Значение и сущность 2 начала термодинамики. Большая энциклопедия нефти и газа

Второе начало термодинамики связано с именами Н. Карно, В. Томсона (Кельвина), Р. Клаузиуса, Л. Больцмана, В. Нернста.

Второе начало термодинамики вводит в рассмотрение новую функцию состояния – энтропию. Термин «энтропия», предложенный Р. Клаузиусом, образован от греч. entropia и означает «превращение».

Уместно будет привести понятие «энтропия» в формулировке А. Зоммерфельда: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия; вычисляются все проводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т, и все полученные таким образом значения суммируются (первая часть второго начала термодинамики). При реальных (неидеальных) процессах энтропия изолированной системы возрастает (вторая часть второго начала термодинамики)».

Учета и сохранения количества энергии еще недостаточно для того, чтобы судить о возможности того или иного процесса. Энергию следует характеризовать не только количеством, но и качеством. При этом существенно, что энергия определенного качества самопроизвольно может превращаться только в энергию более низкого качества. Величиной, определяющей качество энергии, и является энтропия.

Процессы в живой и неживой материи в целом протекают так, что энтропия в замкнутых изолированных системах возрастает, а качество энергии понижается. В этом и есть смысл второго начала термодинамики.

Если обозначить энтропию через S,то

что и соответствует первой части второго начала по Зоммерфельду.

Можно подставить выражение для энтропии в уравнение первого начала термодинамики:

dU =T × dS – dU.

Эта формула известна в литературе как соотношение Гиббса. Это фундаментальное уравнение объединяет первое и второе начала термодинамики и определяет, по существу, всю равновесную термодинамику.

Второе начало устанавливает определенное направление течения процессов в природе, то есть «стрелу времени».

Наиболее глубоко смысл энтропии вскрывается при статической оценке энтропии. В соответствии с принципом Больцмана энтропия связана с вероятностью состояния системы известным соотношением

S =K × LnW,

где W – термодинамическая вероятность, аК – постоянная Больцмана.

Под термодинамической вероятностью, или статическим весом, понимается число различных распределений частиц по координатам и скоростям, соответствующих данному термодинамическому состоянию. При любом процессе, который протекает в изолированной системе и переводит ее из состояния 1 в состояние 2, изменение ΔW термодинамической вероятности положительно или равно нулю:

ΔW = W 2 – W 1 ≥ 0

В случае обратимого процесса ΔW = 0, то есть термодинамическая вероятность, постоянна. Если происходит необратимый процесс, то ΔW > 0 иW возрастает. Это означает, что необратимый процесс переводит систему из менее вероятного состояния в более вероятное. Второе начало термодинамики является статистическим законом, оно описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему, то есть энтропия характеризует меру беспорядочности, хаотичности частиц в системе.

Р. Клаузиус определил второе начало термодинамики так:

Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому (1850).

В связи с этой формулировкой в середине XIX в. была определена проблема так называемой тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему, Р. Клаузиус, опираясь на второе начало термодинамики, утверждал, что рано или поздно энтропия Вселенной должна достигнуть своего максимума. Переход теплоты от более нагретых тел к менее нагретым приведет к тому, что температура всех тел Вселенной будет одинаковой, наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной.

Ошибочность вывода о тепловой смерти Вселенной заключается в том, что нельзя применять второе начало термодинамики к системе, которая является не замкнутой, а бесконечно развивающей системой. Вселенная расширяется, галактики разбегаются со скоростями, которые нарастают. Вселенная нестационарна.

В основу формулировок второго начала термодинамики положены постулаты, являющиеся результатом многовекового человеческого опыта. Кроме указанного постулата Клаузиуса наибольшую известность получил постулат Томсона (Кельвина), который говорит о невозможности построения вечного теплового двигателя второго рода (perpetuum mobile), то есть двигателя, полностью превращающего теплоту в работу. Согласно этому постулату, из всей теплоты, полученной от источника тепла с высокой температурой – теплоотдатчика, только часть может быть превращена в работу. Остальная часть должна быть отведена в теплоприемник с относительно низкой температурой, то есть для работы теплового двигателя необходимы по крайней мере два тепловых источника различной температуры.

