Величина солнечная постоянная для земли. Интенсивность солнечной радиации. Солнечная постоянная

Солнечная постоянная

Со́лнечная постоя́нная - суммарный поток солнечного излучения, проходящий за единицу времени через единичную площадку, ориентированную перпендикулярно потоку, на расстоянии одной астрономической единицы от Солнца вне земной атмосферы . По данным внеатмосферных измерений солнечная постоянная составляет 1367 Вт / ², или 1,959 кал /см²·мин.

Инструментальные измерения солнечной постоянной

Прямые инструментальные измерения солнечной постоянной стали производиться с развитием внеатмосферной астрономии, то есть с середины 1960-х, при проводившихся ранее наблюдениях с поверхности Земли приходилось вносить поправки на поглощение солнечного излучения атмосферой.

Вариации солнечной постоянной

Солнечная постоянная не является неизменной во времени величиной. Известно, что на её величину влияют два основных фактора: расстояние между Землей и Солнцем, изменяющееся в течение года по причине эллиптичности орбиты Земли (годичная вариация 6,9 % - от 1,412 кВт/м² в начале января до 1,321 кВт/м² в начале июля) и солнечная активность. Это влияние обусловлено, в основном, изменением потока излучения при изменении числа и суммарной площади солнечных пятен, при этом поток излучения меняется сильнее всего в рентгеновском и радиодиапазоне. Поскольку период прямых измерений солнечной постоянной относительно невелик, то её изменение на протяжении 11-летнего цикла солнечной активности (цикла Швабе), по-видимому, не превышает ~10 −3 , доля изменчивости в оптическом диапазоне, обусловленная вкладом солнечных пятен, оценивается ~10 −4 . Для оценки вариаций солнечной постоянной в течение более длительных солнечных циклов (циклы Хейла, Гляйсберга и пр.) данные прямых измерений отсутствуют.

В соответствии с современными моделями развития Солнца, в долгосрочной перспективе его светимость будет возрастать примерно на 1 % за 110 миллионов лет .

Влияние на климат Земли и косвенные методы измерения

Долгопериодические вариации солнечной постоянной имеют большое значение для климатологии и геофизики: несмотря на несовершенство климатических моделей, расчётные данные показывают, что изменение солнечной постоянной на 1 % должно привести к изменению температуры Земли на 1-2 .

Световая солнечная постоянная

Освещённость перпендикулярной потоку площадки, расположенной за пределами атмосферы на среднем расстоянии Земли от Солнца, в видимом диапазоне спектра называется световой солнечной постоянной. По оценке В. В. Шаронова середины XX века она равна 135000 люксов . В англоязычной литературе понятию «световая солнечная постоянная» соответствует термин «solar illuminance constant».

См. также

  • Солнечные циклы

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Солнечная постоянная" в других словарях:

    СОЛНЕЧНАЯ ПОСТОЯННАЯ, мера количества солнечной энергии, получаемой телом, находящимся на определенном расстоянии от Солнца. Для Земли солнечная постоянная определяется как солнечная энергия, получаемая на единицу площади в верхних слоях… … Научно-технический энциклопедический словарь

    Суммарный поток солнечного излучения, проходящий через единичную площадку, перпендикулярную направлению лучей и находящуюся вне земной атмосферы на расстоянии 1 а. е. от Солнца. Солнечная постоянная равна приблизительно 1370 Вт/м² … Большой Энциклопедический словарь

    См. Константа солнечная. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь Большая советская энциклопедия

    Суммарный поток солнечного излучения, проходящий через единичную площадку, перпендикулярную направлению лучей и находящуюся вне земной атмосферы на расстоянии 1 а. е. от Солнца. С. п. равна прибл. 1370 Вт/м2 … Естествознание. Энциклопедический словарь

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    У этого термина существуют и другие значения, см. Радиация (значения). В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомн … Википедия

Солнечная радиация. Плотность потока солнечного излучения, достигающего пределов земной атмосферы, составляет 1360 Вт/м2. Эта величина называется солнечной постоянной. На единицу площади всей поверхности атмосферы приходится в среднем 1 /4 солнечной постоянной. Дальнейшее распределение этого потока зависит от высоты Солнца над горизонтом, географической широты, состояния атмосферы и других факторов. Часть поступившей энергии отражается атмосферой в космическое пространство, другая часть поглощается толщей атмосферы и идет на ее нагревание. Итоговый радиационный баланс прихода солнечной энергии к поверхности земли составляет от 15 Вт/м2 в субполярных широтах до 120 Вт/м2 в тропических.[ ...]

Солнечная постоянная и оценка температуры Земли Солнечная постоянная й© определяется как плотность потока энергии солнечного излучения на среднем расстоянии от Земли до Солнца (за пределами земной атмосферы). Она пропорциональна потоку излучения с единицы, поверхности Солнца и отношению радиуса Солнца к расстоянию от Земли до Солнца. Теоретические оценки, связанные с моделью черного тела, т. е. с законом Стефана-Больцмана, дают 3© = (1373 ± 14) Вт/м2. Внеатмосферные измерения показали близкий результат 5© = = (1367 =Ь 6) Вт/м2.[ ...]

Поток солнечной энергии отличается большим постоянством. . Его интенсивность, подсчитанная для внешней поверхности воздушной оболочки Земли, равна 137 + 20 Вт/м2 и называется солнечной постоянной.[ ...]

Не вся солнечная радиация достигает поверхности Земли. За пределами атмосферы перпендикулярная к солнечным лучам поверхность получает энергию порядка 2,00 кал/см2 - мин (1,39 ■ 103 Дж/м2 с). Эта величина называется солнечной постоянной-, она слегка варьирует по сезонам года в соответствии с изменением удаления Земли от Солнца.[ ...]

СВЕТОВАЯ СОЛНЕЧНАЯ ПОСТОЯННАЯ. Освещенность, создаваемая солнечной радиацией на границе атмосферы на площадке, расположенной перпендикулярно лучам.[ ...]

Средний поток солнечной энергии на расстоянии среднего радиуса орбиты Земли называется солнечной постоянной 5о, имеющей величину порядка 1376 Вт/м2. Полная энергия, получаемая от Солнца в единицу времени, равна о, где Я - радиус Земли. Площадь поверхности Земли равна 4тгК2, поэтому среднее количество энергии, получаемое единицей площади Земли в единицу времени, равно 50/4. Часть падающей на Землю энергии а в результате рассеяния и отражения уходит безвозвратно в космическое пространство; число а называется альбедо Земли и имеет величину порядка 0,3 . Следовательно, средний поток поглощаемой энергии равен (1 - а)50 / 4.[ ...]

См. метеорологическая солнечная постоянная.[ ...]

АСТРОНОМИЧЕСКАЯ СОЛНЕЧНАЯ ПОСТОЯННАЯ. Солнечная постоянная в обычном значении этого термина, т. е. определенная при учете также и той солнечной радиации в ультрафиолетовой и инфракрасной областях спектра, которая целиком поглощается в высоких слоях атмосферы и потому не может быть про-экстраполирована по наземным наблюдениям.[ ...]

Значительная часть солнечной радиации, поступающей на Землю, охватывает диапазон волн в пределах 0,15-4,0мкм. Примерно половина радиации приходится на полосу длин волн между 0,38 и 0,87 мкм, видимую человеческим глазом и воспринимаемую как свет. Количество солнечной энергии, поступающее на поверхность Земли иод прямым углом, называемое солнечной постоянной, равно 1,4 -10 3 Дж/(м2-с) . Из 100 единиц коротковолновой солнечной энергии, достигающей атмосферы Земли, 19 единиц поглощаются ее компонентами, 34 единицы возвращаются в космос (отражение от облаков и поверхности Земли). Из 47 единиц, попадающих на Землю, 4 нагревают воздух, 2 нагревают почву, 1-участвует в фотосинтезе и 40-используется для испарения воды и процессов транспирации в растениях. Длинноволновая радиация практически целиком (96%) достигает поверхности Земли и отражается от нее также в виде длинноволновой, в интервале волн до 100 мк.[ ...]

