Неслучайная инактивация х хромосомы генотип 21 17. Генетические последствия инактивации хромосомы. Серия активаций и инактиваций X-хромосом

Анеуплоидия по Х-хромосоме - одна из наиболее частых онтогенетических аномалий. Относительная устойчивость кариотипа человека к хромосомным аномалиям Х-хромосомы может объясняться инактивацией Х-хромосомы, процессом, эпигенетически подавляющим большинство генов в одной из двух Х-хромосом у женщин, не давая им производить какие-либо продукты. Здесь мы обсудим хромосомный и молекулярный механизмы инактивации Х-хромосомы.

Инактивация Х-хромосомы . Теория инактивации гласит, что в соматических клетках здоровых женщин (но не у мужчин) одна Х-хромосома инактивируется в начале эмбрионального развития, уравнивая таким образом экспрессию генов этой хромосомы у двух полов. В нормальных женских клетках выбор инактивируемой Х-хромосомы произволен, а затем поддерживается в каждом клоне клетки.

Таким образом, женщины мозаичны по экспрессии Х-сцепленных генов ; некоторые клетки экспрессируют аллели, унаследованные от отца, другие клетки - от матери. Этот образец экспрессии генов отличает большинство Х-сцепленных генов от импринтируемых генов (также экспрессирующих только один аллель, но определяемых родительским началом не случайно), а также от большинства аутосомных генов, экспрессирующих оба аллеля.

Хотя неактивная Х-хромосома сначала была обнаружена цитологически по присутствию гетерохроматиновой массы (названной тельцем Барра) в интерфазных клетках, существует много эпигенетических характеристик, различающих активные и неактивные Х-хромосомы. Проливая свет на механизмы Х-инактивации, эти особенности могут быть диагностически значимыми для установления неактивной Х-хромосомы в клиническом материале.

Хромосомные характеристики Х-инактивации :
- Инактивация большинства генов, расположенных на неактивной Х-хромосоме
- Произвольный выбор одной из двух Х-хромосом в женских клетках

Неактивная Х-хромосома:
а) гетерохроматиновая (тельце Барра)
б) поздно реплицируется в S фазе
в) экспрессирует XIST-PHK
г) связана с модификациями гистона macroH2A в хроматине

Для уравновешивания экспрессии Х-хромосомы у самок и самцов используются различные способы компенсации дозы гена.

Область промотора многих генов в неактивной Х-хромосоме существенно модифицируется присоединением метильной группы к цитозину при действии фермента ДНК-метилтрансферазы. Как уже упоминалось в контексте геномного импринтинга в главе 5, такое метилирование ДНК связано с CpG динуклеотидами и приводит к неактивному состоянию хроматина. Дополнительные различия между активными и неактивными Х-хромосомами связаны с гистоновым кодом и оказались существенной частью механизма Х-инактивации.

У пациентов с дополнительными Х-хромосомами все Х-хромосомы , кроме одной, инактивируются. Таким образом, все диплоидные соматические клетки как у мужчин, так и у женщин, имеют единственную активную Х-хромосому, независимо от общего числа Х- или Y-хромосом.

Хотя инактивация Х-хромосомы , несомненно, является хромосомным феноменом, не все гены в Х-хромосоме подвергаются инактивации. Расширенный анализ экспрессии почти всех генов Х-хромосомы показал, что по крайней мере 15% генов избегают инактивации и экспрессируются как в активных, так и неактивных Х-хромосомах. Кроме того, еще для 10% генов показана переменная инактивация; т.е. они избегают инактивации у одних женщин, но инактивируются у других.

Примечательно, что эти гены не распределены произвольно по Х-хромосоме : большинство генов, избегающих инактивации, расположены на плече Хр (до 50%), по сравнению с Xq (несколько процентов). Данный факт имеет большое значение для генетического консультирования в случаях частичной хромосомной анеуплоидии X, так как дисбаланс генов на Хр может иметь большее клиническое значение, чем дисбаланс Xq.

Инактивация Х-хромосомы включает этап стабилизации Xist РНК,
которая покрывает неактивную хромосому.

