Восприятие звуков посредством воздушной проводимости начинается с. Исследование воздушной и костной проводимости звука, слуховые пробы вебера, ринне. Как делается аудиограмма

Несмотря на то, что технология костной проводимости звука известна издавна, для многих это - по-прежнему «диковинка», вызывающая целый ряд вопросов. Ответим на некоторые из них.

Спорт . Широко известны модели спортивных наушников и гарнитур с использованием данной технологии, так как это позволяет спортсменам слушать музыку, говорить по телефону, но при этом контролируя окружающую обстановку, так как ушные раковины остаются открытыми и способными воспринимать внешние звуки !

Военная отрасль . По той же причине устройства на базе технологии костной передачи звука используются среди военных, так как это позволяет им общаться, передавать друг другу сообщения, не теряя контроль над ситуацией, оставаясь восприимчивыми к звукам внешнего мира.

Дайвинг . Применение технологий костной передачи звука в «подводном мире» во многом обусловлено свойствами костюма, которые не предполагает возможности погружать с иными средствами связи. Впервые об этом додумались еще в 1996 году, о чем есть соответствующий патент . И среди наиболее известных пионерских устройств такого характера можно привести в пример разработки Casio .

Также технология применяется в различных «бытовых» сферах, на прогулках, во время поездок на велосипеде или в автомобиле в качестве гарнитуры.

Безопасно ли это

В обычной жизни мы постоянно сталкиваемся с технологией костной проводимости, когда что-то произносим: именно костная проводимость звука позволяет нам слышать звук собственного голоса, и, кстати, как более «восприимчивая» к низким частотам она и делает так, что на записи наш голос кажется нам выше.

Второй голос в пользу этой технологии - ее широкое применение в медицине. Учитывая же и факт, что барабанные перепонки более чувствительный орган, то использование устройств костной проводимости, например, наушников, еще более безопасно для слуха, нежели использование обычных наушников.

Единственный временный дискомфорт, который может ощутить человек - легкая вибрация, к которой быстро привыкаешь. Это основа технологии: звук через кость передается с помощью вибрации.

Открытые уши

Еще одно ключевое отличие от других способов передачи звука - открытые уши. Так как барабанные перепонки не участвуют в процессе восприятия, то раковины остаются открытыми, и данная технология людям без дефектов слуха позволяет слышать и внешние звуки, и музыку/телефонный разговор!

Наушники

Самый известный пример «бытового» использования технологии костной проводимости - наушники, и среди них первыми и самыми лучшими остаются модели и .


История компании говорит о том, что они не сразу вышли на широкую аудиторию пользователей, долгое время до того сотрудничая с военными. Наушники обладают выдающимися для такого класса устройств характеристиками и постоянно модернизируются.

Технические характеристики Aftershokz:

  • Тип динамиков: преобразователи для костной проводимости
  • Частотный диапазон: 20 Гц – 20 кГц
  • Чувствительность динамиков: 100 ±3 дБ
  • Чувствительность микрофона: -40 ±3 дБ
  • Версия Bluetooth: 2.1 +EDR
  • Совместимые профили: A2DP, AVRCP, HSP, HFP
  • Диапазон связи: 10 м
  • Тип батареи: литий-ионная
  • Время работы: 6 часов
  • Режим ожидания: 10 дней
  • Время зарядки: 2 часа
  • Цвет: черный
  • Вес: 41 грамм

Могут ли навредить слуху

Любые наушники могут навредить слуху на высокой громкости. Рисков с наушниками, которые работают на базе костной проводимости сильно меньше, так как не затрагиваются напрямую самые чувствительные органы слуха.

Можно ли прислонить обычные наушники к черепу и слушать звук

Нет, так не выйдет. Все наушники с технологией костной проводимости работают по особому принципу, когда звук передается с помощью вибрации, именно поэтому даже у проводных наушников есть дополнительный источник питания, встроенный аккумулятор.

Заменяют ли наушники слуховой аппарат

Наушники не усиливают звук, поэтому заменить слуховой аппарат они не могут, однако в ряде случаев нарушения воздушной проводимости звука, например, возрастных, такие наушники могут помочь отчетливей различать услышанное.

Существует множество различных диагнозов, которые люди получают посещая ЛОРа или сурдолога. Одна из характерных черт кондуктивной тугоухости -- большая разница между воздушной и костной проводимостями. Вот о ней и подробнее.