Количество энергии солнечного излучения, поступающего к Земле (к верхней границе атмосферы), практически постоянно и оценивается значением 1370 Вт/м2. Эта величина называется солнечной постоянной. Однако приход энергии солнечного излучения к поверхности самой Земли существенно колеблется в зависимости от ряда условий: высоты Солнца над горизонтом, широты, состояния атмосферы и др. Форма Земли (геоид) близка к шарообразной. Поэтому наибольшее количество солнечной энергии поглощается в низких широтах (экваториальный пояс), где температура воздуха у земной поверхности, как правило, выше, чем в средних и высоких широтах. Приход энергии солнечного излучения в разные районы земного шара и ее перераспределение определяют климатические условия этих районов.[ ...]

Заметное уменьшение солнечной постоянной является причиной снижения температуры земной поверх-ности. В высоких широтах этот эффект, как можно видеть из рис. Уменьшение солнечной радиации на 1,6% может вызвать катастрофическое оледенение Земли. Причиной уменьшения солнечной радиации может быть снижение прозрачности земной атмосферы, которое, в свою очередь обусловлено присутствием в атмосфере частиц пыли.[ ...]

Хотя колебания общего солнечного излучения в широком диапазоне длин волн (солнечной постоянной) весьма незначительны (в пределах 1 % этой величины), изменения солнечной активности нередко оказываются связанными с различными процессами в атмосфере и климатическими изменениями. Так, по-видимому, изменения магнитного поля, связанные с изменениями границ солнечного ветра, сказываются на тропосферной циркуляции; изменения активности Солнца в масштабе единиц и десятков лет могут влиять на интенсивность засух в различных частях земного шара; долгопериодные (в масштабе столетий) колебания активности Солнца могут в значительной степени определять изменения типа «малого ледникового периода».[ ...]

ДОЛГИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОЛНЕЧНОЙ ПОСТОЯННОЙ. Определение солнечной постоянной на основании спектроболометрических измерений в нескольких десятках участков спектра при разных массах атмосферы. По этим данным, проэкстраполированным к массе, равной нулю, строят сглаженную кривую распределения энергии на границе атмосферы. Величина площади, ограниченной этой кривой, дополненная «инфракрасной» и «ультрафиолетовой» поправками, дает значение солнечной постоянной в условных единицах. Для перевода солнечной постоянной в абсолютные единицы служит сравнение с одновременными пиргелиометрическими измерениями. Ср. короткий метод определения солнечной постоянной.[ ...]

КОРОТКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СОЛНЕЧНОЙ ПОСТОЯННОЙ. Метод, позволяющий быстра определить величину солнечной постоянной. Сначала определяют спектральные коэффициенты прозрачности атмосферы по значению некоторой функции / величина которой вычисляется по запасу воды в атмосфере и по интенсивности околосолнечного сияния. По найденным величинам спектральных коэффициентов прозрачности и по данным спектроболометрических измерений строят кривую распределения энергии на границе атмосферы. Ср. долгий метод определения солнечной постоянной.[ ...]

ВНЕАТМОСФЕРНАЯ ИНТЕНСИВНОСТЬ СОЛНЕЧНОЙ РАДИАЦИИ. Интенсивность солнечной радиации на верхней границе атмосферы, меняющаяся в зависимости от изменения расстояния между Землей и Солнцем, в отличие от солнечной постоянной, рассчитанной для среднего расстояния Земли от Солнца.[ ...]

В настоящее время информация о солнечной постоянной, ее абсолютной величине и временной изменчивости получается по данным прецизионных измерений с помощью специальной аппаратуры на искусственных спутниках Земли, космических зондах и ракетах.[ ...]

Ранее, до реализации названных выше технологий, солнечную постоянную определяли путем экстраполяции измерений на разных высотах на внешнюю границу атмосферы.[ ...]

Источником почти всей энергии на Земле служит Солнце. Солнечная постоянная - полный поток радиации, поступающий за 1 мин на 1 см2 площади, перпендикулярной к направлению солнечных лучей, за пределами атмосферы, - равна 8,2 Дж/(см2- мин). Основное количество энергии Солнца поступает в виде коротковолновой радиации.[ ...]

Горные обсерватории имели особое значение в ранних исследованиях солнечной радиации и солнечной постоянной - среднего потока солнечной радиации, получаемой поверхностью, перпендикулярной к солнечным лучам, вне атмосферы при среднем расстоянии Земли от солнца.[ ...]

Отправной точкой рассмотрения радиационной энергетики системы океан-атмосфера является внеатмосферный интегральный поток солнечной радиации, приведенный к среднему расстоянию между Землей и Солнцем, называемый солнечной постоянной и колеблющийся в пределах „1322-1428 Вт/м2. Подавляющая часть энергии солнечного излучения лежит в области длин волн 0,3- 0,5 мкм. Исследованию солнечной постоянной полностью или частично посвящено большое количество работ обзорного и монографического характера . Во многих из них ставится под сомнение постоянство во времени солнечной постоянной. Обработка длинных временных рядов высокогорных, самолетных, аэростатных и спутниковых наблюдений показала условность этого термина. Так, 1000-суточный ряд наблюдений дал максимальный размах изменчивости 6,18 Вт/м2 при среднем значении 1372 Вт/м2 . В для средневзвешенного значения солнечной постоянной за период 1969-1981 гг. получено 1367,6 Вт/м2 при погрешности 0,3 %, а в называется на 1 % меньшее значение- 1353 Вт/м2. Кстати, однопроцентное изменение солнечной постоянной, согласно результатам численного моделирования , соответствует изменению средней глобальной температуры иа один градус. Например, ее спад в 1980 г. составил 0,04 % . Регрессионный анализ позволил установить тренды уменьшения солнечной постоянной 0,0255 % (0,049 % по другим данным) в год . Отмечается корреляция короткопериодных спадов с числом солнечных пятен.[ ...]

Главными источниками биологически используе-нергия мой энергии для подавляющего большинства живых существ на Земле являются солнечный свет и пища, в органических веществах которой аккумулирована солнечная энергия. Валовой ресурс солнечной энергии практически неисчерпаем. Ее доступность для земных потребителей обусловлена солнечной постоянной и климатом, а также первичной продукцией биосферы. Ресурсы небиологического использования энергии рассматриваются в гл. 6.[ ...]

Для стандартизации обработки данных и климатических расчетов на международных съездах принимались, естественно доказательно, значения солнечной постоянной с указанием погрешностей ее определения. Примером может служить решение в 1957 г. Международной актинометрической комиссии при ВМО и др. Ракетное зондирование и измерения с искусственных спутников Земли в период с 1976 г. по 1981 г. позволили измерить значение солнечной постоянной - 1367±4 Вт/м2. В настоящее время принято это ее значение. Но следует помнить, что в конкретный момент времени полная энергетическая освещенность солнечным излучением на верхней границе атмосферы колеблется в пределах ±3,5% в зависимости от положения Земли на ее орбите.[ ...]

Количество энергии, поступающей в определенный промежуток времени, определяет мощность энергетического потока. Мощность - скорость энергетического потока. Мощность солнечной энергии, приходящаяся на единицу поверхности Земли, определяется следующими факторами. Солнечная постоянная Ьс, равная количеству энергии солнечных лучей, поступающих в единицу времени на единицу площади, перпендикулярной к солнечным лучам и находящейся вне земной атмосферы на среднем расстоянии от Солнца, составляет 1360 Вт/м2. Средний поток солнечного излучения на единицу земной поверхности вне пределов атмосферы Ь3 относится к солнечной постоянной как площадь круг а к площади шара и соответствует Ь3= Ьс/4, т.е. 340 Вт/м2.[ ...]

На границе земной атмоо iL .-f/P феры с космосом радиация составляет от 1,98 до 2 кал/см2мин., или 136 МВТ/ см2 («солнечная постоянная»). Как видно на рисунке 4.1,42% всей пад ающей радиации (33%+9%) отражается атмосферой в космическое пространство, 15% поглощается толщей атмосферы и вдет на ее нагревание и только 43% достигает земной поверхности. Эта доля радиации состоит из прямой радиации (27%)-почта параллельных лучей, идущих непосредственно от Солнца и несущих наибольшую энергетическую нагрузи и рассеянной (диффузной) радиации (16%) - лучей, поступающих к - /У/ Земле со всех точек небосвода, рассеянных молекулами газов воздуха, капельками водяных паров, кристалликами лада, частицами пыли, атакже отраженных вниз от облаков. Обшую сумму прямой и рассеянной радиации назьгва-ют суммарной радиацией.[ ...]

Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42 - 70% солнечной постоянной (рис. 4.1). Проходя через атмосферу, солнечная радиация претерпевает ряд изменений не только в количественном отношении, но и по составу. Коротковолновая радиация поглощается озоновым экраном и кислородом воздуха. Инфракрасные лучи поглощаются в атмосфере водяными парами и диоксидом углерода. Остальная часть в виде прямой или рассеянной радиации достигает поверхности Земли (рис. 5.39).[ ...]

Пир! елиометрические данные, полученные спустя 30 лет Бюро погоды США на г. Эванс в штате Колорадо, дали значение 1349 Вт/м2 . Оба этих числа очень близки к современному значению, полученному при измерениях со спутников Высокогорные станции по-прежнему используются для исследования радиации. Разность между этим числом и солнечной постоянной объясняется поглощением в верхней атмосфере.[ ...]

ПРИВЕДЕННАЯ ИНТЕНСИВНОСТЬ РАДИАЦИИ. 1. К определенной массе атмосферы. Среднее (в данном месте) значение интенсивности прямой радиации при произвольно взятой массе атмосферы (высоте солнца). Может быть определена из величины солнечной постоянной /о по эмпирической формуле, построенной на основе многолетних наблюдений. П. И. Р. имеет большое значение при климатических характеристиках радиационных условий данного места.[ ...]

Описание изменения температуры климатической системы Земли принимает форму, подобную движению частицы в потенциальной яме. Отметим, что даже такое упрощенное представление приводит к выводу, что климат Земли является неоднозначным. Например, при данном значении солнечной постоянной и при существующем химическом составе сухого воздуха кроме современного климата мог бы иметь место совершенно другой климат, в частности, так называемый климат «белой Земли».[ ...]

Проблема ледниковых периодов еще долго будет оставаться в сфере интересов естествоиспытателей: она действительно сложна. На характер климата, а следовательно, и Оледенений Оказывают, конечно, большое влияние и космические факторы, такие как колебания земной оси, изменение величины солнечной постоянной и, наверное, многое другое. Но первостепенное значение имеют и локальные причины. И первым на это указал В. А. Кос-тицын. Изучение локальных механизмов особенно важно теперь, когда роль антропогенных факторов непрерывно растет. Вот почему та страница истории естествознания, которой принадлежит деятельность В. А. Костицына, уже относится к теории ноосферы.[ ...]

Земля вращается вокруг Солнца по мало растянутому эллипсу, в одном из фокусов которого находится Солнце.[ ...]

Так как текущее состояние океана и атмосферы является результатом их отклика на радиацию, получаемую от Солнца, хотелось бы знать, какая изменчивость имеется в этой радиации. Суммарное количество радиации, падающей на Землю в течение 1 года, зависит только от радиации, исходящей от Солнца. Эта радиация измеряется солнечной постоянной 5; ее фактическое значение определяется равенством (1.2.1). Измерения, проводимые начиная с 1920 года , показали отсутствие изменчивости, превышающей возможные погрешности измерений, так что за этот период 5 изменялось не более чем на 1 или 2%. Таким образом, гипотеза о постоянстве 5, что предполагается и в самом названии «солнечная постоянная», согласовывается с полученными по сей день наблюдениями, хотя другие возможности не исключаются. Однако количество радиации, падающей в отдельную точку на Земле, меняется в огромных пределах между днем и ночью и от сезона к сезону, и эти вариации несомненно важны для известной нам жизни. Так как акцент в этой книге делается на периоды, большие чем сутки, то суточные вариации не будут непосредственно рассматриваться. Однако важно подчеркнуть, что существование суточных вариаций может оказать воздействие на состояние атмосферы на более длительных периодах; величина эффекта зависит от амплитуды суточных вариаций. Воздух не является «неперемешиваемым» ночыо, так что суммарный эффект существенно отличен от того, который достигается при постоянной радиации.[ ...]

При всем разнообразии температурного режима в разных климатических зонах и в разных ландшафтах на Земле основные источники поступления энергии и ее потерь остаются всегда теми же самыми. Однако их эффективность может меняться в зависимости от различных событий планетного масштаба, что ведет к тем или иным изменениям климата. Наиболее мощный и постоянный источник энергии, поступающей на планету - излучение Солнца. Интенсивность потоков световой и тепловой, в виде инфракрасного излучения, энергии, падающей на Землю от Солнца, практически остается постоянной. Величину энергии излучения на расстоянии в 1 астрономическую единицу от ¿олнца, то есть на среднем расстоянии Земли от Солнца, называют солнечной постоянной. Она составляет 1,95 кал/см2 мин. В течение года интенсивность потока энергии, падающей на Землю, несколько меняется вследствие того, что орбита, по которой планета движется вокруг Солнца, имеет эллиптическую форму, хотя и близкую к круговой.


СОЛНЕЧНАЯ АКТИВНОСТЬ

ИСТОРИЧЕСКИЕ ЭТАПЫ В ИЗУЧЕНИИ МНОГОЛЕТНИХ ВАРИАЦИЙ
СОЛНЕЧНОЙ АКТИВНОСТИ

В.М. Федоров

Московский государственный университет имени М.В. Ломоносова

Обобщены результаты истории изучения многолетних вариаций солнечной активности за четыре столетия. В истории исследований выделены два основных направления: история наблюдений солнечной активности (с начала XVII века до настоящего времени) и история непосредственных измерений (с начала XX века до настоящего времени). При этом история измерений многолетних вариаций солнечной активности (солнечной постоянной) подразделяется на хронологические этапы, отражающие различные физико-технические уровни измерений (с земной поверхности, из атмосферы, из космоса).

Солнце излучает энергию, которая обеспечивает Землю теплом и светом. Лучистая энергия Солнца является основным источником энергии гидрометеорологических и многих других процессов, происходящих в атмосфере, гидросфере, на земной поверхности. Энергия Солнца является важнейшим фактором развития жизни на Земле, обеспечивая необходимые для жизни термические условия и фотосинтез. Поэтому изучение изменений инсоляции имеет важное значение для исследования происходящих в географической оболочке Земли процессов, причин формирования и изменения климатических условий существования жизни на планете.

Годовой приход солнечной радиации на верхнюю границу атмосферы Земли составляет 5,49 10 24 Дж. (Дроздов и др., 1989; Хромов, Петросянц, 2006; Абдусаматов, 2009 ). Этот приход не является постоянным, он подвержен многолетним и вековым вариациям. Вариации приходящей к Земле лучистой энергии в основном определяются двумя причинами, имеющими различную физическую природу. Одной из причин является изменение активности в излучении Солнца. Другой причиной, определяющей изменение приходящей к Земле энергии, являются небесно-механические процессы, вызывающие изменения элементов земной орбиты (Миланкович, 1939; Монин, 1980; Монин, Шишков, 2000 ) и наклона оси вращения. В соответствии с этими причинами, в разделе «Солнечная активность» излагается история изучения вариаций, связанных с изменением излучающей активности Солнца. В разделе «Астрономическая теория климата» рассматривается история изучения вариаций, связанных с небесно – механическими процессами, и современное состояние этого вопроса.

1.Наблюдения солнечной активности

В истории исследований излучательной способности Солнца (солнечной активности) можно выделить два основных этапа. Первый (с начала XVII до настоящего времени) отражает научные наблюдения за состоянием солнечной активности. Второй (с начала XX века до настоящего времени) этап включает еще и непосредственные измерения солнечной радиации. Эти основные этапы подразделяются на отдельные исторические фрагменты, маркируемые во времени характерными реперами, отражающими моменты определенных технических достижений в области наблюдения и измерения солнечной активности.