Центр Х-инактивации и ген XIST

При исследованиях структурно аномальных инактивированных Х-хромосом был картирован центр Х-инактивации в проксимальном отделе Xq, в полосе Xql3. Центр Х-инактивации содержит необычный ген XIST (англ. Xinactivate specific transcripts; специфическая транскрипция инактивированной Х-хромосомы), оказавшийся ключевым управляющим локусом Х-инактивации. Ген XIST имеет новую характеристику: он экспрессируется только в аллеле на неактивной Х-хромосоме; он отключен на активной Х-хромосоме как в мужских, так и в женских клетках.

Хотя точный способ действия гена XIST неизвестен, Х-инактивация не может происходить в его отсутствие. Продукт XIST - некодирующая белок РНК, остающаяся в ядре в тесной ассоциации с неактивной Х-хромосомой и тельцем Барра.

Неслучайная инактивация Х-хромосомы

Х-инактивация в норме происходит в женских соматических клетках случайным образом и приводит к мозаицизму по двум популяциям клеток, экспрессирующих аллели одной или другой Х-хромосомы. Тем не менее существуют исключения из этого правила, когда в кариотипе имеются структурно аномальные Х-хромосомы. Например, почти у всех пациентов с несбалансированными структурными аномалиями Х-хромосомы (включая делеции, дупликации и изохромосомы) структурно аномальная хромосома всегда неактивна, что, вероятно, отражает вторичный отбор против генетически несбалансированных клеток, которые могли бы привести к значимым клиническим аномалиям.

Из-за преимущественной инактивации аномальной Х-хромосомы такие аномалии Х-хромосомы имеют меньшее влияние на фенотип, чем аналогичные аномалии аутосом, и, следовательно, более часто обнаруживаются.

Неслучайную инактивацию наблюдают также в большинстве случаев транслокаций X на аутосому. Если такая транслокация сбалансирована, избирательно инактивируется нормальная Х-хромосома, и две части транслоцированной хромосомы остаются активными, вероятно, снова отражая отбор против клеток с неактивированными аутосомными генами. В несбалансированном потомстве сбалансированного носителя, тем не менее, присутствует только продукт транслокации, несущий центр Х-инактивации, и такая хромосома неизменно инактивируется; нормальная Х-хромосома всегда активна.

Эти неслучайные образцы инактивации имеют общий эффект снижения, хотя и не всегда устранения, клинических последствий конкретного хромосомного дефекта. Поскольку образцы Х-инактивации хорошо согласуются с клиническим результатом, определение цитогенетическим или молекулярным анализом индивидуального образца Х-инактивации показано во всех случаях транслокации X и аутосом.

Одна закономерность, иногда наблюдающаяся у сбалансированных носителей транслокаций Х-хромосомы на аутосому, проявляется тем, что сам разрыв может вызывать мутации, нарушая ген в точке транслокации. Единственная нормальная копия конкретного гена инактивируется в большинстве или всех клетках из-за неслучайной инактивации нормальной Х-хромосомы, таким образом приводя к экспрессии у женщины сцепленного с полом признака, обычно наблюдающегося только у гемизиготных мужчин.

Выявлено несколько Х-сцепленных генов , когда типичный фенотип сцепленного с полом состояния обнаруживали у женщин с доказанной транслокацией Х-хромосомы на аутосому. Главный клинический вывод из этой информации - если женщина проявляет сцепленный с полом фенотип, обнаруживаемый обычно только у мужчин, показан хромосомный анализ с высоким разрешением. Обнаружение сбалансированной транслокации может объяснить фенотипическую экспрессию и выявить вероятную позицию гена на карте Х-хромосомы.

1. Компенсация дозы Х-сцепленного гена. В результате инактивации одной их хромосом X у женщин общее количество конечных продуктов Х-сцепленных генов одинаково у обоих полов. Однако, процесс инактивации не всегда является полным и имеет ряд ограничений, что находит и экспериментальное подтверждение. Так, здоровые женщины с двумя хромосомами X (46,ХХ) и женщины с кариотипом 45,Х фенотипически отличаются. Различия наблюдаются и у мужчин с нормальным кариотипом (46,XY) и больными с синдромом Клайнфельтера (47,XXY). Отмечено, что чем больше в кариотипе дополнительных хромосом X, тем больше анормальных признаков в фенотипе носителя.

