Важнейшие открытия средневековья в области науки и техники. Научные открытия и изобретения в Средние века. Наука в Средние века


Математика

Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).

Известен трактат «Книга о механике», принадлежащий знаменитым астрономам и математикам Багдадской школы – трем братьям Бану Муса (IX-Х вв.). Из среднеазиатских ученых следует назвать, прежде всего, математика IX в. Абу Абдаллу Мухаммеда бен-Муса аль-Хорезми (787 — ок. 850), работавшего в эпоху просвещенного халифа аль-Мамуна. Именно благодаря его сочинениям в арабском мире распространилась индийская позиционная система и цифровая символика с нулем, воспринятая впоследствии европейской математикой. Также Хорезми описывает арифметические действия с целыми числами и дробями. В переработанной им «Арифметике» Диофанта – «Книге о восстановлении и противопоставлении» («Китаб аль-джебр аль-Мукабалла») — были приведены два основных правила решения линейных и квадратных уравнений, а также употреблен термин «ал-джебр» для обозначения всей науки о решении уравнений (алгебре). Последующие за Хорезми ученые развили новые идеи, заимствовав их, в свою очередь, у индийских математиков, и в XII в. Великий хорезмийский ученый – энциклопедист Абу-р-Рейхан аль-Бируни (973 — ок. 1050) создал фундаментальные работы по математике, астрономии, ботанике, географии, общей геологии, минералогии и другим наукам. Ученый широко применял математический анализ. В области математики он решил задачи деления угла на три части, удвоения куба и т.д.

Астрономия

Переведенный главный труд Клавдия Птолемея «Великое астрономическое построение», получивший по-арабски название «Ал-Маджисти» (переведенный с арабского на латинский язык под названием «Альмагест») стал для арабских ученых основой космологии, применявшейся на протяжении последующих 500 лет. В IX-Х вв. арабские ученые аль-Баттани и Абу аль-Вафа провели самые точные для того времени астрономические измерения, позволившие им составить астрономические таблицы.

В VIII-XV вв. в арабских странах появились так называемые зиджи — справочники для астрономов и географов с описанием календарей, указанием хронологических и исторических дат, тригонометрическими и астрономическими таблицами. Кроме того, арабы создали лунный календарь, включивший 28 «лунных станций», каждая из которых имела метеорологические характеристики.

Мухаммед ибн Ахмед аль-Бируни производил также точные астрономические измерения. Бируни наблюдал и описал изменение цвета Луны при лунных затмениях и явление солнечной короны при полных затмениях Солнца. Он высказал мысль о движении Земли вокруг Солнца и считал геоцентрическую теорию весьма уязвимой. Им было написано обширное сочинение об Индии и переведены на санскритский язык «Начала» Евклида и «Альмагест» Птолемея. Астрономические исследования средневековых арабских ученых вместе с другими достижениями арабской науки и техники становились позднее известными в Европе и стимулировали развитие европейской астрономии.

География

Большое практическое значение имели достижения арабов в области география. Арабские путешественники и географы расширили представления об Иране, Индии, Цейлоне и Средней Азии. С их помощью Европа впервые познакомилась с Китаем, Индонезией и другими странами Индокитая. Известные работы географов-путешественников:
— «Книга путей и государств» Ибн Хордадбека, IX в.
— «Дорогие ценности» – географическая энциклопедия Ибн Руста (начало Х в.)
— «Записка» Ахмеда Ибн Фадлана с описанием путешествия в Поволжье, Заволжье и Среднюю Азию
— 20 трактатов Масуди (X в.)
— «Книга путей и царств» Истахри
— 2 карты мира Абу-Абдаллаха аль-Идриса
— многотомный «Словарь стран» аль-Кинди Якута
— «Путешествие» Ибн Баттуты.

Примечательно, что Ибн Баттута за 25 лет своих путешествий прошел по суше и морю около 130 тысяч км. Он посетил все мусульманские владения в Европе, Азии и Византии, Северную и Восточную Африку, Переднюю и Среднюю Азию, Индию, Цейлон и Китай, обошел берега Индийского океана. Он пересек Черное море и от Южного берега Крыма проехал к низовьям Волги и устью Камы.

Уже упоминавшийся нами Бируни производил географические измерения. Он определил угол наклона эклиптики к экватору и установил его вековые изменения. Для 1020 г. его измерения дали значение 23°34’0". Современные вычисления дают для 1020 г. значение 23°34’45". Во время путешествия в Индию Бируни разработал метод определения радиуса Земли. По его измерениям, радиус Земли оказался равным 1081,66 фарсаха, т. е. около 6490 км. В измерениях участвовал Аль-Хорезми. При Аль-Мамуне была предпринята попытка замерить окружность Земли. С этой целью ученые измерили градус широты вблизи Красного моря, что составляет 56 арабских милей, или 113,0 км, отсюда длина окружности Земли равнялась 40680 км.

Физика

Выдающимся ученым Египта был Ибн-аль-Хайсам (965-1039), известный в Европе под именем Алхазена, математик и физик, автор знаменитых трудов по оптике. Алхазен развивает научное наследие древних, производя собственные эксперименты и конструируя для этого специальные приборы. Он разработал теорию зрения, описал анатомическое строение глаза и высказал предположение, что приемником изображения является хрусталик. Точка зрения Алхазена господствовала до XVII в., когда было выяснено, что изображение появляется на сетчатке. Отметим, что Алхазен был первым ученым, знавшим действие камеры-обскуры, которую он использовал как астрономический прибор для получения изображения Солнца и Луны. Алхазен рассматривал действие, плоских, сферических, цилиндрических и конических зеркал. Он поставил задачу определения положения отражающей точки цилиндрического зеркала по данным положениям источника света и глаза.

Математически задача Алхазена формулируется так: по данным двум внешним точкам и окружности, расположенным в одной плоскости определить такую точку окружности, чтобы прямые, соединяющие ее с заданными точками, образовывали равные углы с радиусом, проведенным к искомой точке. Задача сводится к уравнению четвертой степени. Алхазен решил ее геометрически.

Алхазен занимался исследованием преломления света. Он разработал метод измерения углов преломления и показал экспериментально, что угол преломления не пропорционален углу падения. Хотя Алхазен не нашел точной формулировки закона преломления, он существенно дополнил результаты Птолемея, показав, что падающий и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным из точки падения луча. Алхазену было известно увеличивающее действие плоско-выпуклой линзы, понятие угла зрения, его зависимость от расстояния до предмета. По продолжительности сумерек он определил высоту атмосферы, считая ее однородной. В этих предположениях результат получается неточным (до Алхазену, высота атмосферы 52 000 шагов), но сам принцип определения является большим достижением средневековой оптики. «Книга оптики» Алхазена была переведена на латинский язык в XII в. То, что Алхазен есть не кто иной, как арабский ученый Ибн аль-Хайсам, выяснилось только в XIX в.

Математик, астроном и географ аль-Бируни, родившийся на территории современного Узбекистана в 973 году, написал 146 работ общим объемом 13 тысяч страниц, включая пространное социологическое и географическое исследование Индии. Мухаммед ибн Ахмед аль-Бируни производил точные определения плотностей металлов и других веществ с помощью изготовленного им «конического прибора». «Конический прибор» Бируни представлял собой сосуд, суживающийся кверху и оканчивающийся цилиндрической шейкой. Посредине шейки было проделано небольшое круглое отверстие, к которому была припаяна изогнутая трубка соответствующего размера. В сосуд наливали воду. Куски металла, плотность которого определялась, опускали в сосуд, из которого через изогнутую трубку выливалась вода в объеме, равном объему исследуемого металла. Шейка была достаточно узкой («шириной с мизинец»), чтобы «подъем воды был заметен и при опускании того, что по объему равно зерну проса». Сама же трубка после ряда опытов была заменена желобком, чтобы вода по нему стекала без задержки. По измерениям Бируни плотность золота, переведенная на современные единицы измерения, равна 19,5, ртути -13,56. Особое значение для развития минералогии имел обширный труд Бируни "Собрание сведений о познании драгоценных минералов", в котором он подробно описал более 50 минералов, руд, металлов, сплавов. Им были написана также книга «Минералогия».

Замечательны практические указания, приведенные Бируни о воде, применяемой при определениях плотности. Он указывает на необходимость пользоваться водой из одного и того же источника, в одних и тех же условиях «в связи с воздействием на ее свойства четырех времен года и зависимостью ее от состояния воздуха». Таким образом, Бируни знал, что плотность воды зависит от содержания в ней примесей и от температуры.

При сравнении с современными данными результаты Бируни оказываются весьма точными. Русский консул в Америке Н.Ханыков в 1857 г. нашел рукопись аль-Хазини под названием «Книга о весах мудрости». В этой книге приведены извлечения из книги Бируни «Об отношениях между металлами и драгоценными камнями в объеме», содержащие описание прибора Бируни и полученные им результаты. Аль-Хазини продолжал исследования, начатые Бируни, с помощью специально сконструированных им весов, которые он назвал «весами мудрости».

Медицина


Авиценна родился в 980 году, а умер в 1037 году. Начав с профессии финансового инспектора в налоговом управлении, он пришел к должности визиря.

Несмотря на раннюю смерть вследствие чрезмерной работы и удовольствий, его труды внесли значительный вклад в развитие медицины. Его основное медицинское произведение, «Канон врачебной науки» включает философию, гигиену, патологию, терапию и медицинский материал. Здесь он так хорошо описал болезни, как до него еще никто их не описывал. Переведенные на большинство языков мира, произведения Авиценны на протяжении шестисот лет были универсальным медицинским кодексом; они послужили основой для медицинских исследований во всех университетах Франции и Италии. Их повторно печатали до XVIII века, и прошло не более полувека с тех пор, как их перестали комментировать в университете Монпелье. Не меньше, чем науку Авиценна любил удовольствия, а их излишества, как мы уже упоминали ранее, сократили его дни; это наводит нас на мысль о том, что вся его философия не смогла ему принести мудрость, равно как и его медицинская наука – здоровье.

Абу Бакр Мухаммед ар-Рази, известный багдадский хирург, дал классическое описание оспы и кори, применял оспопрививание. Сирийская семья Бахтишо дала семь поколений знаменитых врачей.

Математика стран ислама оказала исключительное влияние на развитие математики как на Востоке, так и на Западе. С начала XI в. в течение около ста лет распространение сведений, полученных с Востока, имело в развитии математики в Европе решающее значение.

В районы Испании, освобождающиеся от власти мавров, ученые многих стран Европы приезжали знакомиться с математикой и естественными науками. С начала XIV в. основным путем влияния ученых стран ислама на Европу становится Византия. В этот период многие сочинения переводятся с арабского сначала на греческий, а затем с греческого на латынь и живые европейские языки.

О влиянии науки стран ислама на науку Европы говорят такие наши термины, как "арабские цифры", "алгебра", "алгоритм", "цифра", "корень", "синус".

Астрономия и география

Из книги Клавдия Птолемея (которую арабы называли «Аль-Магест») мусульмане узнали о шарообразности земли, научились определять широту и рисовать карты.

Сочинения Гиппократа стали основой для “Канона врачебной науки” знаменитого врача и философа Ибн Сины; Ибн Хайан положил начало арабской алхимии и астрологии. Особенно усердно работали арабские астрономы — их главной задачей было научиться определять, в какой стороне находится Мекка — именно в эту сторону должны были склоняться правоверные при молитве.

Большая часть астрономических работ не касалась вопросов теории, а уделяла все внимание астрономическим таблицам, объединенным названием "зидж".

Наборов таких таблиц было много, они вели начало из индийских, персидских и греческих источников. Несоответствия между ними побуждали арабов производить более точные наблюдения за светилами. Особой точностью отличались таблицы, составленные около 900 г. аль-Баттани (Albategnius). Его скурпулезные наблюдения затмений использовались в сравнительных целях еще в 1749 г.

Астрономическими исследованиями занимался среднеазиатский ученый, государственный деятель и просветитель Улугбек (1394-1449).