Существует множество медицинских терминов и определений тугоухости и они определенно полезны в постановке диагноза. Если же вопрос касается исправления слуха, то можно смотреть на определенно другие вещи. Характерной чертой кондуктивной тугоухости и главным отличием от нейросенсорной (или сенсоневральной) состоит в том, что просматривается слишком большая разница между костной и воздушной проводимостями. Затем это тщательно врачи проверяют. Именно в этом случае предлагают сделать операцию на ухе и возвратить слух -- но там слишком много нюансов и мало гарантий. Потому, предлагаю удостовериться, что проблема не сильно критична у доктора и приступить действительно к исправлению.

Обычная разница между костным и воздушным проводимостями слуха составляет от нескольких децибел до может 10дБ максимум. Зачастую до 5дБ. Главный же момент состоит в том, что в повседневной жизни человек непосредственно опирается всегда на воздушную проводимость. И когда разница достигает уже серьезных 20-30дБ -- дело обстоит явно плачевно.

Не смотря на то, что ситуация кажется малоприятной и более сложной, чем исправить НСТ -- это неправда. Кондуктивная тугоухость исправляется в разы скорее. Если в случае нейросенсорной тугоухости нужно двигать костное проведение слуха, а затем лишь воздушное -- тут уже половина работы сделана давно. Пока будет исправляться ошибка из-за которой такой большой костно-воздушный интервал имеет место быть, то и костная еще поднимется. Это самый простой вариант для исправления слуха из возможных.

А теперь более подробно об этом интервале. Любой звук, который слышит человек всегда переводится в "костную" проводимость, а затем в электрический сигнал для психики. Если же звук не мощный и не громкий он не может иметь явно "вибрирующей" составляющей и потому может восприниматься человеком лишь с помощью воздушного проведения -- мембраны. И те самые 20-40дБ разницы делают все буквально ужасным. Слабые и мало мощные звуки услышать катастрофически тяжело.

Если понаблюдать за людьми с такой проблемой, то можно много чему удивиться. Во-первых, когда звуки громкие и хоть сколько-нибудь мощные -- они все прекрасно слышат. Т.е. проблема тихой речи хоть и есть -- она не настолько масштабна. Да, они упускают детали звуков, но никаких шумов или чего-то неприятного не испытывают. Только неразборчиво порой слышно: потеря детализации.

Обычно такая большая разница между костной и воздушной проводимостями набирается долгие годы. Вначале было 5-10дБ, потом уже тяжелые 15-20дБ и более. Что же происходит за эти годы? Человек начинает сомневаться сможет ли он расслышать. С каждым днем он все больше сомневается и беспокоится о том, насколько детально услышит. Человек с конудктивной тугоухостью вроде бы и слышит, но вот для ума в плане распознавание речи -- крайне недостаточно. Привыкает не слышать, а вместо реальных звуков -- додумывать недостающие, продолжая волноваться и печалиться.

Конечно же, если забросить дело, то и костная проводимость уйдет вниз, будет падение повсюду. Но что можно сделать? Центральный ответ очень прост: перестать беспокоится по поводу слышно или нет, есть ли проблема с ушами или ее нет. Единственная причина почему такая разница имеет место быть -- это привычное беспокойство из-за того как слышно. Эта привычка мешает работать ушам в естественном ритме, да и занимают ум бесполезной работой под названием "сомнения".

Конечно же, нужно не боятся что-то не услышать. Следует внимательно наблюдать как слышно, замечать нестабильность ситуации. Обычно разница между костным и воздушным проводимостями звука сокращается крайне быстро, т.к. не имеет больших физиологических отклонений, которые надо было бы как-то изменить.

Стоит внимательно посмотреть на аудиограмму и увидеть, где же есть самая большая разница, а где и гораздо меньше. Все частоты отвечают за какую-то часть воспринимаемого мира. И исходя из аудиограммы можно увидеть, что кто-то сомневается больше всего в частотах характерных для шепота, кто-то в мужском речевом диапазоне. Отдельно стоит отметить ситуации, когда кто-то просто сомневается там, где слышит достаточно хорошо при определенно сильном падении слуха в другом месте.

В силу того, костную проводимость редко даже замеряют до 8кГц -- разница всегда наблюдается именно в деталях речевого диапазона. Но все то же будет верно и в случае проблем с высокими частотами.