2. Разная экспрессия у гетерозиготных женщин. Гетерозиготные по Х-сцепленным генам женщины отличаются по фенотипическому проявлению, так как инактивация Х-хромосомы носит случайный характер и, как следствие, соотношение клеток с активным и неактивным аллелями гена варьирует от 0% до 100%. Если мутантный аллель активен в большинстве клеток организма, то гетерозиготные женщины проявляют серьезные фенотипические нарушения („неблагоприятная лайонизация"), например, в случае следующих болезней: дефицита фермента 6-фосфатдегидрогеназы, дальтонизма, гемофилии, мышечной дистрофии Дюшенна.

3. Мозаицизм. Нормальный женский организм представляет собой своеобразную "мозаику" по Х-сцепленным генам, имея две популяции соматических клеток, отличающихся по родительскому происхождению активной Х-хромосомы: одна с активной материнской Х-хромосомой и другая - с отцовской. Данное явление мозаицизма было обнаружено у женщин, гетерозиготных по:

Редкой форме Х-сцепленного альбинизма, когда у этих женщин были выявлены клетки с пигментом и непигментированные клетки;

Гену фермента 6-фосфатдегидрогеназы, имеющему две аллели, которые кодируют две разные формы данного фермента. У гетерозиготных женщин были выделены клетки кожи, которые выращивали в изолированной культуре. Было показано, что потомки одной клетки синтезируют только один тип фермента.

Молекулярные механизмы инактивации х-хромосомы

Выявлено, что Х-хромосома инактивируется не полностью, и в ней сохраняются генетически активные локусы. Объяснением этому может служить тот факт, что часть генов X-хромосомы имеет гомологичные гены на хромосоме Y и не требует компенсации дозы. К ним относятся гены из псевдоаутосомальной области (PAR), расположенной в сегменте Хр22- pter и имеющей размеры около 2Mb, и ряд других генов, например:

Ген STS, кодирующий стероид-сульфатазу;

Ген MIC-2, расположенный вблизи псевдоаутосомальной облачи,

Гены DXS, U23E, UBEI проксимального участка короткого плеча;

Ген RPS4X, контролирующий синтез рибосомного белка S4 и расположенный в проксимальной части длинного плеча.

Молекулярно-биологические исследования позволили выявить в хромосоме X участок - (ql3), который вовлечен в процесс инактивации и, поэтому назван центром инактивации хромосомы X ХIС).В этом участке расположен ген XIST, который был изучен и клонирован с использованием искусственной дрожжевой хромосомы YAC. Ген XIST имеет длину около 450 Кb. Конец 3´гена участвует в «подсчете» числа хромосом Х и определяет, какая именно хромосома Х останется активной. На 5´-конце гена расположен промотр с тремя областями:

- активирующей областью, длиной около 100pb;

Областью, состоящей из множества повторов одной и той же последовательности и обеспечивающей стабилизацию РНК- XIST на уровне неактивной хромосомы;

Областью, образованной повторами CG, расположенной на расстоянии 25Кb от транскрибируемой области гена и оказывающей ингибирующее действие на активирующую область промотора. Ген XIST относится к нетипичным генам, т.к. он утратил способность экспрессироваться в виде белка. Его экспрессия завершается синтезом мРНК, длиной около Kb, которая остается связанной с генетически неактивной хромосомой X.

Путем экспериментального трансгенеза было показано, что ген XIST, будучи встроенным в одну из аутосом, способен индуцировать процесс хромосомной инактивации с образованием гетерохроматина. Методом FISH обнаружено наличие на аутосоме, в которую был встроен данный ген, молекулы PHK-XIST, которая и вызывает инактивацию аутосомных генов. Кроме того, было выявлено, что аутосома со встроенным генов XIST гипоацетилирована на уровне гистона Н4 и имеет новый тип гистона - макроН2А1. Результаты других исследований позволяют предположить, что механизм инактивации зависит от стабильности молекулы PHK-XIST на неактивной хромосоме X. Стабильная и нестабильная формы РНК переписываются с участием разных промоторов одного и того же гена. Регуляцию экспрессии гена XIST можно объяснить на основе явления геномного импринтинга. Геномный импринтинг - это подавление активности одного из двух аллелей гена в зависимости от родительского происхождения, которое происходит в гаметогенезе и представляет один из механизмов регуляции фенотипической экспрессии генов.