В 1428-1429 гг. он построил одну из наиболее значительных обсерваторий средневековья и оборудовал ее первоклассными для того времени приборами — уникальным 40-метровым мраморным секстантом, установленным в плоскости меридиана. В своем главном сочинении "Новые астрономические таблицы" Улугбек дал сведения о положении 1018 звезд, таблицы движения планет, которые отличались высокой точностью, а также изложил теоретические основы астрономии того времени.

Однако, хотя наука о звёздах была распространена во всём исламском мире, можно выделить несколько главных центров активности астрономов и астрологов.

Если в VIII — IX веках таким центром, несомненно, был Багдад, то в XI веке ведущая роль принадлежала Испании (где в это время были созданы знаменитые астрологические «Толедские таблицы»), а в XIII — XV веках центр астрономической деятельности сместился в Египет и Сирию, где в это время правили мамлюки.

Мамлюкские султаны весьма интересовались астрологией, но в целом эта наука развивалась гораздо меньше, чем астрономия.

В конце XIII века астрономия интенсивно развивалась в Каире, а в середине XIV столетия крупнейшим центром астрономии в странах ислама (и, может быть, даже в мире в целом) стал Дамаск. Но в 1402 году Дамаск был разрушен монголами.

Новый расцвет астрологии наступил уже ближе к концу XV в., когда на политической карте Ближнего Востока стала главенствовать Османская империя. Основным центром астрологии и астрономии в мусульманском мире стала столица империи — Стамбул.

Зиджи были основой астрологических практик исламских астрологов.

Во многих из них заключительная часть представляла собой руководство по толкованию гороскопов. Общее число известных зиджей составляет несколько сотен.

Пожалуй, наиболее крупной фигурой в исламской астрономии и астрологии XI — XV столетий был Насир ад-Дин ат-Туси (1201 — 1274), учёный-энциклопедист, которого считают прообразом легендарного Ходжи Насреддина. Он работал в государстве исмаилитов-ассасинов (сначала в Кухистане в качестве астролога наместника Насир ад-Дина Абд ар-Рахима, затем в столице государства Аламуте при дворе ильхана), а с 1256 года — после разрушения государства ассасинов монголами — перешёл к монгольскому хану Хулагу, став его придворным астрологом и советником.

В 1258 году ат-Туси участвовал в походе Хулагу на Багдад, положившем конец Багдадскому халифату, и вёл переговоры с халифом о капитуляции.

В 1259 году ат-Туси основал в Мараге (столице Хулагу в Южном Азербайджане) обсерваторию и научную школу, куда свезли всех учёных, попавших в руки монголов, и где были собраны книги и научные приборы из покорённых ими стран.

Ат-Туси принадлежит множество работ по астрономии и астрологии («Изложение Альмагеста», «Ильханский зидж», «Краткое о науке астрологии и познании календаря» и др.).

В целом, войны с монгольскими завоевателями сказались неблагоприятно на исламской науке, в том числе и на астрологии. В XIII веке арабская астрология стала клониться к упадку. Следует учесть и усилившиеся нападки на астрологию со стороны мусульманских богословов.

Они указывали на несовместимость астрологических концепций о предопределении с доктриной ислама о постоянном вмешательстве Аллаха в земные дела.

Важнейшее значение исламской астрологии этого периода в том, что она стала источником новых идей для многих регионов Старого Света. Во-первых, распространение исламской культуры в странах Африки, Ближнего Востока и Средней Азии привело к знакомству народов этих стран с арабской астрологией. Параллельно этому, благодаря усилившимся контактам мусульман с латинским Западом (особенно в Испании) и с Византией в X — XIV столетиях многие астрологические концепции получили распространение в христианском мире.

Кроме того, с монгольскими завоевателями идеи арабской астрологии с XIII века проникли во многие регионы Азии, в т.ч. в Индию и Китай.

В арабском халифате также развивалась и химия. В VІІІ-ІХ веках появились первые арабские химики. Ученые мусульманских стран творчески переделали и дополнили эмпирическим материалом старые теории древних цивилизаций Востока и Греции.

Согласно источникам арабы были хорошо ознакомлены с техникой лабораторных исследований при работе с лекарствами, солями и драгоценными металлами. Вони работали на основе традиций и практики ученых Египта, Вавилона, Китая и Индии.

На арабский язык били переведены все работы ученых, которые хранились в Александрийской академии.

В начале века арабские ученые уже начинают издавать свои собственные работы. Поскольку результаты исследований арабов обобщались, то можно считать их основателями химии. Во многих школах халифата химия преподавалась в многочисленных образовательных школах.

Термин алхимия в общении между учеными введен именно арабами. К греко-египетском названию химия они добавили приставку "ал". В их толковании это выражалось как комплекс химических знаний, накопленный за все периоды.

В европейской литературе название алхимия употреблялось вплоть до самого начала XVIII века. Начиная с XIII в. под этим названием в Европе и в арабском мире стали понимать искусство о металлах, их получении и очистке, металлические сплавы и трансмутации металлов, превращения неблагородных металлов в золото и серебро с помощью философского камня.

Первым арабским алхимиком называют Азид Ибн Калида (660-704 гг.) Он является первым автором трудов по алхимии. Вокруг себя Азид сплотил философов со всего Египта.

С ними он проводил операции по трансмутации металлов и изготовлению искусственного золота. Об этих операциях он оставил записи в своих произведениях алхимического характера.

Выдающимся арабским алхимиком считается Джабир Ибн Гайян. Его деятельность приходится на конец IX — начало Х веков Он является автором нескольких научных трудов.

Выступал как сторонник и последователь учения Аристотеля о четырех элементах-стихиях и о происхождении в земле металлов и минералов. Однако Джабир не во всем соглашался с Аристотелем.

В центре его внимания было семь металлов: золото, серебро, медь, железо, олово, свинец и вместо ртути до металлов он добавлял стекло. (Число 7 в древние времени и в средневековье считалось священных и олицетворяло число дней в неделе, число металлов, чудес света).

Джабир видел, что для полной характеристики качеств металлов, а именно, плавкости, ковкости, металлического блеска, недостаточно четырех аристотелевских стихий-свойств. В своих трудах Джабир использовал положения, которые до него встречаются в сочинениях индийских, китайских, александрийских ученых о составных элементах металлов — серы и ртуть. Сера у него — это элемент горения, ртуть придает свойств металлов. Джабир считал, что ртуть является душой металла.

В произведениях Джабира мы находим наименование многих других веществ.

Среди них: алнушадир (нашатырь), барак (луг), купорос, алькоголь, или алькофоль (серной сурьма), металлическая сурьма и другие. Для процесса очистки химических веществ ученый-алхимик использовал кристаллизацию и фильтрования. Джабир сделал описание изготовления серной и азотной кислот, царской водки.

Он указал на способность последней растворять золото. Сам изготовил нитрат серебра, сулему, нашатырь и белый мышьяк (мышьяковистую кислоту). В работах Джабира есть много мест, где говорится о важности для алхимика творческой практической деятельности и проведения опытов.

Не менее интересной личностью предстает перед нами другой арабский алхимик — Абу ар-Рази (865-925 гг.) Прославился он как выдающийся врач.

Главные его сочинения по медицине и алхимии — "Книга тайн" и "Книга тайны тайн". Все вещи, по мнению ученого-алхимика, состоят из неделимых веществ (атомов) и пустого пространства.

Эти вещи вечные и неизменны. Свойства веществ, которые состоят из четырех начал Аристотеля, определяются размерами атомов, входящих в состав вещества, и пустотами между ними. Величина пустого пространства между атомами четырех начал и определяет их естественное движение. Так, вода и земля движутся вниз, в то время когда огонь и воздуха — вверх.

Деятельность значительного числа арабских химиков продолжается до более позднего периода. Но они мало что могли добавить в комплекс теоретических и практических знаний, изложенных в произведениях Джабира Ибн Гайана и Абу ар-Рази.

Перечень достижений арабской алхимии показывает, что они отражают высокий степень химических знаний, чем химики-философы Античного мира.

Арабские алхимики значительно расширили круг химических сведений, ввели в практику и лабораторный обиход много новых веществ и описали их в своих произведениях. В теоретическом плане они сделали большой шаг к углублению учения Аристотеля. Идеи греческого ученого они дополнили теорией состава металлов из ртути и серы. Им принадлежит приоритет в разработке классификации веществ.

Медицина и минералогия

После первого периода переводов, когда основные работы Галена и Гипократа стали доступны арабам, некоторые мусульмане достигли такого положения в медицинской науке, что оказались много выше своих христианских и греческих предшественников.

Здесь достаточно назвать двух самых знаменитых: Разеса и Авиценну; третьим был врач, известный в Египте как Хали Аббас. Отметим также, что за промежуток времени в пять веков — от 800 до 1300 г. — получили известность арабские работы по медицине более чем 70 авторов.

Разес, или Абу бакр Мухаммад ибн Закариййа ар-Рази, родился в Рее, близ современного Тегерана и умер там же, или в Багдаде между 923-932 гг.

По его совету было выбрано место для строительства больницы в Багдаде и, как сообщают, он был первой ее главой. Он плодотворно работал во всех направлениях науки и философии того времени, но, по общему мнению, особых успехов достиг только в медицине. Сохранилось более 50 его сочинений.

Одно из наиболее известных — "Трактат о ветряной оспе и кори ("Dt la variole et delarougeole), который был переведен на латынь, греческий, француз кий и английский. Его величайший труд — аль-Хави ("Всеобъемлющая книга¦) — энциклопедия медицинских знаний того времени — был завершен учениками после его смерти.

По каждой болезни он приводит там точку зрения греческих, сирийских, индийских, персидских и арабских авторов, а затем присовокупляет к ним замечания и наблюдения из собственной практики и выносит заключительное суждение.

Сохранившиеся части этого произведения были в конце XIII в. переведены на латынь сицилийским врачом-евреем.

Хотя совершенство ал-Хави ар-Рази признавалось всеми, некоторые находили это сочинение слишком уж длинным, и через полвека Али ибн Аббас ал-Маджуси (ум.994), придворный врач Адуд ад-Даула, написал книгу "Совершенное исскуство медицины (Ал-Куннаш ал-Малаки).

Книга эта была одной из первых переведена на латынь и завоевала широкую известность в Европе как "Liber regius".

Тем не менее, его обширный "Канон медицины называют "высшим достижением, шедевром арабской систематики (Майерхоф). Канон был переведен на латынь в XII в. и доминировал в преподавании медицины в Европе, по крайней мере, до конца XVI в. В XV веке он выдержал 16 изданий, в XVI в. — 20 изданий, в XVI в. еще несколько.

Мусульманская Испания не отставала в медицинских исследованиях, хотя больниц таких размеров, как на Востоке там не появлялось до XIV века.

Там появились оригинальные труды Абу-л-Касима аз-Захрави (Abulcasis) (ум. после 1009). Его сочинения по хирургии и хирургическим инструментам явились выдающимся вкладом арабов в эту область. Некоторые испанские философы были одновременно сведущими врачами. Кроме Аверроэса, можно назвать Ибн Зухра (Avenzoar) из Севильи (ум.

1161). В XIV в. в Испании все еще были арабские врачи, писавшие о чуме, свидетелями которой они были в Гранаде и Альмерии; они вполне осознавали инфекционный характер этой болезни.

Страницы:← предыдущая123следующая →

Факультет: «Управления»

Кафедра: «Менеджмента и маркетинга»

Специальность: «Управление персоналом»

РЕФЕРАТ

Работа защищена с оценкой

Москва 2014 г.

ВВЕДЕНИЕ……………………………………………………………………3

ОСНОВНАЯ ЧАСТЬ………………………………………………………….

ЗАКЛЮЧЕНИЕ………………………………………………………………. 9

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………….10

ВВЕДЕНИЕ

Со второй половины VIII века естествознание стало развиваться в основном на Востоке, а не в Европе.

Для Средневекового Востока - восточной окраины Римской империи — характерно отсутствие религиозного давления на науку, здесь в X веке возникают первые университеты, сначала — в Багдаде, потом в Каире.