Есть еще нюанс в том, что этот костно-воздушный интервал нужно не просто сократить, а привести в норму -- тогда будет слышно действительно хорошо. Пока он придет в норму, можно и общее падение устранить, если таковое наблюдается, подтягивая костную проводимость. Если сократить сам интервал на 10дБ из всего 25дБ -- то это не будет субъективно ощущаться глобальным прогрессом. Нужно не просто перестать сомневаться, но затем и привыкнуть использовать доступное, доводя дело до нормы или идеала.

Такое падение (с большим костно-воздушным интервалом) характерно для легких падений или уже в случае 3-4 степени НСТ. Во всех случаях есть прекрасная возможность заметив сомнения и волнения сократить падение на 20-25дБ, а порой и на 40дБ.

Сами сомнения порождают мысли и ум постоянно отвлекается на рассуждения вместо реальных звуков. И если не сомневаться как в физической возможности слышать, так и не мешать себе слушать -- все кардинально меняется.

Крымский государственный медицинский университет им. С.И. Георгиевского

Кафедра оториноларингологии и офтальмологии

Зав. кафедрой проф. Иванова Н.В.

Преподаватель доц. Завадский А.В.

на тему «Диагностика нарушений звукопроводящего и звуковоспринимающего аппаратов»

Подготовлен студенткой 4 курса

1 медицинского факультета 403 группы

Редзановой Т.

Симферополь, 2009-10-19


Слуховое восприятие

Слуховое восприятие обеспечивается с помощью воздушной и костной проводимости. Звуковые волны, распространяясь по воздуху (воздушная проводимость), достигают уха, проникают в наружный слуховой проход и вызывают колебания барабанной перепонки, которая приводит в движение молоточек, наковальню и стремя. Движения основания стремени вызывают изменения давления жидкости во внутреннем ухе, приводя к распространению волны на базальную мембрану улитки. Слуховые волоски волосковых клеток спирального органа, располагающегося на базальной мембране, внедрены в покровную мембрану и колеблются под влиянием передвигающейся волны. При каждом колебании волны базальная мембрана смещается, максимум этого смещения определяется частотой раздражающего тона. Высокочастотные тона вызывают максимальное смещение базальной мембраны у основания улитки. При уменьшении частоты колебаний точка максимального смещения сдвигается к верхушке улитки. О костной проводимости слуховые ощущения говорят в тех случаях, когда источник звуков, контактируя с костями черепа, вызывает их вибрацию, в том числе и в височной кости, что вызывает колебания волн в области базальной мембраны.

Колебания слуховых волосков волосковых сенсорных клеток вызывают некоторые биоэлектрические явления. Улитковые микрофонные, переменные электрические колебания, точно передающие частоту и интенсивность раздражающего тона, возникают примерно на 0,5 мс раньше потенциала действия VIII черепного нерва. Наличие данного латентного периода свидетельствует о том, что в месте соприкосновения волосковых клеток и дендритов улиткового нерва выделяется какой-то, пока не идентифицированный, нейротрансмиттер. Все нейроны улиткового нерва активируются при наличии раздражении определенной частоты и интенсивности. Этот феномен характерной или наилучшей частоты отмечают во всех отделах слухового пути: в верхних оливах, латеральной петле, нижних бугорках крыши среднего мозга, медиальном коленчатом теле и слуховой коре. При звуках низкой частоты отдельные слуховые волокна реагируют более или менее синхронно. При высоких частотах замыкание фазы происходит таким образом, что нейроны изменяются в ответ на отдельные фазы цикла звуковой волны. Интенсивность определяется уровнем активности отдельных нейронов, количеством активных нейронов и особенностью активируемых нейронов.

Нарушения слуха

Потерю слуха могут вызывать поражения наружного слухового прохода, среднего уха, внутреннего уха и проводящих путей слухового анализатора. В случае поражения наружного слухового прохода и среднего уха возникает кондуктивная тугоухость, при поражениях внутреннего уха или улиткового нерва - нейросенсорная тугоухость.