Относительно регулярные наблюдения Солнца ведутся на протяжении более четырех столетий. В результате этих наблюдений был определен 11-ти летний цикл солнечной активности, проявляющийся в квазипериодическом изменении числа солнечных пятен и составляющий основу представлений о Солнце и многих явлениях солнечно – земной физики (рис. 1). Эта цикличность в образовании пятен на Солнце является наиболее известным эффектом; она достаточно хорошо документирована и в астрономии представляет собой широко наблюдаемое явление. Однако, следует отметить, что непрерывные и достаточно точные ряды наблюдений солнечных пятен имеются только для периода немногим более ста лет. Данные для эпохи ранее 1850 года оказываются в значительной степени неопределенными. Для более отдаленных эпох существует мало или вообще нет доказательств того, что современный 11-ти летний цикл – постоянное солнечное явление (Эдди, 1980 а, б ). Тем не менее, солнечные пятна – это наиболее легко наблюдаемый индикатор уровня солнечной активности и источник наиболее длительно регистрируемых непосредственных данных об истории активности Солнца (Витинский и др.. 1976; Витинский, 1983; Foukal, 2004 ).

Достоверно известно, что телескоп был изобретен в Голландии в 1608 году. Исследование небесных объектов с помощью телескопа начали почти одновременно английский математик Томас Гарриот, немецкий ученый Симон Мариус и Галилео Галилей. Свои первые телескопические наблюдения Галилей обнародовал в начале 1610 года в книге «Sidereus Nuntius» («Звездный вестник»). Это были результаты телескопических наблюдений Луны, открытие четырех спутников Юпитера. Также Галилеем наблюдались в телескоп Венера и Сатурн. Ряд телескопических наблюдений завершился открытием темных пятен на Солнце. По собственному утверждению Галилея, он впервые заметил их в конце 1610 года (Берри, 1904 ) но, по-видимому, не обратил на них особенного внимания (в письме от 4 мая 1612 года он пишет, что наблюдал их восемнадцатью месяцами ранее; в «разговоре о двух системах» он отмечает, что видел их еще в то время, когда читал лекции в Падуе, т.е. не позже сентября 1610 года). Однако формальное объявление об открытии пятен на Солнце было сделано Галилеем в мае 1612 года, когда это открытие было сделано независимо от него Томасом Гарриотом в Англии, Иоаном Фабрицием в Голландии и иезуитом Христофором Шейнером в Германии и обнародовано Фабрицием в июле 1611 года (Берри, 1904 ). Именно Шейнеру принадлежит честь открытия факелов. Кроме того, он произвел ряд наблюдений над движениями и появлением пятен (Берри, 1904 ).

О цикличности проявления солнечных пятен не было известно до 1843 г., когда немецкий астроном – любитель Генрих Швабе указал на явную 10-ти летнюю периодичность, выявленную на основании его 17-ти летних наблюдений. Это открытие, тем не менее, оставалось незамеченным до тех пор, пока известный немецкий географ Александр Гумбольдт не опубликовал выводы Швабе (по 25-ти летним наблюдениям) в своем многотомном труде «Космос», изданном в 1851 году (Гумбольдт, 1866; Силкин, 1967; Максимов и др., 1970 ).

С учетом полученных Швабе (и ставших известными) результатов, была разработана международная программа наблюдений Солнца (продолжающихся в настоящее время). Основной целью этой программы стали исследования и наблюдения для определения того, является ли найденная Швабе цикличность реальным и непрерывным эффектом. Инициатором и организатором этих наблюдений был Рудольф Вольф из цюрихской обсерватории (его показатель чисел солнечных пятен – индекс или числа Вольфа – используется и в настоящее время). Вольф провел обширные исследования исторических данных о регистрации солнечных пятен для определения существования цикла в прошлом. После длительных и целенаправленных исследований им были собраны исторические доказательства, относящиеся к промежутку времени между наблюдениями Швабе и открытием пятен при помощи телескопа (в начале XVII в.). Вольф пришел к заключению, что 11-ти летний цикл действительно существовал, начиная с 1700 г., а возможно, и раньше. Восстановленные им числа солнечных пятен за этот ранний период признаны реальными во всех последующих работах, посвященных истории Солнца. Более половины данных, приведенных на рис. 1, являются результатом этих исследований Вольфа.

Относительное число солнечных пятен (индекс Вольфа – W) вычисляется, как сумма числа пятен (a) и удесятеренного числа всех групп пятен (b), т.е. W= a+10b (Эйгенсон и др.. 1948; Витинский, 1983 ). Или R = k (f + 10g) где f – число отдельных пятен, которые объединяются в g групп, k – эмпирический коэффициент (Кондратьев, 1954, 1965; Бакулин и др.. 1983; Абдусаматов, 2009 ). Важность этого индекса определяется, во-первых, его простотой. Во-вторых, тем, что его значения, благодаря работам Вольфа, известны с 1700 года – годичные данные или с 1749 г. – месячные данные (Chernosky, Hagan, 1958; Эйгенсон, 1963; Кондратьев, 1965; Климишин, 1976 ).

Около 160 лет назад было установлено, что 11-ти летний цикл солнечной активности проявляется не только в изменении числа солнечных пятен (факельных площадок и солнечных вспышек), но и в изменении во времени широты групп пятен (рис. 2). В 1852 году три исследователя: Эдуард Сабин в Англии, Рудольф Вольф и Альфред Готье из Швейцарии независимо друг от друга обратили внимание на определенное соответствие между периодическими изменениями солнечных пятен и земными магнитными явлениями. Кроме того, выяснилось, что их периоды одинаковы, и неизменно случается так, что в эпохи с большим количеством солнечных пятен на Земле отмечаются сильнейшие магнитные бури. Также совпадают и периоды ослабления этих явлений (Берри, 1904 ).

Это распределение было изучено английским исследователем Солнца Ричардом Кэррингтоном (результаты опубликованы в 1863 году в монографии «Наблюдение пятен на Солнце») из Королевской обсерватории Гринвича (Royal Greenwich Observatory). Он обнаружил, что в начале 11-ти летнего цикла пятна обычно появляются в относительно высоких широтах (в среднем на расстоянии ± 25°–30° от солнечного экватора), тогда как в конце цикла они концентрируются вблизи экватора (в среднем на широтах ± 5°–10°). Позже (1880 г.) этот эффект был детальнее исследован немецким ученым Густавом Шпёрером. Оказалось, что среднюю продолжительность 11-ти летнего цикла можно гораздо точнее определить по изменению широты групп солнечных пятен, чем по вариациям чисел Вольфа. Исследования Кэррингтона и Шперера, показывающие характер изменения широты групп пятен в ходе 11-ти летнего цикла числа пятен, наряду с открытием Швабе – Вольфа 11-ти летнего цикла образования пятен, представляют основные, достоверно известные закономерности в многолетней изменчивости солнечной активности (Эйгенсон и др., 1948; Витинский, 1983; Foukal, 2004; Абусаматов, 2009 ).

В конце XIX века Густав Шпёрер и Эдвард Маундер при изучении архивов наблюдения Солнца обратили внимание на приблизительно 70-ти летний период (с середины XVII века), когда сообщений о солнечных пятнах практически не было (Eddy, 1976; Сун, Яскелл, 2008 ). В опубликованных позже статьях Маундер сделал вывод о том, что в течение этого времени примерно с 1645 по 1715 гг., нормальный солнечный пятнообразовательный цикл был полностью или почти полностью подавлен. Он указал, что это явление, если оно реально, заставляет сомневаться в отношении постоянного характера 11-ти летнего цикла солнечной активности.

Более поздние исследования этого вопроса подтвердили справедливость вывода Маундера и выявили некоторые дополнительные факты, неизвестные во времена Маундера (например, по изучению частоты полярных сияний, для которой характерна высокая корреляционная связь с уровнем солнечной активности и др.). В течение всего периода (с 1645 по 1715 гг.) солнечная активность характеризовалась уровнями более низкими, чем минимумы современных циклов (Сун, Яскелл, 2008 ). Поскольку относительные значения чисел пятен в этот период изменялись в пределах от 0 до 5, не представляется возможным выделить их максимальное значение, и вопрос о существовании 11-ти летнего цикла для этого периода, таким образом, остается открытым.