Этим и объясняется причина, по которой нельзя перевести в работу теплоту окружающей нас атмосферы или теплоту морей и океанов при отсутствии таких же масштабных источников теплоты с более низкой температурой.

Второе начало термодинамики – теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. Под теплотой понимается внутренняя энергия тела.

Рассмотрим систему, способную контактировать с двумя тепловыми резервуарами. Температуры резервуаров (нагреватель) и (холодильник) .. В первоначальном состоянии (поз. 1) температура системы . Приведем ее в тепловой контакт с нагревателем и, квазистатически уменьшив давление, увеличим объем.

Система перешла в состояние с той же температурой , но с большим объемом и меньшим давлением (поз. 2). При этом системой была выполнена работа , а нагреватель передал ей количество теплоты . Далее уберем нагреватель и квазистатически по адиабате переведем систему в состояние с температурой (поз. 3). При этом система выполнит работу . Затем приведем систему в контакт с холодильником и вказистатически уменьшим объем системы. Количество тепла , которое при этом выделит система, поглотится холодильником – ее температура останется прежней.Над системой была выполнена работа (или система выполнила отрицательную работу– ). Состояние системы (поз. 4) выбирается таким, чтобы можно было по адиабате вернуть систему в исходное состояние (поз 1). При этом система выполнит отрицательную работу Т.к. система вернулась в исходное состояние, то внутренняя энергия после цикла осталась прежней, но при этом системой была выполнена работа . Из этого следует, что изменения энергии при выполнении работы компенсировались нагревателем и холодильником. Значит , – количество теплоты, которая пошла на выполнение работы .Коэффициент полезного действия (КПД) определяется по формуле:

.


Отсюда следует, что .


Теорема Карно
гласит, что коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур и нагревателя и холодильника, но не зависит от устройства машины, а также от вида рабочего вещества.

Вторая теорема Карно гласит – коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

Неравенство Клаузиуса:



Из него видно, что количество теплоты, которое получила система при круговом процессе, отнесенное к абсолютной температуре, при которой происходил процесс, есть величина неположительная. Если процесс квазистатический, то неравенство переходит в равенство:

Это значит, что приведенное количество теплоты, получаемое системой при любом квазистатическом круговом процессе, равно нулю .

– элементарное приведенное количество теплоты, получаемое в бесконечно

малом процессе.

– элементарное приведенное количество теплоты, получаемое в конечном


процессе.

Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и , по определению, равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояние по любому квазистатическому пути.

Энтропия выражается функцией:

.


Предположим, что система переходит из равновесного состояния в равновесное состояние по пути , и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути . Опираясь на неравенство Клаузиуса можно написать:

Выше мы познакомились с термодинамическим методом решения различных физических задач. Все рассуждения при этом основывались на использовании одного из основных законов природы: закона сохранения и превращения энергии, или первого начала термодинамики.

Как показал человеческий опыт, при всей важности этого закона, его, однако, недостаточно для того, чтобы объяснить своеобразие протекания различных явлений в природе. Для того чтобы убедиться в этом, рассмотрим первое начало термодинамики и следствия, вытекающие из него, с несколько иной точки зрения, чем это делалось выше. Математически первое начало термодинамики выражается уравнением:

физический смысл которого сводится к утверждению, что изменение внутренней энергии системы возможно или в результате

совершения работы, или в результате передачи некоторого количества теплоты. Чрезвычайно важно то, что написанное уравнение исчерпывает все возможные способы изменения внутренней энергии системы: внутренняя энергия системы может изменяться только в результате совершения работы или передачи некоторого количества теплоты.

Обратим теперь внимание на то обстоятельство, что оба указанных способа изменения внутренней энергии системы подразумевают взаимодействие ее с какими-то телами, не входящими в рассматриваемую систему. Работа совершается или внешними силами, т. е. силами, действующими на систему со стороны каких-либо не входящих в нее тел, или, наоборот, системой, преодолевающей действие этих внешних сил.