Отметим, что в Европе первые университеты появились гораздо позже — лишь в ХП-ХШ веках. Благодаря усилиям арабских ученых возникает алгебра, разрабатывается учение об очень точном взвешивании — теория весов, появляются прецизионные измерения, что позволяет точно измерять плотность, объем.

Арабский язык стал языком науки, чему способствовало учение о двойственности истины — религиозная и научно-философская, что позволяло арабской цивилизации обходиться без инквизиции. До ХП-ХШ веков европейское естествознание переживало длительный период упадка, тогда как на Востоке, напротив, наблюдалось интенсивное развитие науки.

Благодаря интенсивной переводческой деятельности арабских ученых в IX веке были изданы все основные сочинения великих мыслителей античности, в частности, на арабский язык были переведены «Начала» Евклида и трактаты Аристотеля. Так европейские — древнегреческие — естественнонаучные достижения получили известность в арабском мире, способствуя развитию в странах Востока астрономии, математики, механики.

Средневековым арабским ученым принадлежат и наибольшие успехи в становлении химии.

Арабские химики достигли в своих исследованиях существенного прогресса, благодаря их работам алхимия постепенно превращалась в химию. Эти достижения способствовали возникновению во времена позднего Средневековья европейской химии.

В XI веке европейская цивилизация пришла в соприкосновение с культурными богатствами арабской цивилизации — научные трактаты, переведенные с арабского языка на европейские языки стали мощными стимулами восприятия, усвоения знаний Востока представителями европейских народов.

Цель исследования заключается в описании и знакомстве с вкладами великих ученых Арабского Востока в науку.

Исходя из поставленной цели задачами данной работы является:

— изучение деятельности ученых;

— характеристика ученых;

— оценка влияния работ ученых на науку.

ОСНОВНАЯ ЧАСТЬ

На Арабском Востоке в Средние века наметился прогресс в области математических, физических, астрономических, медицинских знаний.

Начиная с VII в. в политической жизни стран Ближнего и Среднего Востока произошли важные изменения.

Ослабление военной мощи Византийской империи, сасанидского Ирана привело к тому, что арабы в очень короткий срок захватили обширные территории, на которых был создан арабский халифат.

В городах халифата строились обсерватории, создавались библиотеки при дворцах, мечетях, медресе. Внутренняя и внешняя торговля также способствовала распространению и передаче знаний.

Первый научный центр халифата - Багдад (конец VIII - начало IX вв.), где были сосредоточены ученые, переводчики и переписчики из разных стран, располагалась большая библиотека, постоянно пополняемая, функционировала своеобразная академия «Дом мудрости», на базе которого была создана обсерватория.

Труды ученых разных стран, которые в силу сложившихся обстоятельств оказываются на территории халифата, переводятся на арабский язык.

В IX в. бьша переведена книга «Великая математическая система астрономии» Птолемея под названием «Аль-магисте» (великое), которая потом вернулась в Европу как «Альмагест». Переводы и комментарии «Альмагеста» служили образцом для составления таблиц и правил расчета положения небесных светил. Также были переведены и «Начала» Евклида и сочинения Аристотеля, труды Архимеда, которые способствовали развитию математики, астрономии, физики.

Греческое влияние отразилось на стиле сочинений арабских авторов, которые характеризует систематичность изложения материала, полнота, строгость формулировок и доказательств, теоретичность.

Вместе с тем в этих трудах присутствует характерное для восточной традиции обилие примеров и задач чисто практического содержания. В таких областях, как арифметика, алгебра, приближенные вычисления, был достигнут уровень, который значительно превзошел уровень, достигнутый александрийскими учеными.

И если деятельность арабских ученых началась с комментариев к произведениям античных ученых, то в дальнейшем она вышла за эти пределы.

Тому способствовали не только знание арабскими учеными идей и многовековых достижений индийской науки, но в основном потребности современной им жизни и значительное обогащение многообразного опыта по сравнению с античностью. После александрийского периода в развитии положительной науки именно у арабов она делает дальнейший шаг в своем развитии.

Это относится к различным отраслям знания и прежде всего к математике и астрономии. Важнейшее достижение арабоязычной науки состоит здесь в заимствовании у индийских ученых позиционной системы счисления и в совершенствовании ее.

Были заложены основы тригонометрии, которая была связана с достижениями астрономии.

Им составлены таблицы тригонометрических функций, введено понятие «синус» («sinus»).

Аль-Фараби (870-950) первым среди арабоязычных философов осмыслил и в известной мере развил логическое наследие Аристотеля.

Он собрал и упорядочил весь комплекс аристотелевского «Органона» (присоединив к нему «Риторику», написал комментарии ко всем его книгам и несколько собственных работ по вопросам логики.

Через Мухаммеда ибн Муса ал-Хорезми (780-850 гг.), автора нескольких сочинений по математике, которые в XII в. были переведены на латынь и четыре столетия служили в Европе учебными пособиями, европейцы познакомились с десятичной системой счисления и правилами (алгоритмами - от имени ал-Хорезми) выполнения четырех действий над числами, записанными по этой системе.

От алгебраического приема «Ал-джебр» идет название такого раздела математики, как алгебра.

Наиболее замечательное в области физики имя аль-Хайсам аль-Газен (965-1039) из Басры. Труд его по оптике, изданный на латинском языке в конце XVI в. и оказавший влияние на Кеплера, не только трактовал законы отражения и преломления света, но и давал поразительно точное для того времени описание строения глаза.

Немало было и ученых-энциклопедистов, сделавших значительный вклад в различные науки.

Среди них - среднеазиатский ученый аль-Бируни (973-1048), в произведениях которого трактовались вопросы математики, астрономии, физики, географии, общей геологии, минералогии, ботаники, этнографии, истории и др. Так, Бируни установил метод определения географических долгот, близкий к современному, а также определил длину окружности Земли. Впервые на средневековом Востоке великий ученый сделал предположение о возможности обращения Земли вокруг Солнца.

Он конструировал экспериментальные приборы, призывал прибегать к опыту и проверять результаты исследований опытным путем.

Широко известна деятельность арабских ученых в области алхимии, которая хотя и преследовала недостижимые цели (превращение неблагородных металлов в благородные), но в процессе этих многовековых поисков открыла новые элементы (ртуть, сера).

Хотя деятельность алхимиков (затем получившая широкое распространение и в Европе) не могла стать экспериментальным естествознанием, но в какой-то степени она способствовала его будущему возникновению. Труды арабских алхимиков содержали, наряду с фантастическими гипотезами, рациональные выводы и рецепты.

К наиболее ярким представителям ближневосточного средневековья можно отнести Омара Хайяма (1048-1131), великого иранского ученого и философа, великолепного поэта, автора всемирно известных четверостиший (рубай).

В качестве ученого Хайям больше всего сделал в математике. В алгебре он систематически изложил решение уравнений до третьей степени включительно, им расширено понятие числа (введены положительные иррациональные числа).

Значительны достижения Хайяма в области астрономии: взамен лунного календаря, он предложил солнечный календарь, и усовершенствовал его.

Абу Али ибн Сина (Авиценна) (980-1037) - философ, математик, астроном, врач, чей «Канон врачебной науки» снискал мировую славу и представляет определенный познавательный интерес сегодня.

На основе идей Аристотеля он создал своеобразную классификацию наук.

Ибн-Рушд (1126-1198)- философ, естествоиспытатель, добившийся больших успехов в области алхимии, автор медицинских трудов, комментатор Аристотеля. . - Ростов н/Д: Феникс, 2010

Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку . В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в.

Абу-л-Вафа:

  • вывел теорему синусов сферической тригонометрии,
  • вычислил таблицу синусов с интервалом в 15°,
  • ввел отрезки, соответствующие секансу и косекансу.

Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени.

Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в.

(через арабские владения в Испании).

Известен трактат «Книга о механике», принадлежащий знаменитым астрономам и математикам Багдадской школы – трем братьям Бану Муса (IX-Х вв.). Из среднеазиатских ученых следует назвать, прежде всего, математика IX в. Абу Абдаллу Мухаммеда бен-Муса аль-Хорезми (787 — ок. 850), работавшего в эпоху просвещенного халифа аль-Мамуна.

Именно благодаря его сочинениям в арабском мире распространилась индийская позиционная система и цифровая символика с нулем, воспринятая впоследствии европейской математикой.

Также Хорезми описывает арифметические действия с целыми числами и дробями. Последующие за Хорезми ученые развили новые идеи, заимствовав их, в свою очередь, у индийских математиков, и в XII в. Великий хорезмийский ученый – энциклопедист Абу-р-Рейхан аль-Бируни (973 — ок. 1050) создал фундаментальные работы по математике, астрономии, ботанике, географии, общей геологии, минералогии и другим наукам.

Ученый широко применял математический анализ. В области математики он решил задачи деления угла на три части, удвоения куба и т.д.

Астрономия. Переведенный главный труд Клавдия Птолемея «Великое астрономическое построение стал для арабских ученых основой космологии, применявшейся на протяжении последующих 500 лет.

В IX-Х вв. арабские ученые аль-Баттани и Абу аль-Вафа провели самые точные для того времени астрономические измерения, позволившие им составить астрономические таблицы. В VIII-XV вв. в арабских странах появились так называемые зиджи — справочники для астрономов и географов с описанием календарей, указанием хронологических и исторических дат, тригонометрическими и астрономическими таблицами.

Кроме того, арабы создали лунный календарь, включивший 28 «лунных станций», каждая из которых имела метеорологические характеристики. Мухаммед ибн Ахмед аль-Бируни производил также точные астрономические измерения. Бируни наблюдал и описал изменение цвета Луны при лунных затмениях и явление солнечной короны при полных затмениях Солнца.

Он высказал мысль о движении Земли вокруг Солнца и считал геоцентрическую теорию весьма уязвимой. Им было написано обширное сочинение об Индии и переведены на санскритский язык «Начала» Евклида и «Альмагест» Птолемея.

Астрономические исследования средневековых арабских ученых вместе с другими достижениями арабской науки и техники становились позднее известными в Европе и стимулировали развитие европейской астрономии.

География . Большое практическое значение имели достижения арабов в области география.

Арабские путешественники и географы расширили представления об Иране, Индии, Цейлоне и Средней Азии. С их помощью Европа впервые познакомилась с Китаем, Индонезией и другими странами Индокитая. Известные работы географов-путешественников:

  • «Книга путей и государств» Ибн Хордадбека, IX в.
  • «Дорогие ценности» – географическая энциклопедия Ибн Руста (начало Х в.)
  • «Записка» Ахмеда Ибн Фадлана с описанием путешествия в Поволжье.

Бируни производил географические измерения.

Он определил угол наклона эклиптики к экватору и установил его вековые изменения. Для 1020 г. его измерения дали значение 23°34’0″. Современные вычисления дают для 1020 г. значение 23°34’45». Во время путешествия в Индию Бируни разработал метод определения радиуса Земли.

По его измерениям, радиус Земли оказался равным 1081,66 фарсаха, т. е. около 6490 км. В измерениях участвовал Аль-Хорезми. При Аль-Мамуне была предпринята попытка замерить окружность Земли.

С этой целью ученые измерили градус широты вблизи Красного моря, что составляет 56 арабских милей, или 113,0 км, отсюда длина окружности Земли равнялась 40680 км.

Физика. Выдающимся ученым Египта был Ибн-аль-Хайсам (965-1039), известный в Европе под именем Алхазена, математик и физик, автор знаменитых трудов по оптике. Алхазен развивает научное наследие древних, производя собственные эксперименты и конструируя для этого специальные приборы.

Он разработал теорию зрения, описал анатомическое строение глаза и высказал предположение, что приемником изображения является хрусталик. Точка зрения Алхазена господствовала до XVII в., когда было выяснено, что изображение появляется на сетчатке.

Отметим, что Алхазен был первым ученым, знавшим действие камеры-обскуры, которую он использовал как астрономический прибор для получения изображения Солнца и Луны. Алхазен рассматривал действие, плоских, сферических, цилиндрических и конических зеркал. Он поставил задачу определения положения отражающей точки цилиндрического зеркала по данным положениям источника света и глаза.
Алхазен занимался исследованием преломления света.