Кондуктивная тугоухость возникает в результате закупорки наружного слухового прохода ушной серой, инородными телами, при набухании выстилки прохода, стенозах и новообразованиях наружного слухового прохода. К развитию кондуктивной тугоухости приводят также перфорации барабанной перепонки, например при среднем отите, нарушения целостности слуховых косточек, например при некрозе длинной ножки наковальни вследствие травмы или инфекционных процессов, фиксация слуховых косточек при отосклерозе, а также скопление жидкости в среднем ухе, рубцы и опухоли среднего уха. Нейросенсорная тугоухость развивается в результате повреждений волосковых клеток кортиева органа, обусловленных шумовой травмой, вирусной инфекцией, применением ототоксических препаратов, переломами височной кости, менингитом, отосклерозом улитки, болезнью Меньера и возрастными изменениями. К развитию нейросенсорной тугоухости приводят также опухоли мостомозжечкового угла (например, акустическая невринома), опухолевые, сосудистые, демиелинизирующие и дегенеративные поражения центральных отделов слухового анализатора.

Методы исследования слуха

При осмотре обращают внимание на состояние наружного слухового прохода и барабанной перепонки. Тщательно осматривают полость носа, носоглотку, верхние дыхательные пути и оценивают функции черепных нервов. Кондуктивную и нейросенсорную тугоухость следует дифференцировать путем сравнения порогов слуха при воздушной и костной проводимости. Воздушную проводимость исследуют при передаче раздражении по воздуху. Адекватная воздушная проводимость обеспечивается проходимостью наружного слухового прохода, целостностью среднего и внутреннего уха, вестибулокохлеарного нерва и центральных отделов слухового анализатора. Для исследования костной проводимости к голове больного прикладывают осциллятор или камертон. В случае костной проводимости звуковые волны обходят наружный слуховой проход и среднее ухо. Таким образом, костная проводимость отражает целостность внутреннего уха, улиткового нерва и центральных проводящих путей слухового анализатора. Если имеется повышение порогов воздушной проводимости при нормальных пороговых значениях костной проводимости, то поражение, вызвавшее тугоухость, локализуется в наружном слуховом проходе или среднем ухе. Если имеется повышение порогов чувствительности воздушной и костной проводимости, то очаг поражения находится во внутреннем ухе, улитковом нерве или центральных отделах слухового анализатора. Иногда кондуктивная и нейросенсорная тугоухость наблюдаются одновременно, в этом случае будут повышены пороги как воздушной, так и костной проводимости, но пороги воздушной проводимости будут значительно выше, чем костной.

При дифференциальной диагностике кондуктивной и нейросенсорной тугоухости используют пробы Вебера и Ринне. Проба Вебера заключается в том, что ножку камертона устанавливают на голове больного по средней линии и спрашивают его, слышит ли он звучание камертона равномерно с обеих сторон, или же на одной из сторон звук воспринимается сильнее. При односторонней кондуктивной тугоухости звук сильнее воспринимается на стороне поражения. При односторонней нейросенсорной тугоухости звук сильнее воспринимается на здоровой стороне. Пробой Ринне сравнивают восприятие звука посредством воздушной и костной проводимости. Бранши камертона подносят к слуховому проходу, а затем ножку звучащего камертона устанавливают на сосцевидном отростке. Больного просят определить, в каком случае звук передается сильнее, посредством костной или воздушной проводимости. В норме звучание ощущается громче при воздушной проводимости, чем при костной. При кондуктивной тугоухости лучше воспринимается звучание камертона, установленного на сосцевидном отростке; при нейросенсорной тугоухости нарушены оба вида проводимости, однако в ходе исследования воздушной проводимости звук воспринимается громче, чем в норме. Результаты проб Вебера и Ринне вместе позволяют сделать вывод о наличии кондуктивной или нейросенсорной тугоухости.

Количественную оценку тугоухости проводят с помощью аудиометра - электрического прибора, позволяющего исследовать воздушную и костную проводимость с использованием звуковых сигналов различной частоты и интенсивности. Исследования проводят в специальной комнате со звукоизоляционным покрытием. Для того чтобы ответы больного основывались только на ощущениях со стороны исследуемого уха, другое ухо экранируют с помощью широкоспектральных шумов. Используют частоты от 250 до 8000 Гц. Степень изменения слуховой чувствительности выражают в децибелах. Децибел (дБ) равен десятикратному значению десятичного логарифма отношения силы звука, необходимой для достижения порога у данного больного, к силе звука, необходимой для достижения слухового порога у здорового человека. Аудиограмма - это кривая, отображающая отклонения слуховых порогов от нормальных (в дБ) для разных звуковых частот.