Регулярные наблюдения магнитных полей солнечных пятен, отрытых в начале прошлого столетия (1913 г.) американским астрономом Дж. Хейлом, привели к признанию реальности 22-х летнего цикла солнечной активности. Для 14-го (по цюрихской нумерации) цикла Хейл определил, что полярность магнитных полей ведущих (хвостовых) пятен северного (южного) полушария Солнца изменяется на противоположную при переходе от одного 11-ти летнего цикла к другому (Струве и др., 1967 ). Первоначальная полярность восстанавливается, следовательно, через 22 года. В дальнейшем такие изменения наблюдались в течение всех последующих 11-ти летних циклов. В нечетных (по цюрихской нумерации) циклах полярность магнитного поля ведущих пятен групп северного полушария положительная (северная), а в четных циклах – отрицательная (южная). В южном полушарии отмечается противоположная картина (Anderson, 1939 ).

Таким образом, 11-ти летний и 22-х летний циклы солнечной активности считаются (для настоящего времени) надежно установленными. Существование более длинных циклов солнечной активности является пока предположением. Так, например, рядом исследователей выделяется вековой (80 – 90-летний) цикл солнечных пятен – цикл Глейсберга (Gleissberg, 1958; Эйгенсон, 1963; Абдусаматов, 2009 ). Наиболее четко 80 – 90-летняя вариация выделяется по сумме среднегодовых чисел Вольфа в 11-ти летнем цикле или по максимальным их значениям. С 1749 года по среднегодовым относительным числам пятен было выделено два минимума и три максимума вековых циклов. Согласно цюрихской нумерации 11-ти летних циклов, минимумы были в 6-м и 14-м циклах, а максимумы в 3-м, 9-м и, вероятно, в 19-м циклах. При разложении чисел Вольфа на их основные составляющие – число групп пятен и среднюю продолжительность их существования, оказывается, что первая в основном показывает изменения со средним периодом 11 лет, а вторая – со средним периодом 80 – 90 лет. Из этого следует, что 11-ти летний цикл характерен для частоты явлений солнечной активности, а вековой – для их мощности (амплитуды). Однако окончательно вопрос о существовании вековой вариации солнечной активности не решен. Отдельными исследователями отмечается существование вариаций солнечной активности и с более длительными периодами, например 200-летний цикл Зюсса (Schove, 1955; Абдусаматов, 2009 ).

В настоящее время ряд организаций проводит сбор данных и регулярные наблюдения солнечного цикла, и подсчет числа пятен на Солнце. Например, Solar Influences Data Analysis Center (SIDC) в Бельгии (http://www.sidc.be ; http://www.icsu-fags.org/ps11sidc.htm). В этом отделе физики Королевской обсерватории определяется так называемое международное число солнечных пятен – International Sunspot Number. Кроме этого, подсчет числа пятен ведется в National Oceanic and Atmospheric Administration (NOAA) в США (http://www.noaa.gov). Число пятен, определяемых в Национальном управлении океанических и атмосферных исследований, имеет название NOAA sunspot number.

2.Измерения солнечной постоянной

Мерой приходящей на верхнюю границу атмосферы солнечной радиации является солнечная постоянная. Под солнечной постоянной понимается суммарный поток солнечного излучения, проходящий за единицу времени через единичную площадку, ориентированную перпендикулярно потоку на расстоянии 1 а.е. от Солнца вне земной атмосферы (Кондратьев, 1965; Перрен де Бришамбо, 1966; Алисов, Полтараус, 1974 ). Солнечная постоянная определяется соотношением:

где - постоянная Стефана – Больцмана, – астрономическая единица, – радиус Солнца, – эффективная температура фотосферы (Абдусаматов, 2009). По нашему мнению, правильнее было бы называть солнечную постоянную интенсивностью суммарного потока солнечного излучения.

История измерений солнечной постоянной включает измерения с земной поверхности, из атмосферы (с самолетов и аэростатов) и внеатмосферные измерения (со спутников и ракет) (Поток энергии Солнца и его изменения, 1980). В метеорологии радиометрические измерения начались в конце XIX столетия. Для решения проблемы точности и обеспечения возможности сравнения результатов измерений на различных приборах и на различных станциях были введены специальные радиометрические шкалы. В течение многих лет эти стандарты или шкалы подвергались ряду ревизий, отражающих усовершенствования в радиометрии. До середины прошлого столетия обычно использовались две такие шкалы: Онгстрёма (1905 г.) и Смитсонианская шкала (1913 г.). Накануне Международного геофизического года была введена новая Международная пиргелиометрическая шкала (МПШ, 1956), основанная на этих шкалах.

В начале прошлого столетия в Смитсонианской астрофизической обсерватории началось проведение серии высокогорных измерений солнечной постоянной. Согласно полученным (более чем за полвека) данным, вариации солнечной постоянной составили от 0,1 до 1%. Проведенными измерениями также обнаружено долговременное увеличение (тренд) среднего значения солнечной постоянной примерно на 0,25% за 50 лет (Abbot, 1957 ). Анализ полученных результатов за четыре солнечных цикла (с 1908 по 1952 гг.) показал, что пределы возможных вариаций солнечной постоянной находятся в диапазоне ± 1% (от средней величины солнечной постоянной). Это было подтверждено и повторным анализом полученных в Смитсонианской обсерватории результатов. Средняя многолетняя величина солнечной постоянной, полученная в Смитсонианской обсерватории, составила 1,94 кал/см 2 мин или 1352 Вт/м 2 (Кондратьев, 1965, Макарова и др., 1991 ).

Исторически первые прямые измерения солнечной постоянной вне тропосферы были выполнены в Ленинградском университете в 1961 году (группой под руководством К.Я. Кондратьева). Комплекс приборов поднимался аэростатом на высоту до 32 км. Всего до 1967 года было проведено 28 подъемов аэростата. Методика наблюдений и результаты подробно изложены в ряде публикаций (Кондратьев, 1965; Кондратьев и др., 1966; Кондратьев, Никольский, 1970, 1982; Макарова, Харитонов, 1972; Поток энергии Солнца и его изменения, 1980 ). В результате этих измерений была обнаружена весьма заметная вариация солнечной постоянной (2,5%), вероятно, связанная с ошибками в измерениях. Среднее значение солнечной постоянной по результатам всего комплекса измерений составило 1356 ± 14 Вт/м 2 .

В 1966 году Лабораторией реактивного движения (Калифорнийский технологический институт) и лабораторией Эппли была предложена программа измерений солнечной постоянной, в рамках выполнения которой Драммондом (Drammond) было получено среднее значение солнечной постоянной по результатам шести полетов на реактивном исследовательском самолете NASA равное 1359 ± 13 Вт/м 2 . В 1968 году Кендaлл (Kendall) провел измерения с радиометром PACRAD c борта самолета NASA. Окончательное значение, полученное в результате этих измерений, оказалось равным 1373 ± 14 Вт/м 2 . Среднее значение по всем измерениям с самолетов составило 1378 ± 26 Вт/м 2 .

В период 1968 – 1969 гг. Р. Уилсоном (Willson) также были проведены аэростатные измерения солнечной постоянной. Среднее значение солнечной постоянной (по трем аэростатным измерениям) составило 1373 ± 14 Вт/м 2 . В 1969 году им же было выполнено определение солнечной постоянной вблизи максимума цикла № 20 и получено значение равное 1369 Вт/м 2 . Точность аэростатных измерений оценивается величиной 0,2 – 0,5% (Willson, 1972, 1973, 1978; Фрёлих, 1980 ).

Измерения вариаций солнечной постоянной с использованием космических аппаратов обладают большей достоверностью, прежде всего, в связи с тем, что они проводятся за пределами земной атмосферы. Эти измерения, во-первых, исключают атмосферную экстинкцию (поглощение и рассеяние) и, во-вторых, осуществляются в течение многих суток. Первое длительное измерение солнечной постоянной за пределами земной атмосферы выполнено в эксперименте, поставленном Лабораторией реактивного движения на искусственных спутниках Земли «Маринер – 6» и «Маринер – 7» в 1969 году. Измерения показали, что величина солнечной постоянной не изменялась больше, чем в пределах точности измерений (около ± 0,25%) вблизи максимума солнечного цикла, причем в течение этого времени суточное число солнечных пятен принимало как экстремально большие, так и экстремально малые значения (Уилсон, Хики, 1980; Willson et al., 1980; Макарова и др., 1991 ).