Он разработал метод измерения углов преломления и показал экспериментально, что угол преломления не пропорционален углу падения. Хотя Алхазен не нашел точной формулировки закона преломления, он существенно дополнил результаты Птолемея, показав, что падающий и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным из точки падения луча.

Алхазену было известно увеличивающее действие плоско-выпуклой линзы, понятие угла зрения, его зависимость от расстояния до предмета. По продолжительности сумерек он определил высоту атмосферы, считая ее однородной.

Медицина .

Больших успехов достигла медицина – она развивалась более успешно, чем в Европе или на Дальнем Востоке. Арабскую средневековую медицину прославил врач и философ, Ибн-Сина – Авиценна (981-1037), автор энциклопедии теоретической и клинической медицины, обобщивший взгляды и опыт греческих, римских, индийских и среднеазиатских врачей «Канон врачебной науки», которая на Западе использовалась в качестве учебника до XVII века.

Авиценна родился в 980 году, а умер в 1037 году. Начав с профессии финансового инспектора в налоговом управлении, он пришел к должности визиря. Несмотря на раннюю смерть вследствие чрезмерной работы и удовольствий, его труды внесли значительный вклад в развитие медицины.

Его основное медицинское произведение, «Канон врачебной науки» включает:

  • философию,
  • гигиену,
  • патологию,
  • терапию,
  • медицинский материал.

Здесь он так хорошо описал болезни, как до него еще никто их не описывал. Переведенные на большинство языков мира, произведения Авиценны на протяжении шестисот лет были универсальным медицинским кодексом; они послужили основой для медицинских исследований во всех университетах Франции и Италии.

Их повторно печатали до XVIII века, и прошло не более полувека с тех пор, как их перестали комментировать в университете Монпелье.

Абу Бакр Мухаммед ар-Рази, известный багдадский хирург, дал классическое описание оспы и кори, применял оспопрививание.

Сирийская семья Бахтишо дала семь поколений знаменитых врачей.

В 975 г. персидский ученый Абу Мансур аль-Харави Мувффат опубликовал «Трактат об основах фармакологии», в котором изложил лечебные свойства различных природных и химических веществ.

Социальные кнопки для Joomla

Века, называемые Средними, в истории каждой страны занимают разный период. В общем случае, как правило, подобным образом именуют промежуток с V по XV века, отсчитывая его от 476 года, когда пала Западная Римская империя.

Культура Античности погибала под натиском варваров. В этом одна из причин того, почему Средние века так часто называют темными или мрачными. Вместе с затуханием Римской империи исчезал и свет разума, и красота искусства. Однако научные открытия и изобретения в Средние века - отличное доказательство того, что даже в самые сложные времена человечество умудряется сохранять ценные знания и, более того, развивать их. Отчасти этому способствовало христианство, но большая доля античных наработок сохранилась благодаря арабским ученым.

Восточная Римская империя

Наука в в первую очередь развивалась в монастырях. После падения Рима хранилищем античной мудрости стала Византия, где к тому времени христианская церковь уже играла заметную, в том числе и политическую роль. В библиотеках константинопольских монастырей хранились труды выдающихся мыслителей Греции и Рима. Трудившийся в IX веке епископ Лев много времени посвящал математике. Он был в числе первых ученых, ставших применять буквы в качестве математических символов, что фактически дает право называть его одним из основоположников алгебры.

На территории монастырей переписчики создавали копии античных трудов, комментарии к ним. Математика, развивавшаяся под их сводами, легла в основу архитектуры и сделала возможным возведение такого образца византийского искусства, как храм Святой Софии.

Есть основания полагать, что византийцы создавали карты, путешествуя в Китай и Индию, им была ведома география и зоология. Однако сегодня большая часть информации о состоянии, в котором пребывала наука в Средние века на территории Восточной Римской империи, нам неизвестна. Она похоронена в руинах городов, постоянно подвергавшихся вражеским нападениям на протяжении всего периода существования Византии.

Наука в арабских странах

Многие античные знания получили свое развитие за пределами Европы. развивавшийся под влиянием античной культуры, фактически спас знания не только от варваров, но и от церкви, которая хоть и благоприятствовала сохранению мудрости в монастырях, но приветствовала далеко не все научные труды, стремясь обезопасить себя от проникновения ереси. По прошествии некоторого времени античные знания, дополненные и переработанные, вернулись в Европу.

На территории Арабского халифата в Средневековье развивалось огромное количество наук: география, философия, астрономия, математика, оптика, естествознание.

Цифры и движение планет

Астрономия во многом базировалась на знаменитом трактате Птолемея «Альмагест». Интересно, что такое названия труд ученого получил после того, как был переведен на арабский и затем снова возвращен в Европу. Арабские астрономы не только сохранили греческие знания, но и приумножили их. Так, они предполагали, что Земля представляет собой шар, и смогли измерить дугу меридиана, чтобы вычислить Арабские ученые дали название многим звездам, расширив тем самым описания, приведенные в «Альмагесте». Кроме того, в нескольких крупных городах они соорудили обсерватории.

Средневековые открытия и изобретения арабов в области математики также были довольно обширными. Именно в исламских государствах берет свое начало алгебра и тригонометрия. Даже слово «цифра» имеет арабское происхождение («сифр» означает «нуль»).

Торговые взаимоотношения

Многие научные открытия и изобретения в Средние века арабами были позаимствованы у народов, с которыми они постоянно торговали. Через исламские страны в Европу из Индии и Китая попали компас, порох, бумага. Арабы, кроме того, составляли описание государств, через которые им приходилось путешествовать, а также встречавшихся народов, в том числе и славян.

Арабские страны стали и источником культурных изменений. Считается, что именно здесь была изобретена вилка. С территории она сначала попала в Византию, а затем и в Западную Европу.

Богословская и светская наука

Научные открытия и изобретения в Средние века на территории христианской Европы в основном появлялись в монастырях. До VIII века, правда, знания, которым уделяли внимание, касалось священных текстов и истин. Светские науки стали преподаваться в школах при соборах лишь во время правления Карла Великого. Грамматика и риторика, астрономия и логика, арифметика и геометрия, а также музыка (так называемые первоначально были доступны только знати, но постепенно образование стало распространяться на все слои общества.

К началу XI века школы при монастырях стали преобразовываться в университеты. Светские учебные заведения появились постепенно во Франции, Англии, Чехии, Испании, Португалии, Польше.

Особый вклад в развитие науки внесли математик Фибоначчи, естествоиспытатель Вителлин, монах Роджер Бэкон. Последний, в частности, предполагал, что скорость света имеет конечную величину и придерживался гипотезы, близкой к волновой теории его распространения.

Неумолимое движение прогресса

Технические открытия и изобретения в XI-XV веках подарили миру многое, без чего нельзя было бы достигнуть того уровня прогресса, который характерен для человечества сейчас. Более совершенными стали механизмы водяных и ветряных мельниц. На смену колоколу, отмерявшему время, пришли механические часы. В XII веке мореплаватели стали использовать для ориентации компас. Порох, изобретенный в Китае еще в VI веке и завезенный арабами, стал играть значительную роль в европейских военных походах только в XIV веке, когда изобрели и пушку.

В XII веке европейцы также познакомились с бумагой. Открылись производства, изготавливавшие ее из разных подходящих материалов. Параллельно развивалась ксилография (гравировка по дереву), которая постепенно была вытеснена книгопечатанием. Его появление в европейских странах датируется XV веком.

Изобретения и научные открытия 17 века, а также всех последующих во многом базируются на достижениях средневековых ученых. Алхимические поиски, попытки найти край мира, желание сохранить наследие Античности сделали возможным прогресс человечества в эпоху Возрождения и Научные открытия и изобретения в Средние века способствовали становлению знакомого нам мира. А потому, пожалуй, будет несправедливым называть этот период истории беспросветно мрачным, помня лишь об инквизиции и церковных догмах того времени.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Кольский филиал Петрозаводского государственного университета


Важнейшие открытия средневековья в области науки и техники



Введение

1. Наука и техника

Хронология и структура средневековья

Творцы открытий

Гений да Винчи

5. Биологические знания в средние века

6. Достижения медицины

На языке математики

Вперед к прогрессу

Заключение


Введение


Целью данного реферата является анализ научно-технического прогресса средних веков. Задачи:

Провести анализ актуальности по данной тематике.

Рассмотреть средневековье как эпоху.

Рассмотреть основные открытия науки и техники V- XVII вв.

Актуальность данной тематики обусловлена тем, что с начала V века наука начала свой нелегкий путь в век знаний и изобретений. В ее важнейших областях произошли удивительные открытия, были проведены различные исследования на основе соединения науки с техникой.

В нашей современной жизни стало обыденностью электричество, автомобили, да чего уж там говорить, книга - что может быть проще, листы бумаги с набранным текстом. А ведь несколько столетий назад, чтобы напечатать книгу требовалось приложить немало усилий и времени. Средневековье - так эта эпоха называется. Эпоха начала ведущих достижений в области науки и техники. От этой эпохи дошли до нас и поэтические произведения, в которых народы запечатлели свой гений, замечательные памятники народного творчества великолепные громады готической архитектуры, чудесные, прекрасные художественные и поэтические создания Ренессанса, первые успехи пробуждающейся научной мысли. Эта эпоха дала нам ряд великих людей, которыми гордится человечество. Такие как Коперник, Галилео, Бруно, Браге, Ньютон. Все эти и многие другие выдающиеся личности, своей жизнью и деятельностью ускорявшие прогресс человечества, принадлежат средневековью. Великие технические изобретения, сделанные в средневековье, оказали огромное влияние на все области экономики и культуры, в том числе и на развитие науки. Таким образом, средние века внесли свою, и немалую, долю в общую сокровищницу материальных и духовных ценностей всего человечества.

1. Наука и техника


Наука как знание и деятельность по производству знаний возникла с начала человеческой культуры и составила часть духовной культуры общества, хотя само по себе слово "наука" сравнительно недавнего происхождения. В переводе с латыни "scientia"(наука) означает знание.

Слово "техника" происходит от греческого "techne"-искусство, мастерство, умение. Основное значение этого слова сегодня - средства труда, производства.

Исторически техника прошла путь от примитивных орудий труда до сложнейших современных автоматических машин, развиваясь на основе достижений науки.

Наука и техника на протяжении всей истории человечества шагают рука об руку и особенно неразрывны стали в наши дни, когда наука является непосредственной производительной силой, когда без научных исследований невозможно создание образцов новой техники. Разработка образца новой техники, как правило, начинается с научных исследований - с проведения научно-исследовательской работы (НИР). Коренное усовершенствование техники возможно лишь благодаря науки. В наши дни разделить сферы влияния науки и техники практически невозможно. Ни одно значимое современное научное открытие практически неосуществимо на листе бумаги, то есть без привлечения техники, экспериментальной аппаратуры. Вместе с тем функции науки шире. Основными из них являются: описательная, систематизирующая, объяснительная, производственно-практическая, прогностическая, мировоззренческая. Только производственно-практическая функция связана напрямую с созданием техники.


2. Хронология и структура средневековья


Средние века (Средневековье) - исторический период, следующий после Древнего мира и предшествующий Новому времени. Началом Средневековья считается крушение Западной Римской империи в конце V века. Средневековье содержит внутри себя несколько этапов: темное время - раннее средневековье; высокое - средний период средневековья; позднее (зрелое, развитое, классическое) средневековье.

Раннее Средневековье - период европейской истории, начавшийся вскоре после распада Римской империи. Длился около пяти веков, приблизительно с 500 по 1000 гг.

Высокое Средневековье - период европейской истории, продлившийся приблизительно с 1000 по 1300 гг. Эпоха Высокого Средневековья сменила Раннее Средневековье и предшествовала Позднему Средневековью. Основной характеризующей тенденцией этого периода стало быстрое увеличение численности населения Европы, что привело в свою очередь к резким изменениям в социальной, политической и других сферах жизни.

Позднее Средневековье - термин, используемый историками для описания периода европейской истории в XVI-XVII веках.