Точно так же количество теплоты, необходимое для изменения внутренней энергии системы, передается последней или от каких-либо тел, не входящих в нее, или от самой системы этим телам.

Необходимость для изменения внутренней энергии системы взаимодействия ее с телами, не входящими в нее, приводит к тому, что в изолированной системе, т. е. в системе, включающей все взаимодействующие тела, внутренняя энергия остается неизменной. Учитывая сказанное, первое начало термодинамики иногда так и формулируют, утверждая, что внутренняя энергия изолированной системы постоянна, или, что то же самое, в изолированной системе

В различных термодинамических системах можно представить себе мысленно самые разнообразные процессы. Первое начало термодинамики позволяет выбрать из этого многообразия процессы, протекание которых с точки зрения энергетических соотношений принципиально возможно.

Предположим, например, что рассматриваемая система состоит из двух порций одной и той же жидкости, имеющих соответственно температуры При сливании этих порций жидкости в условиях изоляции от взаимодействия с какими-либо другими телами для всей смеси устанавливается некоторая общая температура Опираясь на первое начало термодинамики, можно утверждать, что конечная температура всей смеси не может быть больше температуры более теплой из смешиваемых порций жидкости. Процесс, приводящий к подобному результату, не допускается первым началом термодинамики. Более того, на том же основании можно утверждать, что в случае действительно изолированной системы возможны только такие процессы, при которых выполняется следующее равенство:

Огромное значение первого начала термодинамики заключается именно в том, что оно указывает, каким образом выбрать из бесконечного количества процессов, которые человек может себе

представить, те процессы, протекание которых, вообще говоря, возможно.

Однако, помогая выделить возможные процессы, первое начало термодинамики не дает основания для дальнейшего различия между ними: с точки зрения первого начала термодинамики все отобранные процессы одинаково возможны.

Для того чтобы уяснить эту особенность, возвратимся к приведенному выше примеру. При смешении двух порций жидкости с разной температурой с точки зрения первого начала термодинамики возможен любой процесс, в результате которого температура смеси примет значение соответствующее уравнению (21).

Однако с точки зрения первого начала термодинамики вполне возможен и процесс, обратный рассмотренному: первое начало термодинамики допускает возможность того, что жидкость, масса которой имеющая повсюду одинаковую температуру самопроизвольно разделится на две части с различными температурами если только эти температуры удовлетворяют уравнению (21). Первое начало термодинамики не допускает лишь изменения внутренней энергии изолированной системы, но никак не ограничивает перераспределение внутренней энергии внутри данной изолированной системы.

В то же время опыт учит человека тому, что в природе наблюдается иное положение.

Хорошо известно, что при смешении нескольких порций жид кости с разными температурами смесь всегда приобретает некоторую температуру, общую для всей жидкости. Также хорошо известно из опыта, что без воздействия извне в жидкости, имевшей повсюду одинаковую температуру, никогда не возникает разность температур, обусловленная самопроизвольным переходом некоторого количества теплоты от одной части жидкости к Другой.

Точно так же, при смешении водного раствора какой-либо соли с чистой водой всегда наблюдается диффузия растворенного вещества, приводящая к выравниванию концентрации раствора во всей жидкости, и никогда не наблюдается, чтобы растворенное в какой-либо жидкости вещество самопроизвольно собралось бы в одной ее части, в то время как во второй оказался бы чистый растворитель, хотя этот процесс и не противоречит первому началу термодинамики.

Наконец, можно постоянно наблюдать самопроизвольное превращение механической работы в теплоту. Так, например, можно заставить скользить тяжелый брусок по наклонной плоскости, (рис. 101), причем вся работа, совершаемая силой тяжести, будет благодаря трению превращаться в теплоту. В результате трения температура бруска и наклонной плоскости слегка возрастет, а внутренняя энергия системы останется постоянной.

В то же время, сколько бы ни ожидать, не удается наблюдать самопроизвольного охлаждения бруска и наклонной плоскости, в результате которого брусок сам начал бы двигаться вверх по наклонной плоскости, хотя этот процесс может также протекать при неизменной внутренней энергии системы.