В соответствии с реализацией программы эксперимента «Радиационный баланс Земли» (ERB), проведенного с борта космического аппарата «Нимбус – 6», запущенного в 1975 г., были получены значения солнечной постоянной в диапазоне от 1388 до 1392 Вт/м 2 . В 1976 году проводились одновременные измерения солнечной постоянной с зондирующей ракеты (высота около 100 км) и космического аппарата «Нимбус – 6». Среднее значение по ракетным данным составило 1376 ± 7 Вт/м 2 , по данным космического аппарата – 1376 ±14 Вт/м 2 . С учетом поправок абсолютное значение определяется в 1367 Вт/м 2 . Эта величина сравнима со значением 1369 Вт/м 2 , полученным Уилсоном в 1969 г. Поскольку эти два измерения, совершенные в минимуме и максимуме солнечной активности, согласуются в пределах ошибок абсолютного радиометра, то это показывает, что солнечная постоянная оставалась неизменной в пределах 0,75% в течение второй половины цикла № 20 (Уилсон, Хики, 1980 ). Среднее значение скорректированных величин солнечной постоянной, полученных при измерениях с помощью самолетов, ИСЗ «Маринер - 6», «Маринер - 7», «Нимбус – 6» и ракет («Аэроби»), составило для периода 1962 – 1980 гг. 1369 ± 6 Вт/м 2 (Макарова и др., 1991 ). Данные ракетных наблюдений солнечной постоянной, проведенных в 1976 году с помощью четырех абсолютных радиометров различной конструкции, приводятся в работе Кондратьева и Никольского (1982). Значение, осредненное по записям трех согласованных радиометров, оказалось равным 1367±6 Вт/м 2 .

По оценкам Фрёлиха (Frohlich), основанным на обзоре всех измерений, выполненных с помощью самолетов, аэростатов и космических аппаратов, наиболее вероятное значение солнечной постоянной равно 1373 ± 20 Вт/м 2 (Фрёлих, 1980 ). Это среднее сравнимо со средневзвешенным значением 1370 ± 1 Вт/м 2 , которое было получено по всем измерениям, включая данные ракетного эксперимента в 1976 г. и исправленные данные эксперимента ERB («Нимбус – 6»). При учете всех данных за 1976 г. величина солнечной постоянной была заключена в диапазоне 1368 – 1379 Вт/м 2 . При этом отмечается, что данные измерений с аэростата и самолета заметно отличаются от данных космических измерений (табл. 1).

Табл. 1. Сравнение результатов определения солнечной постоянной,
полученных различными экспериментальными методами (Фрёлих, 1980 ).

Числа в скобках соответствуют стандартным отклонениям от средневзвешенных значений. Измерения при помощи самолета производятся на высотах 10 – 12 км, на аэростатах – 20 – 36 км.

Начиная с запуска американских спутников «Нимбус – 7» (1978 г.), а затем и SMM (1980 г.), оснащенных полостными радиометрами (радиометр H – F из серии ЕРБ и активный полостной радиометр АКРИМ соответственно), начался новый этап в измерении солнечной постоянной (рис.3)

Впервые за всю историю определения солнечной постоянной ее измерения достигли точности в сотые доли процента (Willson, 1978, 1982, 1984 а, б; Willson, Hudson, 1988, 1991; Pap., Frohlich, 1999; Willson et al., 1981; Frohlich et al., 1991; Livingston et al., 1991; Frohlich, 1988, 1989, 2000 ). Совершенствование измерений солнечной постоянной в это время определяется в основном тремя факторами: усовершенствованием измерительных приборов (пиргелиометры) и увеличением точности каждого измерения; выносом приборов за пределы атмосферы (чем полностью устранен важнейший источник ошибок наземных наблюдений – атмосферная экстинкция); автоматизацией наблюдений и широким применением компьютерной техники. В результате достигнута высокая внутренняя точность наблюдений на одном и том же спутниковом приборе в ± 0,3 – 0,7 Вт/м 2 , что составляет 0,02 – 0,05% значения солнечной постоянной (Макарова и др., 1991 ). Необходимость такой точности определяется полученными результатами, подтверждающими весьма малые изменения потока солнечного излучения.

При достигнутой внутренней точности и обязательном применении контроля чувствительности оказалось возможным определить точное значение солнечной постоянной и наблюдать ее вариации – суточные, недельные и более долговременные (например, спутниковые наблюдения в экспериментах по измерению солнечной постоянной для программы NASA по исследованию активного Солнца и для космической программы «Шатл»). При этом, наиболее информативный материал был получен с «Нимбуса – 7» (запущен в ноябре 1978 года) и SMM – Solar Maximum Mission (запущен в феврале 1980 года). Абсолютное значение солнечной постоянной в рассматриваемый период было заключено в пределах 1367 – 1373 Вт/м 2 , а среднее значение – 1370,59 Вт/м 2 – в шкале прибора ЕРБ на «Нимбусе – 7» и 1370,62 Вт/м 2 – на SMM. Определено уменьшение солнечной постоянной от максимума 21-го цикла (1980 г.) к его минимуму (1986 г.) примерно на 0,15%, или 2 Вт/м 2 . Годовой ход в среднем составил 0,02% (Willson, 1984 a, б; Макарова и др., 1991 ).

К настоящему времени получен непрерывный ряд непосредственных измерений солнечной постоянной, выполненных несколькими специальными космическими аппаратами с 1978 года (Chapman et al., 1996; Willson, 1997; Willson, Mordvinov, 2003 ). Эти (технически сложные) измерения выполнены для трех полных циклов солнечной активности (21 – 23) и продолжаются в текущем 24 цикле (рис. 4).

Амплитуда 11-ти летних сглаженных циклических вариаций солнечной постоянной, по данным этих измерений, составляет около 1,0 Вт/м 2 , или приблизительно 0,07% от среднего значения солнечной постоянной (рис. 4). Среднее для минимумов (21 – 23 циклы) значение составляет 1365,458 ± 0,016 Вт/м 2 , среднее значение солнечной постоянной для 22-го цикла равно 1365,99 Вт/м 2 , для 23-го цикла – 1365,82 Вт/м 2 (Абдусаматов, 2009 ; http://www.pmodwrc.ch/).

В настоящее время с учетом того, что солнечная постоянная не является неизменной величиной, ее определение изменилось. Полное количество солнечной энергии по всему спектру, падающее за единицу времени на единицу площади, перпендикулярную солнечным лучам, на среднем расстоянии Земли от Солнца за пределами земной атмосферы (под которым ранее понималась солнечная постоянная) теперь обозначается как TSI (суммарный или общий поток излучения, хотя по нашему мнению, это его интенсивность). Под солнечной постоянной понимается среднее многолетнее значение TSI, общего потока излучения. Принятое IPCC значение солнечной постоянной составляет 1361 Вт/м 2 (Koop, Lean, 2011; Frohlich, 2012; Koop et al., 2012 ). Реконструированные значения TSI (Lean et al., 1995) рекомендуются IPCC в проекте физико-математических моделей климата CMIP-5 в качестве данных радиационного блока (http://solarisheppa.geomar.de/cmip5). Они представлены с годовым разрешением по времени с 1610 г. и с месячным разрешением с 1882 г. Реконструкция выполнена на основе данных радиометрических наблюдений с 1978 г. (рис. 4), чисел Вольфа (рис. 1) и чисел факельных вспышек (Lean et al., 1995 ). Среднее многолетнее значение TSI, по данным реконструкции, составляет 1361 Вт/м 2 (Koop, Lean, 2011 ). То есть, в качестве входного энергетического сигнала в современных моделях климата используются данные реконструированные по вариациям солнечной энергии, физическую природу которых (до 1978 года) составляет изменение активности Солнца.