Позднему Средневековью предшествовало Высокое Средневековье, а последующий период называется Новое время. Историки резко расходятся в определении верхней границы Позднего Средневековья. Если в российской исторической науке принято определять его окончание английской гражданской войной, то в западноевропейской науке конец Средневековья обычно связывают с началом церковной реформации или эпохи Великих географических открытий. Позднее Средневековье называют также эпохой Возрождения.

Наиболее общие хронологические рамки периода: середина V в. - середина XV в. Однако любая периодизация Средневековья носит условный характер.

География средневековья. Наиболее общие географические ареалы развития "научного" мышления и технологических инноваций в рассматриваемый период: "Западная Европа"; "Византия" и зона ее влияния; "Арабский Восток"; "Восток" (Индия, Китай, Япония); "Доколумбова Америка". Наиболее тесно были связаны первые три ареала.

Структура средневекового научного знания включает четыре основных направления: физико-космологическое , ядром которого является учение о движении. На основе натурфилософии Аристотеля оно объединяет массив физических, астрономических и математических знаний; учение о свете ; оптика является частью общей доктрины - "метафизики света", в рамках которой строится модель Вселенной, соответствующая принципам неоплатонизма; учение о живом, понимавшееся как наука о душе, рассматриваемое как принцип и источник и растительной, и животной, и разумной жизни; комплекс астролога - медицинских знаний, учение о минералах и алхимия.

К техническим новациям, оказавшим радикальное воздействие на всю культуру средневековья относятся: заимствование пороха, что быстро привело к созданию пороходелательного производства (первый завод); разработка технологии гранулирования пороха, повышающей его эффективность; стремительное развитие производства огнестрельного оружия, в корне изменило, способы ведения боевых действий и привело к развитию новых технологий в литейном деле, направленных на повышение точности метания; ветряные мельницы, заимствование бумаги, что привело к созданию книгопечатания; создание и внедрение в хозяйственный и культурный оборот различных механических устройств, создавших со временем целую инфраструктуру; развитие часового дела.

3. Творцы открытий


В период "высокого" средневековья роль естественных наук в обществе стала быстро меняться. Научные открытия ускорили развитие техники и технологий, которые, в свою очередь, привели к новым открытиям. Наука стала основой развития человеческого общества. Многие ученые именно в этот период сделали свои открытия. Иоганн Гутенберг, Николай Коперник, Тихо Браге, Галилео Галилей, Исаак Ньютон и еще ряд известных ученых.

Роджер Бэкон (1214-1292) английский алхимик, выдающийся философ. В 1240 году, первым в Европе описал технологию изготовления пороха. Он проделал немало опытов в поисках способов превращения одних веществ в другие. За отказ открыть секреты получения золота (которых он не знал), Бэкон был осужден собратьями по вере и провел в церковной темнице долгие 15 лет. По велению генерала ордена сочинения монаха-естествоиспытателя в наказание были прикованы цепями к столу в монастырской библиотеке в Оксфорде. Бэкон предугадал большое значение математики, без которой, по его мнению, не может существовать ни одна наука, и ряд открытий (телефона, самодвижущихся повозок, летательных аппаратов и др.).

Иоганн Гутенберг (1397 -1468) немецкий ювелир и изобретатель книгопечатания.

Гениальное изобретение Гутенберга состояло в том, что он изготовлял из металла подвижные выпуклые буквы, вырезанные в обратном виде, набирал из них строки и с помощью пресса оттискивал на бумаге.

При ограниченных средствах, не имея ни опытных рабочих, ни усовершенствованных инструментов Гутенберг, тем не менее, достиг замечательных успехов. До 1456 года он отлил не менее пяти различных шрифтов, напечатал латинскую грамматику Элия Доната (несколько листов ее дошли до нас и хранятся в Национальной библиотеке в Париже), несколько папских индульгенций и, наконец, две Библии, 36-строчную и 42-строчную; последняя, известная под названием Библии Мазарини, напечатана в 1453-1465 гг. с высоким качеством.

Николай Коперник (1473-1543) польский астроном, математик, экономист, каноник. Наиболее известен как автор средневековой гелиоцентрической системы мира.

Гелиоцентрическая теория, утверждавшая, что Земля вращается вокруг Солнца, а не наоборот, как привыкли думать ученые с античных времён. Наблюдая движение небесных тел, Коперник пришёл к выводу, что теория Птолемея неверна. После тридцати лет упорного труда, долгих наблюдений и сложных математических расчетов он убедительно доказал, что Земля - это только одна из планет и что все планеты вращаются вокруг Солнца. Правда, Коперник все же считал, что звёзды неподвижны и находятся на поверхности огромной сферы, на огромном расстоянии от Земли. Это было связано с тем, что в то время ещё не было таких мощных телескопов, с помощью которых можно наблюдать небо и звезды. Открыв, что Земля и планеты - спутники Солнца, Николай Коперник смог объяснить видимое движение Солнца по небосводу, странную запутанность в движении некоторых планет, а также видимое вращение небесного свода.

Судьба новой гипотезы складывалась непросто. Книга о вращениях небесных сфер (1543) стала потрясением для астрономов XVI века. Многие ученые, сомневавшиеся в непогрешимости птолемеевых построений, оказались готовы воспринять теорию Коперника. Но, конечно же, замена старой теории на новую произошла не сразу. Не весь научный мир принял гелиоцентрическую систему - и вовсе не по идеологическим соображениям. Разумеется, сыграла свою роль резко отрицательная позиция по отношению к учению Коперника христианской церкви. Первоначально церковь не обратила внимание на философские следствия самой возможности постановки Земля в один ряд с другими планетами, но в 1616 году исправила свою "оплошность" - декретом инквизиции книга Коперника была внесена "впредь до исправления" в индекс запрещенных книг и оставалась под запретом до 1828 года. Уединённая жизнь и позднее опубликование сочинения избавили Николая Коперника от гонений, которым подверглись его последователи. Коперник был священнослужителем и искренне верующим католиком. Создавая свою модель Вселенной, он стремился не вступать в конфликт с церковью, а найти "золотую середину" между верой и научной истиной: и то, и другое было для Коперника одинаково важным. Тем не менее, гелиоцентрическая теория, предложенная Коперником, в конечном счёте, перевернула устоявшиеся представления о Вселенной и положила начало первой научной революции.

Тихо Браге (1546-1601) датский астроном, астролог и алхимик. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, которыми воспользовался Кеплер, чтобы открыть законы движения планет. В 1572 году заметил сверхновую звезду - неизмеримо далекую и очень яркую, - чье появление в "неизменном" пространстве за Луной было бы невозможно. Спустя несколько лет Браге наблюдал столь же невероятное появление кометы. В результате масштабных и систематических наблюдений исследователь определил положение многих небесных тел и издал первый современный каталог звезд.

Галилео Галилей (1564-1642) итальянский ученый, физик, механик и астроном, один из основоположников естествознания; поэт, филолог и критик. Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок.

Знаменитая история о том, как выскочивший из ванны Архимед бегал голым по улицам с криком "Эврика!", была известна во времена Галилея так же широко, как и в наши дни. Архимед тогда нашел способ установить, сделана ли царская корона из чистого золота или нет. Галилей решил усовершенствовать этот древний метод. Он придумал гидростатические весы, на которых можно было взвешивать предметы в воздушной и водной среде. После этого он повторил эксперимент Архимеда и изложил результаты в коротком трактате, названном "Маленькие весы".

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза и открыл горы на Луне, 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, за что был, подвергнут суду инквизиции (1633), вынудившей его отречься от учения Николая Коперника. До конца жизни Галилей считался "узником инквизиции" и принужден был жить на своей вилле Арчетри близ Флоренции. В 1992 папа Иоанн Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Исаак Ньютон (1642-1727) великий английский физик, математик и астроном. Исаак Ньютон был величайшим ученым после Галилея. Его труд "Математические начала натуральной философии" (1687) убедительно продемонстрировал, что земная и небесная сферы подчиняются одним и тем же законам природы, а все материальные объекты - трем законам движения. Более того, Ньютон сформулировал закон всемирного тяготения и математически обосновал законы, управляющие этими процессами. Ньютонова модель Вселенной оставалась фактически неизменной вплоть до новой научной революции начала XX века, в основу которой легли труды Альберта Эйнштейн.


4. Гений да Винчи


Хотелось бы еще выделить одну великую личность времён средневековья.

Это итальянский живописец, искусный архитектор, инженер, техник, ученый, математик, анатом, музыкант и скульптор, Леонардо да Винчи (1452-1519).Способности и возможности Леонардо да Винчи были, без преувеличения, сверхъестественными. Существует версия, что Леонардо да Винчи мог проникать в параллельные миры, где и брал идеи своих чудесных многочисленных изобретений. В то время они действительно воспринимались как чудо.

Леонардо да Винчи был прекрасным фокусником (современники называли его магом). Он мог вызывать из кипящей жидкости многоцветное пламя, вливая в нее вино; легко превращал белое вино в красное; одним ударом ломал трость, концы которой положены на два стакана, не разбив ни один из них; наносил на конец пера немного своей слюны и надпись на бумаге становится черной. Чудеса, которые показывал Леонардо, настолько впечатляли современников, что его всерьез подозревали в служении "черной магии". К тому же возле гения постоянно находились странные, сомнительной нравственности личности, вроде Томазо Джованни Мазини, известного под псевдонимом Зороастр де Перетола,- хорошего механика, ювелира и одновременно адепта тайных наук…

Леонардо многое шифровал, чтобы его идеи раскрывались постепенно, по мере того, как человечество до них "дозреет". Ученые только в прошлом году, спустя пять столетий после смерти Леонардо да Винчи, сумели разобраться в проекте его самодвижущейся тележки и построить ее. Это изобретение можно смело назвать предшественником современного автомобиля.

В 1499 году Леонардо да Винчи для встречи французского короля Людовика XII сконструировал деревянного механического льва, который, сделав несколько шагов, распахивал свою грудную клетку и показывал внутренности, "заполненные лилиями". Ученый является изобретателем скафандра, подводной лодки, парохода, ластов. У него есть рукопись, в которой показывается возможность погружения на большую глубину без скафандра благодаря использованию особой газовой смеси (секрет которой он сознательно уничтожил). Чтобы ее изобрести, необходимо было хорошо разбираться в биохимических процессах человеческого организма, которые совершенно не были известны в то время! Это он первым предложил устанавливать на бронированных кораблях батареи огнестрельных орудий (подал идею броненосца!), изобрел вертолет, велосипед, планер, парашют, танк, пулемет, отравляющие газы, дымовую завесу для войск, увеличительное стекло (за 100 лет до Галилея!).

Леонардо да Винчи изобрел текстильные машины, ткацкие станки, машины для изготовления иголок, мощные подъемные краны, системы осушения болот посредством труб, арочные мосты. Он создал чертежи воротов, рычагов и винтов, предназначенных поднимать огромные тяжести, - механизмы, которых не было в его время. Поразительно, что Леонардо да Винчи подробно описывает эти машины и механизмы, хотя их и невозможно было сделать в то время из-за того, что тогда не знали шарикоподшипников (но сам Леонардо знал это - сохранился соответствующий рисунок). Иногда кажется, что да Винчи просто хотел узнать как можно больше об этом мире, коллекционируя информацию. Зачем она ему была нужна в таком виде и в таком количестве? Ответа на этот вопрос он не оставил.


Биологические знания в средние века


В средневековых текстах, имевших в известной мере естественнонаучный характер, естественнонаучное и образное видение мира как бы сливаются. Это не позволяет выделить в них собственно биологические знания. Поэтому о биологии в средние века можно говорить очень условно. В это время наука вообще, и биология в частности, еще не выделились в самостоятельные области, не отделились от целостного религиозно-философского, искаженного восприятия мира. Средневековая биология - скорее отражение средневековой культуры, нежели отрасль естествознания с собственным предметом изучения.

Источниками сведений о биологических предприятиях в период раннего средневековья служат сочинения типа "Физиолога", "Бестиария" и т. п. В этих книгах содержались описания упоминаемых в Библии животных и фантастических чудовищ, а также рассказы по мотивам (весьма вольно истолковываемым) из жизни животных, целью которых были религиозно-нравственные поучения. Сведения о животных и растениях содержались в "Поучении Владимира Мономаха" (XI в.), ходившем в списках на Руси, и других источниках.

