГСК низкое Л/М соотношение (>0, <3), у лимфоидно ориентированных - высокое (>10). Третья группа состоит из «сбалансированных» ГСК, для которых 3 ? Л/M ? 10. В настоящее время активно исследуются свойства различных групп ГСК, однако промежуточные результаты показывают, что только миелоидно ориентированные и «сбалансированные» ГСК способны к продолжительному самовоспроизведению. Кроме того, эксперименты по трансплантации показали, что каждая группа ГСК преимущественно воссоздаёт свой тип клеток крови, что позволяет предположить наличие наследуемой эпигенетической программы для каждой субпопуляции.

Популяция ГСК формируется во время эмбриогенеза, то есть эмбрионального развития. Доказано, что у млекопитающих первые ГСК обнаруживаются в областях мезодермы, называемых аорта, гонада и мезонефрос, до формирования костного мозга популяция расширяется в фетальной печени. Такие исследования способствуют пониманию механизмов, ответственных за генезис (формирование) и расширение популяции ГСК, и, соответственно, открытию биологических и химических агентов (действующих веществ), которые в конечном счёте могут быть использованы для культивации ГСК in vitro.

Основным источником ГСК является костный мозг. Этот источник и сегодня наиболее широко используется в трансплантологии (см. Трансплантация гемопоэтических стволовых клеток). ГСК располагаются в костном мозге у взрослых, включая тазовые кости, рёбра, грудину и другие кости. Клетки могут быть получены непосредственно из тазовых костей при помощи иглы и шприца или из крови, после предварительной обработки цитокинами, включая G-CSF (гранулоцитарный колониестимулирующий фактор), способствующий выходу стволовых клеток из костного мозга.

5) Мультипотентные мезенхимальные стромальные клетки (ММСК) - мультипотентные стволовые клетки, способные дифференцироваться в остеобласты (клетки костной ткани), хондроциты (хрящевые клетки) и адипоциты (жировые клетки).

Предшественниками ММСК в эмбриогенный период развития являются мезенхимальные стволовые клетки (МСК). Они могут быть обнаружены в местах распространения мезенхимы, то есть зародышевой соединительной ткани.

Основным источником ММСК является костный мозг. Кроме того, они обнаружены в жировой ткани и ряде других тканей с хорошим кровоснабжением. Существует ряд доказательств того, что естественная тканевая ниша ММСК расположена периваскулярно - вокруг кровеносных сосудов. Кроме того, ММСК были обнаружены в пульпе молочных зубов, амниотической (околоплодной) жидкости, пуповинной крови и вартоновом студне. Эти источники исследуются, но редко применяются на практике. Например, выделение молодых ММСК из вартонова студня представляет собой крайне трудоёмкий процесс, поскольку клетки в нём также располагаются периваскулярно. В 2005-2006 годах специалисты по ММСК официально определили ряд параметров, которым должны соответствовать клетки, чтобы отнести их к популяции ММСК. Были опубликованы статьи, в которых представлен иммунофенотип ММСК и направления ортодоксальной дифференцировки. К ним относится дифференцировка в клетки костной, жировой и хрящевой тканей. Был проведён ряд экспериментов по дифференцировке ММСК в нейроноподобные клетки, но исследователи по-прежнему сомневаются, что полученные нейроны являются функциональными. Эксперименты также проводятся в области дифференцировки ММСК в миоциты - клетки мышечной ткани. Важнейшей и наиболее перспективной областью клинического применения ММСК является которансплантация совместно с ГСК в целях улучшения приживления образца костного мозга или стволовых клеток пуповинной крови. Многочисленные исследования показали, что ММСК человека могут избегать отторжения при трансплантации, вступать во взаимодействие с дендритными клетками и Т-лимфоцитами и создавать иммуносупрессивную микросреду посредством выработки цитокинов. Было доказано, что иммуномодулирующие функции ММСК человека повышаются, когда их пересаживают в воспалённую среду с повышенным уровнем гамма-интерферона. Другие исследования противоречат этим выводам, что обусловлено гетерогенной природой изолированных МСК и значительными различиями между ними, в зависимости от способа культивирования.

МСК могут быть активированы в случае необходимости. Однако эффективность их использования относительно низка. Так, к примеру, повреждение мышц даже при трансплантации МСК заживает очень медленно. В настоящее время проводятся исследования по активации МСК. Ранее проведённые исследования по внутривенной трансплантации МСК показали, что этот способ трансплантации часто приводит к кризу отторжения и сепсису. Сегодня признано, что заболевания периферических тканей, например, воспаление кишечника лучше лечить не трансплантацией, а методами, повышающими локальную концентрацию МСК.