Следует отметить, что поиски связи 11-ти летней вариации с изменениями климатических характеристик, геофизическими и биофизическими параметрами проводились на протяжении всего периода с момента обнаружения этого цикла солнечной активности (т.е. полутора столетий). Результаты этих исследований представлены в многочисленных публикациях. Однако, в связи с получением малых значений амплитуды солнечной постоянной в 11-ти летнем цикле и нестабильностью амплитудно-периодических характеристик, интерес к исследованию солнечно-земных связей в этом диапазоне в настоящее время существенно снизился. Кроме отсутствия перспектив по модуляции климатических изменений 11-ти летней вариацией солнечной постоянной, снижению ее значимости способствовали возрастающая неоднозначность прямых корреляционных сопоставлений при удлинении рядов наблюдений, а также отсутствие убедительных доказательств существования этого цикла в прошлом (его устойчивости во времени). Кроме того, следует обратить внимание на то, что увеличение или сокращение интенсивности приходящей солнечной радиации в разных фазах 11-ти летнего цикла по широтам распределяется правильным образом. В фазе высокой активности приход радиации увеличивается во всех широтных зонах по закону косинуса (убывая от экватора к полюсам). В фазе низкой активности, приход радиации сокращается во всех широтах в соответствие с законом косинуса. Поэтому этот цикл, с амплитудой в настоящее время около 1 Вт/м 2 , вероятно, мало влияет на сезонные и широтные различия в инсоляции. А именно с этими различиями в инсоляции Земли связано само определение климата. Однако если активность Солнца будет существенно возрастать или ослабевать (как в минимуме Маундера, например) то, вероятно, отклик климатической системы Земли на эти изменения станет заметным.

Литература

Абдусаматов Х.И. Солнце диктует климат Земли. – СПб.: – Логос, 2009. – 197 с.
Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. – М.: Наука, 1983. – 560 с.
Берри А. Краткая история астрономии. – М.: Типография И.Д.Сытина, 1904. – 606 с.
Витинский Ю.И. Солнечная активность. – М.: Наука, 1983. – 192 с.
Гумбольдт А. Космос (опыт физического мироописания). – М.: Братья Салаевы, 1866. – 408 с.
Дроздов О.А., Васильев Н.В., Раевский А.Н., Смекалова Л.К., Школьный В.П. Климатология. – Л.: Гидрометеоиздат, 1989. – 568 с.
Климишин И.А. Астрономия наших дней. – М.: Наука, 1976. – 456 с.
Кондратьев К.Я. Лучистая энергия Солнца. – Л.: Гидрометеоиздат, 1954. – 600 с.
Кондратьев К.Я. Актинометрия. – Л.: Гидрометеоиздат, 1965. – 692 с.
Кондратьев К.Я., Никольский Г.А., Есипова Е.Н. Аэростатные исследования радиационных потоков в свободной атмосфере // Известия АН СССР. – Физика атмосферы и океана, 1966. – т. 2. – № 4. – с. 380 – 393.
Кондратьев К.Я., Никольский Г.А. Вариации солнечной постоянной по аэростатным исследованиям в 1962–1968 гг. // Известия АН СССР. – Физика атмосферы и океана, 1970. – т. 6. – № 3. – с. 227 – 238.
Кондратьев К.Я., Никольский Г.А. Стратосферный механизм солнечного и антропогенного влияния на климат / Солнечно-земные связи, погода и климат. – М.: Мир, 1982. – с. 354 – 360.
Макарова Е.А., Харитонов А.В., Казачевская Т.В. Поток солнечного излучения. –М.: Наука, 1991. – 400 с.
Макарова Е.И., Харитонов А.В. Распределение энергии в спектре Солнца и солнечная постоянная. – М.: Наука, 1972. – 288 с.
Максимов И.В., Саруханян Э.И., Смирнов Н.П. Океан и космос. – Л.: Гидрометеоиздат, 1970. – 216 с.
Поток энергии Солнца и его изменения / Ред. О.P. Уайт. – М.: Мир, 1980. – 560 с.
Силкин Б.И. Земля и Солнце. М.: Просвещение, 1967. – 102 с.
Струве О., Линдс Б., Пилланс Э. Элементарная астрономия. – М.: Наука, 1967. – 468 с.
Сун В., Яскелл С. Минимум Маундера и переменные солнечно-земные связи. – М. – Ижевск, НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2008. – 336 с.
Уилсон Р.К., Хики Дж.Р. Ракетные измерения солнечной постоянной в 1976 г. и данные об изменении потока солнечной энергии за время цикла № 20 / Поток энергии Солнца и его изменения. – М.: Мир, 1980. С. 128 – 133.
Федоров В.М. Теоретический расчет межгодовой изменчивости солнечной постоянной // Астрономический вестник, т. 46, № 2, 2012, с. 184 – 189.
Фрёлих К. Современные измерения солнечной постоянной / Поток энергии Солнца и его изменения. Ред. О. Уайт. – М.: Мир, 1980. – с. 110 – 127.
Хромов С.П., Петросянц М.А. Метеорология и климатология. – М.: МГУ, 2006. – 582 с.
Эдди Дж.А. Интегральный поток солнечной энергии / Поток энергии Солнца и его изменения. Ред. О. Уайт. – М.: Мир, 1980 а. – с. 32 – 36.
Эдди Дж.А. Исторические свидетельства существования цикла солнечной активности / Поток энергии Солнца и его изменения. Ред. О. Уайт. – М.: Мир, 1980 б. – с. 64 – 87.
Эйгенсон М.С. Солнце, погода и климат. – Л.: Гидрометеоиздат, 1963. – 276.
Эйгенсон М.С., Гневышев М.Н., Оль А.И., Рубашев Б.М. Солнечная активность и ее земные проявления. – М.–Л.: Гостехиздат, 1948. – 286 с.
Abbot C.G. Weather and solar variation // J. Solar Energy Sci. and Eng., 1957. – v. 1. – pp. 3 – 5.
Anderson S.N. A representation of the sunspot cycle // Bell. System Tech. J., 1939. –v. 18. – pp. 292 – 299.
Chapman G.A., Cookson A.M., Dobias J.J. Variations in total solar irradiance during solar cycle 22 // J. Geophys. Res., 1996. – v. 101. – pp. 13541 – 13548.
Chernosky E.J., Hagan M.P. The Zurich sunspot number and its variations for 1700–1957 // J. Geophys. Research, 1958. – v. 63 (4). – pp. 775 – 788.
Eddy J.A. The Maunder Minimum // Science, 1976. – v. 192. – pp. 1189 – 1202
Foukal P.V. Solar astrophysics. – 2nd rev. ed. – Weinheim: Wiley-VCH, 2004. – 480 p.
Frohlich C., Foukal P.V., Hickey J.R., Hudson H.S., Willson R.C. Solar irradiance variability from modern measurements / The Sun in Time. – Univ. of Arizona Press. – Tucson., AZ., 1991. – pp. 11 – 29.
Frohlich C. Observations of irradiance variability // Space Science Reviews, 2000. – v. 94. – pp. 15 – 24.
Frohlich C. Variability of the solar constant. – In: Long and Short-Term Variability of Climate. – New York.: Springer – Verlag, 1988. – pp. 6 – 17.
Frohlich С. Solar Irradiance Variability // Atmospheric Research., 1989. – v. 23. – pp. 379 – 390.
Gleissberg W. The eighty-year sunspot cycle // J. Brit. Astron. Assoc., 1958. – v. 68. –pp. 148 – 152.
http://science.nasa.gov
http://www.sidc.be
Livingston W., Donnely R., Grigoryev V., Demidov M., Lean J., Steffen M., White O., Willson R. Total irradiance variability 1980–1988 / The Sun as a Star. Ed. By W. Livingston. – Univ. of Arizona Press. – Tucson, AZ, 1991. – pp. 1109 – 1160.
Pap J.M., Frohlich C. Total solar irradiance variations // Journal of Atmospheric and Solar-Terrestrial Physics, 1999. – v. 61. pp. 15 – 24.
Schove D.J. The sunspot cycle, 649 B.C. to A.D. 2000. // J. Geophys. Research, 1955. –v. 60. – pp. 127 – 146.
Willson R.C. Accurate solar «constant» determinations by cavity pyrheliometers // J. Geophys. Res., 1978. – 83 (C8). – pp. 4003 – 4007.
Willson R.C. Experimental comparisons of the International Pyrheliometric Scale with the Absolute Radiation Scale // Nature, 1972. – 239. – pp. 208 – 223.
Willson R.C. New radiometric techniques and solar constant measurements // J. Solar Energy, 1973. – 14. – pp. 203 – 207.
Willson R.C., Duncan C.H., Geist J. Direct measurement of solar luminosity variation // Science, 1980. – 207. – pp. 177 – 229.
Willson R.C. Solar irradiance variations and solar activity // J. Geoph. Res., 1982. – 86. – pp. 4319 - 4326.
Willson R.C. Measurement of solar total irradiance and its variability // Space Science Reviews, 1984 a. – 38. – pp. 203 – 242.
Willson R.C. Solar total irradiance observations by the SMM/ACRIM I experiment, solar irradiance variations on active region timescales. – NASA Conference publication 2310. – 1984 б. – pp. 1 – 42.
Willson R.C., Hudson H.S. Solar luminosity variations is solar cycle 21 // Nature, 1988. – 332. – pp. 810 – 812. DOI: 10.1038/332810a0.
Willson R.C., Hudson H.S.The Sun’s luminosity over a complete solar cycle // Nature, 1991. – 351. – pp. 42 – 44.
Willson R.C., Gulkis S., Janssen M., Hudson H.S., Chapman G.A. Observations of solar irradiance variability // Science, 1981. – 211. – p. 700.
Willson R.C., Mordvinov A.V. Secular total solar irradiance trend during solar cycles 21 and 22 // Geophys. Res. Let., 2003. – 30. – 1199–1202. DOI: 10.1029/2002GL016038
Willson R.C. Total solar irradiance trend during solar cycles 21 and 22 // Science, 1997. – 277. – pp. 1963 – 1965. DOI: 10.1126/science.277.5334.1963.
http://www.pmodwrc.ch/
http://www.tesis.lebedev.ru/