Таким образом, возможные с точки зрения первого начала термодинамики процессы оказываются неравноценными в отношении их протекания в том смысле, что, как показывает опыт, в изолированной системе одни из этих процессов протекают, а другие не протекают.

На различие таких процессов и указывается вторым основным законом, или вторым началом, термодинамики.

Второе начало термодинамики утверждает, что существует функция состояния, называемая энтропией, которая обладает тем свойством, что при всех реальных процессах, протекающих в изолированной системе, она возрастает.

Таким образом, второму началу термодинамики можно придать следующую формулировку: в изолированной системе возможны только такие процессы, при которых энтропия системы возрастает.

Часто второе начало термодинамики формулируют несколько иначе, например Кельвин формулировал этот закон в форме утверждения, что невозможен процесс, единственным результатом которого было бы получение от какого-либо тела теплоты и превращение ее в эквивалентное количество работы.

Клаузиус предложил записать второе начало термодинамики как утверждение невозможности самопроизвольного перехода теплоты от более холодного тела к телу более теплому. Эти формулировки второго начала, так же как и еще несколько формулировок, встречающихся в литературе, приводят в конечном счете к одним и тем же выводам, и в этом отношении равноценны.

Формулировка, приведенная в качестве первой, отличается тем, что в ней более ясно выступает общность второго начала термодинамики.

Согласно второму началу термодинамики, для того чтобы ответить на вопрос, возможно ли в изолированной системе то или иное превращение, необходимо рассчитать приращение энтропии при этом превращении, и если это приращение окажется положительным, то рассматриваемое превращение возможно, так как в результате его энтропия изолированной системы возрастает. Те же

процессы, при которых приращение энтропии оказывается отрицательным, в изолированной системе невозможны, поскольку при подобных процессах энтропия изолированной системы должна убывать.

Количественно в термодинамике определяется не энтропия, а разность энтропии, соответствующая какому-либо изменению состояния системы. Новая функция состояния - энтропия - обозначается буквой и согласно определению

Дифференциальное изменение энтропии определяется, таким образом, отношением дифференциально малого количества теплоты, полученного или отданного системой, к температуре, при которой происходит процесс. Для гого чтобы пояснить, как используются формулы (22) и (23), рассмотрим некоторые примеры.

1. Подсчитаем изменение энтропии при плавлении 1 кмоля льда. Удельная теплота плавления льда Плавление льда происходит при постоянной температуре 273° К, и поэтому в уравнении (23) выносится за знак интеграла который в данном случае будет равен количеству теплоты, необходимому для плавления одного киломоля льда.

Таким образом:

2. Один киломоль идеального газа занимает при давлении и температуре объем Определим изменение энтропии при равновесном переходе газа в состояние, характеризуемое параметрами состояния

Запишем первое начало термодинамики:

В случае идеального газа Подставив эти значения в уравнение первого начала, запишем его в виде:

Разделив это уравнение на и приняв во внимание определение энтропии (уравнение 22), получим:

Интегрируя уравнение в пределах от до найдем искомое решение:

Будем считать, что куски настолько велики, что при получении или потере изменением температуры можно пренебречь. Когда теплота переходит от тела более теплого к телу более холодному, общее изменение энтропии в системе составит:

Знак минус ставится в том случае, когда теплота отдается телом, и плюс, когда тело получает некоторое количество теплоты.

В случае, когда теплота переходит от тела более холодного к телу более теплому, общее изменение энтропии системы составит:

Таким образом, переход теплоты от тела более нагретого к телу более холодному сопровождается положительным приращением энтропии, и, следовательно, этот процесс в изолированной системе возможен. Наоборот, переход теплоты от более холодного тела к телу более теплому сопровождается отрицательным приращением энтропии, и, следовательно, в изолированной системе такой процесс невозможен.