ДНК человека упакована в 23 пары хромосом разного размера. Одна хромосома из каждой пары унаследована от наших отцов (отцовский гомолог), а другая - от наших матерей (материнский гомолог). Двадцать две пары, в совокупности называемые аутосомами и пронумерованные числами 1-22 в порядке убывающей величины, одинаковы у самцов и самок, тогда как одна пара, половые хромосомы, различается между полами. Самки обладают двумя копиями хромосомы среднего размера, обозначаемой как Х-хромосома, в то время как самцы имеют одну Х-хромосому и одну копию более мелкой, бедной генами хромосомы, обозначаемой Y. У самцов Х-хромосома всегда наследуется от матери, a Y-хромосома - от отца, тогда как у самок одна Х-хромосома - материнская (Хm), а другая - отцовская (Хр). Это хромосомное различие между полами является обычным у млекопитающих и многих других организмов и представляет собой часть биологического механизма, посредством которого определяется пол. Однако для организма это связано с рядом эволюционных проблем, в том отношении, что два пола различаются по числу сцепленных с X генов, которые они имеют; самки обладают вдвое большим их количеством, чем самцы. Это может приводить к дисбалансу в количестве генных продуктов (РНК и белков), который, в свою очередь, требовал бы различий в контроле метаболизма и других клеточных процессов. Чтобы избежать этого, возникли механизмы компенсации дозы генов , уравновешивающие уровни продуктов сцепленных с X генов у обоих полов.

У млекопитающих механизм компенсации дозы связан с выключением (сайленсированием) большинства генов только на одной из двух Х-хромосом, так что у самок, как и у самцов, имеется только одна активная хромосома. Это радикальное решение, обычно называемое инактивацией Х-хромосомы, впервые было предложено в 1961 году Мэри Лайон для того чтобы объяснить паттерны экспрессии сцепленных с X генов окраски меха у мышей, сходные с паттерном окраски меха у кошки "calico", изображенной на рисунке в начале главы 17 . С тех пор более 40 лет интенсивных исследований было посвящено попыткам разобраться в этих интригующих и сложных механизмах, осуществляющих этот процесс. Мы знаем, что инактивация X происходит на ранних этапах развития, но сложным образом. Очень рано, когда эмбрион состоит всего лишь из нескольких клеток, отцовская Х-хромосома избирательно инактивируется во всех клетках. Хр должна быть как-то маркирована, "импринтирована" для инактивации. Позднее, на стадии бластоцисты (непосредственно перед имплантацией), когда зародыш состоит из 50-100 клеток, в тех клетках, которые в дальнейшем сформируют сам эмбрион (локализованных во внутренней клеточной массе [ ICM ]), Хр вновь активируется, так что, говоря коротко, у самок имеются две активные Х-хромосомы. Затем либо Хр, либо Хm случайно выбирается для инактивации, и гены на ней сайленсируются. Любопытно, что в тех клетках бластоцисты, которые в дальнейшем формируют экстраэмбриональные ткани (плаценту и желточный мешок), Хр остается "молчащей". Вопрос о том, каким образом для инактивации "выбирается" одна из X в ICM, остается пока что без ответа.

Х-хромосома, выбранная для инактивации, остается "молчащей" на протяжении всех последующих клеточных генераций. Это одна из наиболее стабильных форм сайленсинга генов, которая нам известна, и попытки экспериментально добиться ее реверсии неизменно оказывались безуспешными. Однако ооциты (женские зародышевые клетки) способны ревертировать этот процесс инактивации, так что они обладают двумя активными X в мейозе, и единственная Х-хромосома в зрелом, гаплоидном яйце также активна.

Исследования процесса инактивации X выявили новые молекулярные механизмы сайленсинга генов . Инициацию сайленсинга вызывает повышенная экспрессия некодирующей РНК, транскрибируемой с гена, обозначенного XIST, с одной только из двух женских Х-хромосом. Эта РНК покрывает Х-хромосому, содержащую ген XIST , которая включается, что выглядит как участок зеленой окраски на фотографии клеточного ядра (см. рисунок в начале главы 17). Этим далее инициируется сайленсинг генов по всей этой хромосоме. Сам XIST остается включенным. После покрытия XIST неактивная, "молчащая" X претерпевает ряд изменений. Главные белки, упаковывающие ДНК, гистоны, подвергаются химическим модификациям в функционально важных сайтах. Например, уровни ацетилирования избранных остатков лизина катастрофически падают, тогда как метилирование других лизинов увеличивается. Вслед за этими изменениями происходит метилирование избранных участков на неактивной Х-хромосоме, Xi, - процесс, часто связанный с долговременным сайленсингом генов. Все эти и другие изменения придают неактивной Х-хромосоме очень характерную структуру, которая нередко описывается как конденсированная и которая видна в клеточном ядре как отчетливая глыбка плотной ДНК, известная как тельце Бара .