6) Тканеспецифичные прогениторные клетки (клетки-предшественницы) - малодифференцированные клетки, которые располагаются в различных тканях и органах и отвечают за обновление их клеточной популяции, то есть замещают погибшие клетки. К ним, например, относятся миосателлитоциты (предшественники мышечных волокон), клетки-предшественницы лимфо- и миелопоэза. Эти клетки являются олиго- и унипотентными и их главное отличие от других стволовых клеток в том, что клетки-предшественницы могут делиться лишь определённое количество раз, в то время как другие стволовые клетки способны к неограниченному самообновлению. Поэтому их принадлежность к истинно стволовым клеткам подвергается сомнению. Отдельно исследуются нейральные стволовые клетки, которые также относятся к группе тканеспецифичных. Они дифференцируются в процессе развития эмбриона и в плодный период, в результате чего происходит формирование всех нервных структур будущего взрослого организма, включая центральную и периферическую нервные системы. Эти клетки были обнаружены и в ЦНС взрослого организма, в частности, в субэпендимальной зоне, в гиппокампе, обонятельном мозге и т. д. Несмотря на то, что большая часть погибших нейронов не замещается, процесс нейрогенеза во взрослой ЦНС всё-таки возможен за счёт нейральных стволовых клеток, то есть популяция нейронов может «восстанавливаться», однако это происходит в таком объёме, что не сказывается существенно на исходах патологических процессов.

26А Особенности митохондриальной ДНК и их использование в молекулярной биологии. "Митохондриальная Ева".

Митохондриальная ДНК (мтДНК) - ДНК, находящаяся (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.

Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома).

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG - терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан.

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК, которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин, который при транскрипции гена в РНК заменяет тимин.

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК.

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3"-концевым терминаторным кодонам.

Митохондриальная Ева - имя, данное молекулярными биологами женщине, которая была последним общим предком всех ныне живущих людей по материнской линии. Поскольку митохондриальная ДНК наследуется только по материнской линии, у всех ныне живущих людей такая ДНК была получена от «Евы». Аналогично ДНК мужской Y-хромосомы у всех людей мужского пола должна происходить от «молекулярно-биологического Адама».

Митохондрии - это внутриклеточные органеллы, имеющие небольшую собственную хромосому. В отличие от ядерной ДНК, которая содержит подавляющее большинство генов и в процессе полового размножения подвергается рекомбинации, так что потомки получают половину генов от отца, а вторую половину от матери, митохондрии и их ДНК ребёнок получает только из материнской яйцеклетки. Поскольку митохондриальная ДНК не подвергается рекомбинации, изменения в ней могут происходить исключительно посредством редких случайных мутаций. Путём сравнения последовательности митохондриальной ДНК и возникших в ней со временем мутаций можно не только определить степень родства ныне живущих людей, но и приблизительно вычислить время, необходимое для накопления мутаций в той или иной популяции людей. Таким образом можно вычислить и эпоху, когда мутаций ещё не было, и предковая популяция людей была генетически однородной. В 1987 году Ребекка Канн (Rebecca Cann) с коллегами предположили, что митохондриальная Ева могла жить между 140 тыс. и 280 тыс. лет назад. Согласно более поздним расчетам, митохондриальная Ева жила около 140 тыс. лет назад в Восточной Африке. Современные МП- и МЭ-оценки обычно дают диапазон возраста Евы 140 тыс. - 230 тыс. лет с максимумом вероятности на значениях порядка 180-200 тыс. лет. Последняя датировка стала общепризнанной оценкой. Тем не менее, в августе 2013 года появились новые данные о том, что Ева жила 99-148 тысяч лет назад с максимальной вероятностью 124 тысячи лет назад.

Хотя митохондриальная Ева названа в честь библейской, её не следует отождествлять с библейским персонажем или считать, что все люди являются потомками только одной женщины. Митохондриальная Ева - научная абстракция, созданная для упрощения расчётов. На самом деле речь идет об относительно однородной генетической популяции, среди потомков которой большинство ныне живущих людей получили митохондриальную ДНК от одной женщины, в то время как потомки других женщин по прямой женской линии той же предковой популяции не дожили до наших дней. Если у женщины нет ни одной дочери, то её митохондриальная ДНК не будет передана потомкам далее её собственного сына, хотя половину других генов унаследуют сыновья и их потомство.


Предшественник (precursor) - Молекула, преобразующаяся в процессе биохимической реакции в др. молекулу, для которой исходная молекула и является предшественником

Интрон (intron, intervening sequence) - Транскрибируемый участок гена, не содержащий кодонов и удаляемый из молекулы РНК при ее процессинге.

Любой участок гена, содержащего интроны, который сохраняется в зрелой молекуле мРНК (интроны вырезаются при процессинге