Наиболее фундаментальными источниками сведений о биологических знаниях средневековья являются многотомные сочинения энциклопедического характера Альберта Великого и Венсана де Бове, относящиеся к XIII в. В энциклопедии Альберта Великого есть специальные разделы "О растениях" и "О животных". Детальные описания известных в то время видов растительного и животного царств во многом заимствованы у древних, главным образом у Аристотеля. Следуя за Аристотелем, Альберт связывал жизнедеятельность растений с "вегетативной душой". Развивая учение о функциях отдельных частей растений (ствол, ветви, корни, листва, плоды), Альберт Великий отмечал их функциональное подобие с отдельными органами у животных. В частности, корень он считал тождественным рту животного.

В средние века было обнаружено наличие растительных масел и ядовитых веществ в плодах некоторых растений. Были описаны разнообразные факты по селекции культурных растений. Идея изменяемости растений под воздействием среды выражалась в довольно фантастических утверждениях, будто бук превращается в березу, пшеница - в ячмень, а дубовые ветви - в виноградные лозы. Растения в сочинениях Альберта располагались в алфавитном порядке. Зоологические сведения у него, представлены также весьма подробно. Они даются, как и ботанические, в чисто описательном плане со ссылками на Аристотеля, Плиния, Галена как на высшие авторитеты. Деление животных на бескровных и обладающих кровью заимствовано у Аристотеля. Физиология сводится исключительно к описанию, нередко весьма выразительному, поведения и нравов животных. В духе средневековых антропоморфных воззрений говорилось об уме, глупости, осторожности, хитрости животных. Механизм размножения у животных излагался по Гиппократу: семя возникает во всех частях тела, но собирается в органах размножения. У Аристотеля было заимствовано представление о том, что женское семя содержит материю будущего плода, а мужское, кроме того, побуждает эту материю к развитию.

Уши, по словам Венсана де Бове, предназначены воспринимать слова людей, глаза же, зрящие творения,- воспринимать слово Божие. Соответственно этим задачам, глаза расположены спереди, а уши по бокам, как бы обозначая то, что наше внимание должно быть, прежде всего, обращено на Бога, и лишь потом на ближнего.

Источниками сведений не только о химических, но и о биологических знаниях могут служить алхимические трактаты. Алхимики оперировали не только с объектами минерального царства, но и с растительными и животными объектами. "Книга растений" знаменитого алхимика XV столетия Иоанна Исаака Голланда представляет значительный интерес как своеобразный алхимический свод биологических знаний. Изучая процессы гниения, брожения, алхимики знакомились с химическим составом растительного вещества. В связи с врачеванием к изучению животных и растений допускалось иное, порой чисто практическое отношение. Лечебные действия трав и минеральных веществ становились предметом специального интереса врачующих монахов позднего средневековья.

Вопрос об инстинктах и поведении животных и человека рассматривал Роджер Бэкон. Сравнивая поведение животных с сознательной деятельностью человека, он считал, что животным свойственны только восприятия, возникающие независимо от опыта, тогда как человек обладает разумом.

Круг тогдашних представлений о животных и растительности дальних стран расширяли поэтические описания путешествий в заморские края. Так, например, византийский поэт Мануил Фил (XIII-XIV вв.) побывал в Персии, Аравии, Индии. Его перу принадлежат три стихотворных сочинения, содержавших большой познавательный биологический материал. Это поэмы "О свойствах животных", "Краткое описание слона" и "О растениях". Фил любил рассказывать об экзотических, иногда фантастических, зверях. Однако и фантастические образы животных сложены у него из вполне реальных, хорошо известных и точно переданных элементов, отражавших уровень зоологических знаний XIV в.


Достижения


Медицина в средневековье развивалась в сложных и неблагоприятных условиях. Тем не менее, объективные закономерности развития общества и логика научного мышления неизбежно способствовали формированию в ее недрах предпосылок будущей медицины великой эпохи Возрождения. В связи с техническими открытиями еще более возросла роль научных исследований. Так как догматические воззрения исчезли, и загадки более не казались неразрешимыми, объектом изучения стало все, включая тело человека и его болезни. Вплоть до XVI века предполагалось, что болезнь является следствием ненормального смещения четырех жидких сред организма (крови, мокроты, желтой и черной желчи). Первым вызов этой теории бросил швейцарский алхимик Парацельс (1493-1541 знаменитый алхимик, врач и окулист ) , который утверждал, что болезни связаны с нарушениями различных органов и могут быть излечены при помощи химических препаратов. Примерно в это же время первое тщательное анатомическое исследование человека было проведено Андреасом Везалием (1514-1564 врач и анатом. ) . Однако основы современной медицинской науки были заложены почти сто лет спустя, когда английский ученый Уильям Гарвей (1578-1657 английский медик, основоположник физиологии и эмбриологии. ) открыл, что кровь в теле человека циркулирует по замкнутому кругу благодаря сокращениям сердца, а не печени, как полагали ранее.

Медицина средневековья не была бесплодной. Она накопила большой опыт в области хирургии, распознавания и предупреждения инфекционных болезней, разработала ряд мер противоэпидемического характера; возникли больничная помощь, формы организации медпомощи в городах, санитарное законодательство и т. д.


На языке математики


Новая наука пыталась подтвердить справедливость наблюдений путем экспериментов и перевести результаты на универсальный язык математики. Галилей был первым ученым, осознавшим, что именно такой подход является ключом к пониманию всего сущего, и утверждал, что "книга природы... написана математическими знаками". Прогресс математического метода был стремителен. К началу XVII века самые обычные арифметические символы (сложения, вычитания, умножения, деления и равенства) вошли в повсеместное употребление. Затем в 1614 году Джон Непер (1550-1617 шотландский барон, математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц. ) ввел в обиход логарифмы. Первая суммирующая машина - далекий предок компьютера - была сконструирована Блезом Паскалем (1623-1662 французский математик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. ) в 1640-х годах, а спустя 30 лет великий немецкий философ Готфрид Вильгельм Лейбниц (1646-1716 немецкий философ, математик, юрист, дипломат. ) изобрел машину, способную производить умножение. Лейбниц также был одним из создателей дифференциального исчисления, ставшего наиболее важным математическим методом того времени. К сходным результатам независимо от Лейбница пришел и Исаак Ньютон, и эти два великих человека с далеко не научным пылом вступили в дискуссию по поводу того, кому из них принадлежат лавры первенства.


Вперед к прогрессу


Итак, к XVII веку наука действительно далеко продвинулась в своем развитии и этому немало доказательств.

В 13 веке были изобретены механические часы. Совершенствование их конструкции в свою очередь привело к изобретению деталей (например, указатель скорости, храповики, зубчатые зацепления), которые впоследствии были использованы в других механизмах.

В средневековых европейских городах развиваются системы водоснабжения. Для этого сооружались насосные станции, приводимые в действие все тем же гидродвигателем. Некоторые города имели такую систему водоснабжения уже в начале 16-го века.

В XIV столетии в Европе начинается применение пороха, который хотя и был изобретен в Китае, однако опять-таки именно в Европе он получил повсеместное использование и дальнейшее совершенствование. Луки, копья и арбалеты стали обмениваться на огнестрельное оружие и пушки, которые в дальнейшем предопределили доминирование европейцев на мировой арене. Кроме того были изобретены телескоп, такие приборы, как микроскоп, термометр, барометр и воздушный насос. Научные достижения постоянно множились. Ньютон открыл волновую природу света и продемонстрировал, что поток света, кажущийся нам белым, состоит из спектральных цветов, на которые его можно разделить при помощи призмы. Двумя другими знаменитыми английскими экспериментаторами были Уильям Гилберт (1544-1603 английский физик, учёный и врач. ) , заложивший основы изучения электричества и магнетизма, и Роберт Гук (1635-1703 английский естествоиспытатель, учёный-энциклопедист ) , который ввел понятие "клетка" для описания того, что увидел через линзы усовершенствованного им микроскопа.

Ирландец Роберт Бойль (1627-1691 физик, химик и богослов ) проводил физические работы в области молекулярной физики, световых и электрических явлений, гидростатики, акустики, теплоты, механики. В 1660 усовершенствовал воздушный насос Герике, установил новые факты, которые изложил в "Новых физико-химических опытах, касающихся упругости воздуха". Показал зависимость точки кипения воды от степени разряжения окружающего воздуха и доказал, что подъем жидкости в узкой трубке не связан с атмосферным давлением. В 1661 открыл закон Бойля, сконструировал барометр и ввел название барометр. Сделал первые исследования упругости твердых тел, был сторонником атомизма. В 1663 открыл цветные кольца в тонких слоях (кольца Ньютона). В 1661 сформулировал понятие химического элемента и ввел в химию экспериментальный метод, положил начало химии как науки.

А голландский ученый Христиан Гюйгенс(1629-1695 нидерландский математик, физик, астроном и изобретатель. ) изобрел маятниковые часы со спусковым механизмом, доказав правильность вывода Галилея, что маятниковое устройство можно использовать для контроля за временем.

Перечисление всевозможных изобретений и заслуг средневековых ученых можно еще долго перечислять.

Впереди еще будут изобретения, парового двигателя, электричества и телефона. Землю опутают провода и железные дороги, а космонавты выйдут в открытый космос. А пока…пока одинокий средневековый ученый в своей полутемной комнатушке ковал историю науки…

Заключение


"Никогда история мира не принимает такой важности и значительности, никогда не показывает она такого множества индивидуальных явлений, как в средние века".

(Н.В. Гоголь)

Техника возникла вместе с возникновением человека, и долгое время развивалась независимо от всякой науки. Сама наука не имела долгое время особой дисциплинарной организации и не была ориентирована на сознательное применение создаваемых ею знаний в технической сфере. Рецептурно-техническое знание достаточно долго противопоставлялось научному знанию, об особом научно-техническом знании вопрос не ставился вообще. "Научное" и "техническое" принадлежали фактически к различным культурным ареалам. Именно инженеры, художники и практические математики эпохи средневековья сыграли решающую роль в принятии нового типа практически ориентированной теории. Выдвигался идеал новой науки, способный решать теоретическими средствами инженерные задачи, и новой, основанной на науке, техники. Этот идеал в конечном итоге привел к дисциплинарной организации науки и техники. Великие технические изобретения, сделанные в средневековье, оказали огромное влияние на все области экономики и культуры, в том числе и на развитие науки. Долгое время средневековье характеризовали как период духовного упадка, период между великими эпохами: античностью и возрождением. Но без этого времени, без его открытий и технических усовершенствований, наступление нового времени было бы невозможно. Технические успехи возрождения стали возможными в результате использования и развития изобретений и открытий средних веков, которые взятые вместе раскрыли перед Европейцами большие возможности управления и, в конечном счете, понимания мира, чем они могли бы получить от классического наследства.

Список используемых источников и литературы

наука открытие средневековье ньютон

1.Бернал Дж. Наука в истории общества/Дж. Бернал; пер. с англ. А.М.Вязьминой; общ. ред. Б.М.Кедрова, И.В.Кузнецова.- М.: Иностранная лит.,1956.-735с.

Горелов А.А. Концепции современного естествознания: учеб. пособие.- М.: Высшее образование,2008.-335с. - (Основы наук)

Соломатин В.А. История и концепции современного естествознания: учебник для ВУЗов. - М.: ПЕР СЭ,2002.-464с. - (Современное образование)

."100 человек, которые изменили ход истории" еженедельное издание, выпуск №9,2008

История биологии с древнейших времен до наших дней [Электронный ресурс] http://www.biolhistory.ru/

Историческая физика. Леонардо да Винчи [Электронный ресурс] http://www.abitura.com/

Википедия Свободная энциклопедия [Электронный ресурс] http://ru.wikipedia.org/wiki/


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В Европе в эпоху Средневековья, которая приходится на промежуток между пятым и семнадцатым веком, наиболее важными считались такие науки как философия, богословие, математика и механика, поэтому наиболее знаменитыми учёными того времени считаются люди, которые внесли большой вклад в развитие именно этих областей научного знания.