Характер аудиограммы при тугоухости часто имеет диагностическое значение. При кондуктивной тугоухости обычно выявляются довольно равномерное повышение порогов для всех частот. Для кондуктивной тугоухости с массивным объемным воздействием, как это бывает при наличии транссудата в среднем ухе, характерно значительное повышение порогов проводимости для высоких частот. В случае кондуктивной тугоухости, обусловленной тугоподвижностью проводящих образований среднего уха, например, вследствие фиксации основания стремени на ранней стадии отосклероза, отмечают более выраженное повышение порогов проводимости низких частот. При нейросенсорной тугоухости в целом имеется тенденция к более выраженному повышению порогов воздушной проводимости высоких частот. Исключение составляет тугоухость вследствие шумовой травмы, при которой отмечают наибольшее снижение слуха на частоту 4000 Гц, а также болезнь Меньера, особенно на ранней стадии, когда более значительно повышаются пороги проводимости низких частот.

Дополнительные данные позволяет получить речевая аудиометрия. Этим методом с использованием двусложных слов с равномерным ударением на каждом слоге исследуют спондеический порог, т. е. интенсивность звука, при которой речь становится разборчивой. Интенсивность звука, при которой больной может понять и повторигь 50% слов, называют спондеическим порогом, он обычно приближается к среднему порогу речевых частот (500, 1000, 2000 Гц). После определения спондеического порога исследуют дискриминационную способность с помощью односложных слов с громкостью звука на 25-40 дБ выше спондеического порога. Люди с нормальным слухом могут правильно повторить от 90 до 100% слов. Больные с кондуктивной тугоухостью также хорошо выполняют дискриминационную пробу. Больные с нейросенсорной тугоухостью не способны различать слова вследствие повреждения периферического отдела слухового анализатора на уровне внутреннего уха или улиткового нерва. При поражении внутреннего уха дискриминационная способность бывает снижена и составляет обычно 50-80% нормы, тогда как при поражении улиткового нерва способность различать слова значительно ухудшается и составляет от 0 до 50%.

Аудиограмма – это графическое изображение способности человека слышать звуки разных частот . Исследование, результатом которого является аудиограмма, называют аудиометрией. Пройти данную диагностическую процедуру можно в больницах, специализирующихся на проблемах слуха, у врача-аудиолога.

Основные показания для проведения аудиометрии:

  • снижение слуха;
  • частые воспаления уха у детей;
  • отосклероз (постепенное заполнение внутреннего уха костной тканью);
  • патологические состояния среднего уха у людей любого возраста;
  • профилактический медицинский осмотр (для некоторых профессий);
  • необходимость подбора слухового аппарата.

Что такое аудиограмма

Аудиограмма – это график, созданный в системе координат, в которой по горизонтали отмечены частоты звука, а по вертикали – пороги слышимости (величины звукового давления, то есть громкость звука). Для каждого уха составляется отдельная аудиограмма. График правого уха обычно рисуется красным цветом, а точки пересечения частот и громкости – крестиками, левого – синим цветом и кружочками соответственно.

Чтобы получить более полную картину о состоянии слуха пациента, врачи проверяют и воздушную, и костную проводимость звука. Воздушная проводимость отображает прохождение звука обычным путем (через ухо), костная – через мягкие ткани и кости черепа, минуя слуховой проход и среднее ухо. По каждой из них составляется график. Причем воздушная проводимость обозначается непрерывной линией, костная – пунктиром.

Как делается аудиограмма

Пациент с направлением на аудиометрию приходит к врачу на назначенное время. Готовиться к данному исследованию не надо. Перед началом диагностической процедуры пациенту обязательно проводится отоскопия – осмотр уха. Если наружное и среднее ухо, а также барабанная перепонка находятся в нормальном состоянии, начинается аудиометрия. В случае нахождения в ушах серных пробок, сначала следует удалить их, а потом уже продолжать обследование.

Для проверки воздушной проводимости пациенту надевают наушники, костной – вибрирующий аппарат на участки за ушами . Сначала проверяют, как слышит человек звуки стандартных частот, затем, если есть необходимость, в расширенном частотном диапазоне (от 125 до 20 тыс. Гц).