На протяжении последних лет исследования инактивации Х-хромосомы позволили проникнуть в фундаментальные эпигенетические механизмы сайленсинга генов и в то, каким образом паттерны экспрессии генов регулируются в ходе развития. Можно с уверенностью предсказать, что так будет и дальше.

Половые хромосомы (по Susumu Ohno, 1967) произошли от аутосом, которые в ходе эволюции дифференцировались генетически и морфологически, образовав хромосомы X и Y. Хромосома Y является результатом длительной прогрессивной „специализации", в процессе которой были сохранены гены дифференцировки пола и утеряны почти все аутосомные гены, а размеры хромосомы стали намного меньше. Хромосома X сохранила не только исходную форму, но также и большинство генов, как аутосомных, так и связанных с половой дифференцировкой. Различия в половых хромосомах не случайны, а имеют важное биологическое значение, так как они:

Препятствуют обмену генами между хромосомами X и Y в мейозе и обеспечивают сохранение в чистом виде половых детерминант каждой из половых хромосом;

Обеспечивают образование при оплодотворении зигот разного пола: XX или XY.

Половые хромосомы (гоносомы, гетеросомы) отличаются по структуре (длина, положение центромеры, количество гетерохроматина) и по содержанию генов.

Хромосома X - средняя метацентрическая хромосома (группа С); представлена в соматических клетках обоих полов: в двойном экземпляре в женском кариотипе - 46,ХХ и в единственном экземпляре - в кариотипе мужчин - 46,XY. В половых клетках хромосома X представлена следующим образом: в одном экземпляре во всех яйцеклетках и у 50% сперматозоидов. Хромосома X богата эухроматиновыми участками и содержит 1336 генов, среди которых:

■ структурные соматические гены (например, гены групп крови Xg, факторов свертывания крови VIII и IX, фермента 6-фосфатдегидрогеназы, цветного зрения и др.);

■ регуляторные гены феминизации,

■ структурные гены феминизации,

■ структурные гены маскулинизации.

Хромосома Y -мелкая акроцентрическая хромосома (группа G); 2/3 дистального плеча q представлены гетерохроматином в генетически неактивном состоянии. Хромосома Y представлена одним экземпляром во всех соматических клетках индивидов мужского пола с кариотипом 46ХY и у 50% сперматозоидов. Она содержит около 300 генов среди которых:

■ регуляторные гены маскулинизации (SRY=Tdf)

■ гены обеспечивающие фертильность (AZF1, AZF2)

■ структурные соматические гены (фактор контроля роста зубов, рецептор интерлейкина)

■ псевдогены.

Так как в женском кариотипе две хромосомы X, а у мужчин - только одна, то логично предположить, что в клетках женского организма должно быть в два раза больше конечных продуктов генов, локализованных в хромосоме X, чем в клетках мужчин. Однако, в реальности это не так, так как одна из хромосом X у женщин (в норме) или у индивидуумов с дополнительной хромосомой X (при патологии) инактивируется. В результате активной у обоих полов остается лишь одна хромосома X. Данное явление называется компенсацией сцепленных с X хромосомой генов

Гипотеза компенсации была сформулирована М. Лайон в 1961 году и включает три основных положения :

I. В соматических клетках млекопитающих активной является одна хромосома X, в то время как другая - инактивируется путем гетерохроматинизации с образованием тельца Барра, различимого в интерфазном ядре; инактивированная хромосома X реплицируется в конце фазы S.

II. Инактивация происходит на 16-й день эмбрионального развития, когда эмбрион состоит из ~3000-4000 клеток. До этого момента в каждой клетке женского эмбриона функционируют обе хромосомы X, т.е. вырабатывается вдвое больше, чем у мужских эмбрионов,- мРНК и ферментов, закодированных генами Х-хромосомы; вследствие этого, эмбрионы 46,ХХ,я 46,XY биохимически и функционально отличаются. Инактивация одной Х-хромосомы остается в дальнейшем неизменной у всех потомков данной клетки.

III. Процесс инактивации носит случайный характер, поэтому в половине клеток активной сохраняется материнская хромосома X, а в другой половине клеток активной остается отцовская хромосома X.