Для многих задач астрофизики и геофизики важно знать точную величину мощности солнечного излучения. Поток излучения от Солнца принято характеризовать так называемой солнечной постоянной, под которой понимают полное количество солнечной энергии, проходящей за 1 минуту через перпендикулярную к лучам площадку в 1 см2, расположенную на среднем расстоянии Земли от Солнца. Согласно большому количеству измерений, значение солнечной постоянной Q в настоящее время известно с точностью до 1%: Q = 1,95 кал/см2× мин = 1,36 ×106 эрг/см2× сек = 1360 вт/м2. Умножая эту величину на площадь сферы с радиусом в 1 а.е., получим полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т. е. его интегральную светимость, равную 3,8×1033 эрг/сек. Единица поверхности Солнца (1 см2) излучает 6,28×1010 эрг/см2× сек. На основании большого числа тщательных измерений можно сказать, что интегральная светимость Солнца отличается исключительным постоянством. Если и существуют слабые колебания солнечной постоянной, то они должны быть заведомо меньше 1%. У поверхности Земли поток солнечного излучения уменьшается из-за поглощения и рассеяния в земной атмосфере и в среднем составляет 800−900 вт/м2. Измерение солнечной постоянной - очень сложная задача, требующая проведения целой серии тщательных наблюдений с приборами двух различных типов. Приборы первого типа называются пиргелиометрами. Их задача - измерить в абсолютных энергетических единицах полное количество солнечной энергии, падающей за определенное время на площадку известной величины. Однако показание пиргелиометра не дает еще непосредственного значения солнечной постоянной из-за того, что часть излучения Солнца поглощается при прохождении сквозь земную атмосферу. Чтобы учесть это поглощение, одновременно с измерениями на пиргелиометре проводят серию измерений распределения энергии в спектре Солнца на другом приборе - спектроболометре, обладающем одинаковой чувствительностью к лучам различных длин волн. Эти измерения проводятся для нескольких значений зенитных расстояний Солнца, когда его лучи проходят сквозь различную толщину слоя воздуха. Для каждой длины волны можно построить в виде графика зависимость интенсивности солнечного излучения от воздушной массы (126). Воздушной массой называется отношение оптической толщины слоя воздуха в данном направлении и в направлении на зенит. Из геометрических соображений (127) видно, что для плоскопараллельных слоев атмосферы воздушная масса пропорциональна секансу зенитного расстояния (sec z). Продолжая (экстраполируя) график, изображенный на 126, до оси ординат (пунктирная линия), получаем интенсивность, какую имело бы излучение, если бы воздушная масса равнялась нулю. Это и есть искомое значение интенсивности, не искаженное поглощением в земной атмосфере. Выполняя эту операцию для всех участков спектра, можно записанное спектроболометром распределение энергии в спектре Солнца (128) исправить и учесть поглощение, вызванное прохождением сквозь земную атмосферу. В отличие от пиргелиометра, спектроболометр дает значения интенсивности только в относительных единицах. Поэтому описанным способом можно найти лишь отношение наблюдаемого и внеатмосферного значений интенсивности. Площадь, ограничиваемая кривой распределения энергии и осью абсцисс (см. 128), пропорциональна полной энергии, излучаемой во всем спектре. Поэтому отношение площадей, ограниченных внеатмосферным и наблюдаемым распределением энергии, равно тому поправочному множителю, на который необходимо умножить показание пиргелиометра, чтобы получить истинное значение солнечной постоянной. К полученному результату следует прибавить небольшую поправку, учитывающую излучение в областях спектра, полностью поглощаемых земной атмосферой и, следовательно, не регистрируемых болометром. Это излучение расположено в ультрафиолетовой и инфракрасной областях спектра и может быть измерено по наблюдениям с ракет, искусственных спутников или баллонов. Заатмосферные наблюдения позволяют сразу получить истинное значение солнечной постоянной, так что необходимость применения описанной методики в последние годы постепенно отпадает.

Понятие о солнечной радиации

Солнечная радиация (солнечное излучение) – это вся совокупность солнечной материи и энергии, поступающей на Землю. Солнечная радиация состоит из следующих двух основных частей: во-первых, тепловой и световой радиации, представляющей собой совокупность электромагнитных волн; во-вторых, корпускулярной радиации.

На Солнце тепловая энергия ядерных реакций переходит в лучистую энергию. При падении солнечных лучей на земную поверхность лучистая энергия снова превращается в тепловую энергию. Солнечная радиация, таким образом, несет свет и тепло.

Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.

В связи с тем, что в географической оболочке один вид энергии (лучистая энергия) эквивалентно переходит в другой вид (тепловая энергия), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).

Интенсивность солнечной радиации должна быть прежде всего определена за пределами атмосферы, так как при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.

Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см 2 , перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см 2 черной поверхности, перпендикулярной солнечным лучам.

Солнечная постоянная равна 1, 98 кал / (см 2 х мин), или 1, 352 кВт/ м 2 х мин.

Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, то есть в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной. Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см 2 х мин), или 1,32 – 1, 34 кВт / (м 2 х мин).

Солнечная постоянная, вопреки своему названию, не остается постоянной. Солнечная постоянная изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они непременно сказываются на погоде и климате.

В среднем каждый квадратный километр тропосферы получает в год 10,8 х 10 15 Дж. (2,6 х 10 15 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).



8.5.Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере

Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата, важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.

Количество солнечного тепла и света, поступающее на единицу площади, определяется углом падения углом падения лучей, зависящим от высоты Солнца над горизонтом, и продолжительностью дня.

Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем реальное распределение у земной поверхности.

При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см 2 (322 ккал/см 2), а на полюсах 5 560 МДж/м 2 (133 ккал/см 2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.

Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.

Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м 2 (161 ккал/см 2), а на полюс около 5 560 МДж/м 2 (133 ккал/см 2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.

В день солнцестояния полюс получает тепла даже больше, чем экватор (46,0 МДж/м 2 (1,1 ккал/см 2) и 33.9 МДж/м 2 (0,81 ккал/см 2).

Таким образом, солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь ввиду, что зимой полюсы вообще не нагреваются Солнцем.

Реальный климат всех широт во многом обязан земным факторам. Главнейший из них – ослабление радиации в атмосфере, и разное усвоение е земной поверхностью в различных географических условиях.