Через наушники или вибрирующее устройство компьютером поочередно подаются звуки разной частоты и интенсивности. Задача пациента во время исследования – нажимать на специальную кнопку или говорить врачу, когда будет отчетливо расслышан звук. Каждый сигнал, который передает обследуемый, компьютер запоминает, а потом преобразует в графики – аудиограммы.

В целом вся процедура аудиометрии длится около 30 минут. Она не вредна для здоровья, поэтому обследоваться человек может столько раз, сколько будет необходимо в ходе диагностики и лечения.

Аудиометрия у детей

Изучение слуха у маленьких детей имеет свои особенности: малыши не всегда могут сосредоточиться, нажать кнопку или сказать, что слышат звук. Поэтому у них применяют не тональную аудиометрию, методика которой была описана выше, а другие разновидности этого обследования:

  • рефлекторную;
  • игровую .

С помощью рефлекторной аудиометрии проверяют слух у совсем маленьких деток. Малышам подают звуковые сигналы интенсивностью, соответствующей возрастным нормам порога слуховой чувствительности, и фиксируют визуальную реакцию на них. Игровая же аудиометрия применяется у детей 2-3 лет. В ходе такой процедуры врач просит маленького пациента, когда он услышит звук, либо выполнять какое-то движение, либо брать игрушку. Вариаций может быть много.

Аудиометрия: нормы

В норме взрослый здоровый человек имеет плоскую аудиограмму, расположенную на уровне не ниже 25 дБ. Такой графике говорить о том, что обследуемый хорошо слышит звуки всех частот.

Обратите внимание

С возрастом правый край графика начинает постепенно опускаться, это значит, что человек начинает хуже слышать высокочастотные звуки.

Что касается разницы между костной и воздушной проводимостью, то в норме она не должна составлять более 10 дБ (изображение костной проводимости обычно расположено выше), а графики по форме должны быть приблизительно одинаковыми . Если же расстояние между этими графиками становится более 20 дБ, врачи диагностируют кондуктивную тугоухость – нарушение проведения звука, которое происходит до внутреннего уха. Если же интервал, наоборот, исчезает совсем (графики накладываются друг на друга), диагностируют сенсорную тугоухость , то есть расстройство восприятия звука рецепторами внутреннего уха. Если есть нарушения и там, и там, говорят про смешанную тугоухость .

Также стоит отметить и тот факт, что аудиометрия является абсолютно субъективным обследованием, результаты которого всецело зависят от ощущений и самочувствия пациента. Поэтому повлиять на вид аудиограммы могут всевозможные факторы :

  • настроение обследуемого;
  • величина артериального давления;
  • наличие отвлекающих моментов (например, шума в кабинете врача);
  • атмосферные явления.

Какие заболевания можно выявить с помощью аудиометрии

Первое, что оценивает врач, – это костно-воздушный интервал. По его величине можно определить, каким нарушением слуха страдает пациент: когнитивным, сенсорным или смешанным. Далее специалист рассматривает сами аудиограммы, обращая особое внимание на частоты, которые важны для восприятия речи. Это от 500 до 4000 Гц. Если на этих частотах график опускается ниже отметки 25 дБ, диагностируют тугоухость. Она имеет 4 степени выраженности, крайняя степень – глухота.

Среднее ухо состоит из барабанной полости, объем которой не превышает 1 см кубического. Внутри барабанной полости расположены три слуховые косточки: молоточек, стремечко и наковальня. Благодаря им осуществляется передача звуковых колебаний от барабанной перепонки. Колебания, при этом, усиливаются.
Интересным является тот факт, что вышеуказанные косточки – самые мелкие во всем скелете человека. Молоточек имеет рукоятку, благодаря которой соединен с барабанной перепонкой, и головку, которая связывает его с наковальней. Наковальня связана со стремечком, которое закрывает овальное окошко уже внутреннего уха. Не стоит забывать о том, что среднее ухо имеет соединение с носоглоткой благодаря евстахиевой трубе.
Основной функцией трубы является выравнивание давления с наружной и внутренней части барабанной перепонки.

Строение среднего и внутреннего уха

В случае воздушной проводимости звуковые волны попадают в наружный слуховой проход и вызывают колебания барабанной перепонки, передающиеся на слуховые косточки - молоточек, наковальню и стремечко; смещение основания стремечка, в свою очередь, вызывает колебания жидкостей внутреннего уха и затем - колебания основной мембраны улитки.

6.3.5 . Воздушная проводимость звука

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).


Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.