Николай Коперник

Польский учёный, который известнее каждому современному человеку тем, что обосновал теорию устройства мира, по которой все планеты движутся вокруг Солнца. Кроме этого, он сделал другие важные открытия:

  • написал свой автопортрет;
  • написал труд «О вращениях небесных сфер»;
  • сделал несколько важных открытий в медицине и успешно лечил своих современников.

Галилео Галиллей

Учёный-физик и астроном, который продолжил дело Николая Коперника и на основе его трудов начал исследовать перемещение тел на самой Земле. Он построил телескоп, описал принцип маятника и сделал множество открытий в физике, которыми пользуются современные учёные.

Роджер Бэкон

Также он известен как Удивительный доктор, поскольку получил степень доктора философии, несмотря на тюремное заключение и критику авторитетных учёных – философов. Бэкон совершил множество открытий в различных областях науки:

  • занимался теорией увеличительных стёкол и перспективой;
  • оспаривал главенство схоластической философии;
  • исследовал состав металлов и их пользу для медицины.

Уильям Оккам

Он был монахом францисканского ордена и написал огромное количество трудов по философии, став родоначальником современной науки – эпистемологии. Эта область философского знания пользуется принципом, который именуется «Бритва Оккама» и гласит: «Не стоит умножать сущее без необходимости».

Леонардо из Пизы

Более известен он как Фибоначчи был крупным математиком эпохи Средневековья. Он первым стал использовать десятичную систему исчисления при решении задач, а также записывал свои вычисления арабскими цифрами, которые стали привычными для большинства современных людей. В своих трудах он оставил множество загадок, над которыми до сих пор «ломают голову» математики всего мира.

Николай Коперник - польский астроном. Сделал вывод о том, что Земля вращается вокруг Солнца и вокруг своей оси.

Джорджано Бруно - итальянский астроном.Его научные исследования позволили сделать вывод о том, что вселенная бесконечна.

Галилео Галилей - изобретатель телескопа, исследовал законы падения тел, открыл спутники Юпитера.

Исаак Ньютон - создал первый зеркальный телескоп, открыл закон всемирного тяготения, законы распространения света; разработал теорию, доказывающую, что природа подчиняется законам механики.

Френсис Бекон предложил опытный метод изучения явлений природы.

Главная страница -> Н -> Наука в Средние века

Наука в Средние века , была менее дифференцированной, чем в последующее время. Учёные- энциклопедисты писали и стихи, и научные трактаты в разных областях знания.
Развивались философия, теология и схоластика, алхимия, астрология и астрономия (вначале в недрах астрологии), математика, география, медицина. Были написаны хроники и др. исторические сочинения. Распространению знаний способствовали университеты и книгопечатание (в Китае развивалось с 5-6 вв., многокрасочная печать - с 14 в.; в Европе изобретено И. Гуттенбергом). Перемещения огромных масс людей (переселения, завоевания) сопровождались как уничтожением центров научной мысли и её носителей, так и диалогом научных школ.
При Великом переселении народов античная традиция на западе Европы пресеклась, вновь она воспринята от арабских учёных ок. 11 в. Аристотеля Католическая церковь признала в 13 в. Византия сохраняла наследие Античности и в науке, и в образовании, трансформировав его в духе христианства (Иоанн Дамаскин, Михаил Пселл и др.).

Наука в Средние века. Свод символов и чисел. Китай.

Приоритетными считались философия, риторика и история (как телеологический процесс). Составлялись описания: областей, городов, церковных диоцезов, фем, путешествий купцов и паломников (см. ст. Козьма Индикоплов). Разрабатывалось право (см. ст. Свод законов Юстиниана Г), в т. ч. каноническое; в 11 в. в Константинополе открылась высшая юридическая школа. Имелись больницы и медицинские училища при них. Руководством по фармакопее Николая Мирепса (13 в.) пользовались в Европе и в 17 в.
Одним из первых научный метод в Европе применил Р. Бэкон. Картину мира кардинально изменили Великие географические открытия. На практике были проверены научные идеи, установлены контуры материков, открыт Мировой океан, доказана шарообразность Земли, получен эмпирический материал для ботаники, зоологии, этнографии и др., обеспечен прорыв в астрономии (Н. Коперник - идея гелиоцентризма, Дж. Бруно - идея множества миров). В эпоху Ренессанса с позиций гуманизма разрабатывались учения об обществе и человеке, ускорилась дифференциация наук, расширилась сфера применения эксперимента (оптика, механика и др.).
Арабский мир в процессе становления ислама и халифата усвоил научное наследие Античности, арамеев, Ирана и др. В 8-9 вв. на арабский язык переведены и прокомментированы труды Архимеда, Птолемея, индийских астрономов и математиков.

Наука в Средние века. Обучение детей геометрии.

Центрами научной мысли были Багдад, Дамаск, Халеб (Алеппо), Самарканд, Бухара, Исфахан, города Испании и др. В Каире с нач. 11 в. имелся «Дом знания».
Труды учёных этого мира были хорошо известны и за его пределами (Ибн Рушд, Бируни, Хорезми и др.; «Оптика» Ибн аль-Хайсама, «Канон врачебной науки» Ибн Сины, географические трактаты Идриси). Учёные решали прикладные проблемы (в сфере строительства, землемерия, торговли), сделали алгебру научной дисциплиной, измерили наклон эклиптики и градус меридиана, составили зиджи (собрания таблиц и расчётных правил сферической астрономии).
Арабские географы и путешественники, ориентировавшиеся на Птолемея, оставили описания Вселенной (космографии) и стран исламского мира, Европы, Африки и Азии, географические словари. Лоцман Васко да Гамы Ибн Маджид (15 в.) и аль-Мехри (16 в.) обобщили достижения арабских мореплавателей. Генеалогические предания, предания о распространении ислама, переводная «Книга царей» (Сасанидский Иран), иудейские и христианские апокрифы использовались при написании хроник, биографических словарей, энциклопедий (Йемен, Египет). Учение о законах развития общества разработал Ибн Хальдун.

Наука в Средние века. Карта Идриси. 1154 г.

В Китае применяли усыпляющие средства (при операциях), иглоукалывание и прижигания, тысячи лечебных средств. Врач Жун Фэнь написал первую в мире «Фармакологию» («Бэнь цао», 3 в.). И Син и Лян Лин-цзань в 8 в. высказали идею об изменчивости расстояний между «неподвижными» звёздами, был измерен градус меридиана. Китайские математики 11-14 вв. знали свойства биномиальных коэффициентов и треугольник Паскаля (арифметический треугольник). Открытие Великого шёлкового пути стимулировало интерес к географии. Сюань-цзан добрался до устья реки Ганг (629). В 10-13 вв. бурно развивалось мореплавание и судостроение. В 14-15 вв. Чжэн Хэ совершил 7 морских путешествий (в Центральную и Юго-Восточную Азию, к берегам Африки).
Китайцы изобрели бумагу (2 в. н. э.), фарфор (3-5 вв.), прибор для измерения пройденного расстояния (3 в.) и сейсмоскоп, порох (10 в.). В 7 в. создана Палата учёных. С 7 в. составлялись истории династий, энциклопедии: «Тайпин юй-лань» («Императорский просмотр»), «Це фу юань гуй» («Сокровищница библиотек») и др.

Достижения индийской науки: десятичная позиционная система счисления и цифры, известные нам как арабские; таблица синусов для вычисления местонахождения планет; классификации растений (для целей медицины), минералов и органических веществ; получение ляписа и др. веществ; металлургия (нержавеющая колонна из метеоритного железа в Дели, нач. 5 в., - одно из чудес света). В Великих Моголов империи (в Дели, Джайпуре и др. городах) построены большие обсерватории. Индийская философия развивалась в русле буддизма. Применив буддийскую диалектику, Шанкара в 8-9 вв. разработал учение недвойственной веданты, ставшее обоснованием кастового строя (см. ст. Касты). В пракритских грамматиках описаны фонетические соответствия в древне- и среднеарийских языках, к ведам составлены глоссарии (нигханту), в 7 в. теоретики поэтики разработали семантическую теорию слова (шабдашакти).
О научных знаниях индейцев известно мало (см. ст. Ацтеков цивилизация, Календарь майя, Инков цивилизация).
В Средние века изменилась научная картина мира, заложен фундамент науки Нового времени (см. ст. Наука в эпоху Просвещения). Открытия и изобретения Средневековья сделали возможным промышленный переворот.

Наука в Средние века

II период развития науки – средневековый

Античная наука пришла в упадок не только вследствие падения Западной Римской империи в Римской империи V веке, но также вследствие распространения в Восточной империи христианства. Несмотря на процветание Византии, наука там оказалась гонимой. В 391 г. фанатики христиане, которых патриарх Александрии призвал уничтожить языческие книги, сожгли Александрийскую библиотеку, много рукописей было безвозвратно утеряно. В VI веке были закрыты все «языческие» школы, в том числе академия Платона и Ликей Аристотеля. Гонения на ученых привело к их массовой эмиграции в Азию, в основном в Иран.

VII – VIII века период арабских завоеваний. Огромные территории бывшей Римской империи в Азии, Африке, Пиренейский полуостров были захвачены арабами, объединившимися под знаменем новой религии – ислама. Уничтожению подверглись многие храмы и памятники. Во время взятия в 642 г. Александрии мусульманским халифом Омаром величайшая в мире библиотека была полностью уничтожена.

Однако в Сирии, Иране и других местах сохранялась эллинистическая философская и научная традиция. На сирийский язык были переведены Аристотель и другие греческие философы. Однако настоящий прорыв в освоении греческой культуры начался с воцарением в Багдаде династии Аббасидов.

Средневековая наука

Правление Харун ал-Рашида (763/766–809) ознаменовало собой начало первого всестороннего эллинистического ренессанса в арабском мире. Он начался с многочисленных переводов на сирийский язык, большая часть которых на ранней стадии делалась христианами. Аль-Рашид активно поддерживал ученых, которые изучали греческий язык и переводили греческие философские и научные труды. Он также посылал людей на Запад для приобретения греческих манускриптов. Большая работа по переводу иноязычных трудов и их распространению привела к созданию библиотек, которые обычно находились при мечетях и медресе.

Уже в конце IX века Багдад стал центром образованности арабского мира. Арабы усваивали не только эллинистическую культуру. Они установили важные контакты с Ираном, Индией и Китаем.

Многие знания арабские ученые почерпнули в Индии. Здесь VI веке в трудах Ариабхаты сложилась десятичная система исчисления. Через 100 лет Брахмагупта ввел отрицательные числа и число «0». Его современник пророк Мухаммед лично способствовал распространению индийских цифр в арабском мире.

Арабские ученые внесли выдающийся вклад во многие области знания. В начале IX века математик Мухаммед бен Муса ал Хорезми (ок. 780–847) заложил основы алгебры. В 827 г. ал Хорезми принимал участие в измерении длины градуса земного меридиана на равнине Синджара. Примерно в 830 г. он создал первый известный арабский трактат по алгебре. При халифе ал Васике (842-847) ал Хорезми возглавлял экспедицию к хазарам. Последнее упоминание о нем относится к 847 г.

Особое место в развитии арабской науки занимает Абу Али Хасан ал Хайсан ал Басри (965–1039). Его главный труд по оптике «Сокровище оптики» во многих отношениях представлял собой прорыв в этой науке. Ал Басри добился большого успеха в изучении линз, сферических и параболических зеркал. Более того, он был выдающимся представителем экспериментального подхода к изучению оптических явлений и сделал точный для своего времени анализ строения и функционирования глаза. Вопреки Аристотелю он утверждал, что луч света исходит от наблюдаемого объекта, а не из глаза. Сегодня ал Басри рассматривается как крупнейший физик арабского мира. Он оказал сильное влияние на западную науку, в том числе на Роджера Бэкона, Кеплера и Ньютона. Ал Басри также написал комментарии к «Началам» Эвклида.