В качестве второго примера рассмотрим изменение энтропии при изменении объема идеального газа. Изменение энтропии в этом случае выражается формулой:

Если изменение объема происходит изотермически:

т. е. изменение энтропии будет всегда положительно, когда конечный объем больше начального. Другими словами, идеальный газ, представляющий собой изолированную систему, будет самопроизвольно расширяться, стремясь занять весь предоставленный ему объем.

Выше были рассмотрены наиболее элементарные примеры применения второго начала для определения направления возможного процесса. Однако этот закон позволяет определить направление и более сложных процессов. Кроме того, он дает возможность предопределить, при каких именно условиях данный процесс будет протекать в желательном направлении.

Как известно, первое начало термодинамики отображает закон сохранения энергии в термодинамических процессах, однако оно не дает представление о направлении протекания процессов. Помимо этого можно придумать множество термодинамических процессов, которые не будут противоречить первому началу, но в реальной действительности таких процессов не существует. Существование второго закона (начала) термодинамики вызвано необходимостью установить возможность того или иного процесса. Этот закон определяет направление течения термодинамических процессов. При формулировке второго начала термодинамики используют понятия энтропии и неравенство Клаузиуса. В таком случае второй закон термодинамики формулируется как закон роста энтропии замкнутой системы, если процесс является необратимым.

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

где S - энтропия; L - путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

где k - постоянная Больцмана; w - термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Другие формулировки второго закона термодинамики

Существует ряд других формулировок второго закона термодинамики:

1) Формулировка Кельвина: Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Из данной формулировки второго закона термодинамики делают вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:

где - температура нагревателя; — температура холодильника; ( title="Rendered by QuickLaTeX.com" height="15" width="65" style="vertical-align: -3px;">).

2) Формулировка Клаузиуса: Невозможно создать круговой процесс в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.

Второй закон термодинамики отмечает существенное различие между двумя формами передачи энергии (работой и теплотой). Из этого закона следует, переход упорядоченного перемещение тела, как единого целого в хаотическое движение молекул тела и внешней среды - является необратимым процессом. При этом упорядоченное движение может переходить в хаотическое без дополнительных (компенсационных) процессов. Тогда как переход неупорядоченного движения в упорядоченное должен сопровождаться компенсирующим процессом.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоит суть проблемы «Тепловой смерти Вселенной»? Почему эта проблема является несостоятельной?
Решение Данная проблема была сформулирована в XIX веке. Если считать Вселенную замкнутой системой и пытаться применить к ней второй закон термодинамики, то по гипотезе Клаузиуса энтропия Вселенной достигнет некоторого максимума. То есть через некоторое время все формы движения станут тепловым движением. Вся теплота от тел с более высокой температурой перейдет к телам, имеющим более низкую температуру, то есть температуры всех тел Вселенной станут равны. Вселенная придет в состояние теплового равновесия, все процессы прекратятся — это называют тепловой смертью Вселенной. Ошибка данного положения о тепловой смерти Вселенной заключена в том, что второй закон термодинамики неприменим к незамкнутым системам, а Вселенную считать замкнутой не следует. Так как она является безграничной и состоит в бесконечном развитии.

ПРИМЕР 2

Задание Чему равно КПД цикла, который представлен на рис.1? Считайте, что в процессе участвует идеальный газ (число степеней свободы равно i) и его объем изменяется в n раз.

Решение Коэффициент полезного действия цикла, который представлен на рис.1 найдем как:

где — количество теплоты, которое рабочее тело получает от нагревателя в представленном цикле. В адиабатных процессах подвода и отвода тепла нет, получается, что тепло подводится только в процессе 1-2. — количество теплоты, которое отводится от газа в процессе 3-4.

Используя первое начало термодинамики, найдем количество тепла, полученное газом в процессе 1-2, который является изохорным:

так как изменения объема в данном процессе нет. Изменение внутренней энергии газа определим как:

По аналогии для изохорного процесса, в котором теплота отводится, имеем:

Подставим полученный результат (2.2 - 2.5) в выражение (2.1):

Используем уравнение адиабаты для нахождения разностей температур, и рассматривая рис.1. Для процесса 2-3 запишем:

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************