Абу Рейхан Мухаммед ибн Ахмет ал Бируни (973–1048) – хорезмийский ученый. Круг его интересов необычайно широк: математика, хронология, география, геология, геодезия, астрономия, физика, ботаника, минералогия, этнография, история. В астрономии ал Бируни, наряду с геоцентрической системой признавал гелиоцентрическую.

Абу Али Хусейн ибн Абдаллах ибн Сина (980–1037) – представитель восточного аристотелизма. Первым в инструментах использовал нониус. Ибн Сина был ученым, одержимым исследовательским духом и стремлением к энциклопедическому охвату всех современных отраслей знаний. Он отличался феноменальной памятью и остротой мысли. Написал 450 трудов в 29 областях наук, 274 труда дошли до нас. Философ, врач, астроном, математик.

Омар Хайям (1048–1131) – астроном, математик, философ и поэт. В математике установил, что π является иррациональным числом. Нашел графический способ решения уравнения 3-й степени. Ученик Омара ХайямаАль-Хазини , деятельность которого развертывалась между 1115 и 1121 гг., написал замечательный трактат – "курс" средневековой физики, в который вошли таблицы удельных весов твердых и жидких тел, описания опытов по взвешиванию воздуха, наблюдения явления капиллярности, описание применения ареометра для измерения плотности жидкости.

Улугбек Мухаммед Тарагай (1394–1449) – узбекский астроном и математик, один из величайших мыслителей, просветителей, ученых средневековья. Внук Тамерлана, был правителем империи Тимуридов –Хорезма. Его основным интересом в науке была астрономия. В 1428 году Улугбек построил в Самарканде обсерваторию также получившую его имя. В Обсерватория Улугбека был секстант с диаметром 36 метров с делением на 180°. В ней Улугбек к 1437 году закончил Зидж-и Султани – каталог звёздного неба, в котором были описаны 994 звезды. По единогласному признанию историков астрономии, таблицы Улугбека по своей полноте и точности данных были признаны лучшими в мире до изобретения телескопа.

В 1437 году Улугбек определил длину астрономического года как 365 дней, 6 часов, 10 минут, 8 секунд (с погрешностью + 58 секунд).

Научная и просветительская деятельность Улугбека вызвала недовольство мусульманского духовенства и реакционных феодалов, обвинявших его в ереси и организовавших против него заговор. Улугбек был предательски убит, а его обсерватория варварски разрушена.

Почти во всех областях научного исследования – астрономии, математике, медицине и оптике – арабские ученые занимали ведущее положение. На протяжении более чем шести веков арабы в техническом и научном отношении превосходили Запад. Встает вопрос, почему арабская наука не стала источником современной науки. Почему научная революция произошла в XVI–XVII веках в Европе, а не в арабо-исламском мире? Как можно объяснить упадок арабской науки после XIV века? Почему остановилось развитие арабской философии и науки?

На первый взгляд может показаться, что одной из причин застоя и упадка в XIV веке восточной науки являлась арабская попытка "исламизации" греческой науки. Почти без исключения все вышеупомянутые арабские философы зарабатывали себе на жизнь как врачи, правоведы и государственные служащие. Хотя все они были мусульманами, но основывали свою деятельность на греческой философии и науке, не пытаясь "исламизировать" ее проблемы и результаты. С этим мирились, но в то же время эти ученые все больше становились объектами критики со стороны религиозных кругов. В XII–XIII веках возросло давление со стороны специфически исламских наук. Так называемые "иностранные" науки могли рассчитывать на поддержку только тогда, когда они были обоснованы религиозно или, скажем, выполняли определенную религиозную функцию (астрономия, геометрия и арифметика были среди этих наук, поскольку для совершения молитвы мусульмане должны были знать точное время и направление на Мекку). Однако многие другие научные области критиковались с религиозной точки зрения как «бесполезные» или как подрывающие картину мира, изложенную в Коране. Таким образом, возрастающая исламизация "иностранных наук", по-видимому, вела к ограничению того, что законно могло трактоваться в качестве актуальных исследовательских задач.

Возможно, другой большой проблемой было и отсутствие в арабской культуре институциональных оснований науки. Главным арабским центром образования были религиозные мусульманские школы – медресе. Начавшие расцветать в XI веке, они были главными исламскими культурными учреждениями. Медресе преимущественно предназначались для изучения религиозных (исламских) наук. Вся учеба сосредотачивалась на изучении Корана, жизни Пророка и его последователей, а также мусульманском учении о праве (шариате). Философия и естественные науки не изучались, хотя основные связанные с ними тексты копировались в медресе и передавались в библиотеки. Многие философы и ученые были преподавателями в медресе, но они не читали здесь лекций по "иностранным" наукам. В возрастающей степени занятие "иностранными науками" становилось личным делом или ассоциировалось с мечетью (астрономия) и двором халифа (медицина). Независимая арабская наука никогда не была официально оформлена и санкционирована арабо-исламской религиозной и политической элитой. Средневековый ислам не признавал гильдий и корпораций. Профессиональные группы студентов и преподавателей не могли быть юридически оформлены, что препятствовало их самостоятельному внутреннему развитию. Соответственно, было почти невозможным создание автономных академических институтов с внутренним самоуправлением, как это было в европейских университетах позднего Средневековья. Поэтому, очевидно, наиболее важной причиной стагнации арабской науки в XIV в. является то, что арабский мир так и не смог создать независимые университеты, к которым относились бы с терпимостью и которые могли бы рассчитывать на поддержку как светской, так и религиозной властей.

Контакты с арабами и расцвет экономической деятельности привели к интеллектуальному пробуждению в Испании, Лотарингии, Франции, Шотландии. В Италии были созданы первые учреждения, служащие для распространения и расширения знаний, – университеты. В 1100 г. университет в Болонье уже достиг славы. К этому времени приобрел известность и Парижский университет.

По образцу Парижа и Болоньи были созданы университеты в Падуе (1222 г.), Оксфорде (1229 г.), Кембридже, Неаполе, Риме и др. Примерно между 1125 и 1280 гг. в Испании и Италии были переведены труды Аристотеля, Евклида и Птолемея, одностороннее изучение которых привело к развитию схоластики. В это время труды Архимеда и Герона почти наверняка еще не были известны, так что все изучение механики было основано на трудах Аристотеля и «Проблемах механики», которые также приписывались Аристотелю.

Предыдущая12345678910111213141516Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Специфические черты и особенности средневековой науки

Предыдущая123456789Следующая

Средневековая наука не предложила новых фундаментальных научных программ. Ее значение состояло в том, что был предложен ряд новых обобщений, уточнений, понятий и методов исследования, которые подготовили основу для механики Нового времени.

Основными чертами средневековой науки являются :

1. Рациональность – постижение явлений на основе разума и чувственного опыта.

2. Теологизм – толкование любых проблем с точки зрения Священного писания. Считалось, что природа создана Богом для блага человека, а явления природы являются промыслом божьим, непостижимым для человека. В целом, толкование явлений действительности сводилось к констатации проявления божественного промысла.

3. Иерархичность – идея приближенности или отдаленности от Бога. В соответствии с этим подходом, природа не обладает самостоятельностью, это часть иерархии, во главе которой стоит Бог, за ним идет человек, затем находится живая природа, а за ней неживая.

4. Отсутствие оформленных научных понятий явилось следствием утраты наукой в раннем средневековье (до XIII – XIV вв.) своих теоретических позиций. Все научные достижения рассматривались с точки зрения практической пользы.

5. Экспериментальность – логически вытекает из утверждения церкви о том, что мир создан для человека, который является его господином и имеет право его переделывать.

6. Моральный символизм – характерная черта средневекового знания. Интерес к явлениям природы ведет не к научным обобщениям, а делает их символами церкви.

7. Универсализм – стремление к охвату мира в целом, осознание его законченного всеединства. Мир, человек и природа сотворены Богом и поэтому родственны между собой. Знания о природе познаются через познание Бога.

Перечисленные особенности средневекового мировоззрения отразились на процессе познания, обусловив его специфические черты:

· Всякая деятельность человека, противоречащая догматам церкви, запрещалась. Все воззрения на природу проходили цензуру церкви и, если в них имелись расхождения с принятыми воззрениями, то объявлялись еретическими и подвергались суду инквизиции. С помощью жестоких пыток и сожжения на костре инквизиция жестоко пресекала всякое инакомыслие.

Наука в Средние века

Открытия законов природы, противоречащие догматам церкви, стоили многим средневековым ученым жизни. Это способствовало усилению элемента созерцательности познания и привело в конечном итоге к застою (стагнации) и даже регрессу научного познания в целом.

· Так как средневековые мыслители искали не связи между явлениями природы, а их отношение к Богу, в иерархии вещей, то это привело к отсутствию в науке объективных законов природы, необходимых для оформления естествознания.

· Ввиду того, что в познавательной деятельности преобладал анализ вещей, иерархически расположенных по отношению к Богу, а не анализ понятий, универсальным методом исследования служила дедукция, позволяющая делать частные выводы (следствия) от общего – Бога.

В целом можно констатировать откат средневековой науки назад, по сравнению с античной. Наука была объявлена «служанкой богословия», средством решения чисто прикладных задач. На фоне общего упадка науки развивались арифметика, астрономия, необходимые для вычисления дат религиозных праздников.

Ситуация в средневековой науке стала меняться к лучшему с XII века, когда в научном обиходе стало использоваться научное наследие Аристотеля. Оживление в средневековую науку внесла схоластика, использовавшая научные методы (аргументацию, доказательство) в богословии.

Основными научными достижениями эпохи средневековья можно считать следующие:

  • Сделаны первые шаги к механистическому объяснению мира. Введены понятия: пустоты, бесконечного пространства, прямолинейного движения.
  • Были усовершенствованы и созданы новые измерительные приборы.
  • Началась математизация физики.
  • Развитие специфических в средневековье областей знания – астрологии, алхимии, магии – привело к формированию зачатков будущих экспериментальных естественных наук: астрономии, химии, физики, биологии.

Предыдущая123456789Следующая

Поиск Лекций

Основные научные достижения Средневековья

Ситуация в средневековой науке стала меняться к лучшему с XII века, когда в научном обиходе стало использоваться научное наследие Аристотеля. Оживление в средневековую науку внесла схоластика, использовавшая научные методы (аргументацию, доказательство) в богословие. Схоластика

Схоластика — наиболее почитаемая наука в средние века. Соединяла в себе теологию и рационалистическую методику. Требовала от основополагающих структур науки такого соответствия действительности, которое бы обнаруживалось не при сопоставлении их с теми или иными явлениями, а гарантировалось бы изначальной их соотнесенностью со структурой бытия.

Схоластика послужила той дисциплинарной основой, без которой просто не могла бы возникнуть современная система естествонаучного знания. Именно схоластика обусловила появление канонов научного исследования, сформированных Окканом, составляющих, по выражению современных католических философов Дж. Реале и Д. Антисери, "эпилог средневековой науки и одновременно прелюдию новой физики". Существующие толкования средневековой науки Западной Европы исходят из модернизации языка той далекой эпохи, когда средневековые естествоиспытатели говорили на языке аристотелевской "физики". Ведь никакого другого языка, пригодного для описания разнообразных физических явлений в то время вообще не было.. Самыми популярными книгами средневековья были энциклопедии, отражавшие иерархический подход к объектам и явлениям природы. Основными научными достижениями эпохи средневековья можно считать следующие:

1. Сделаны первые шаги к механистическому объяснению мира. Введены понятия: пустоты, бесконечного пространства, прямолинейного движения. Особое значение для нас имеют открытия Галилея в области механики, так как с помощью совершенно новых категорий и новой методологии он взялся разрушить догматические построения господствовавшей аристотелевской схоластической физики, основывавшейся на поверхностных наблюдениях и умозрительных выкладках, переполненной телеологическими представлениями о движении вещей в соответствии с их природой и целью, о естественных и насильственных движениях, о природной тяжести и легкости тел, о совершенстве кругового движения по сравнению с прямолинейным и т.д. Именно на основе критики аристотелевской физики Галилей создал свою программу строительства естествознания.

Галилей усовершенствовал и изобрел множество технических приборов — линзу, телескоп, микроскоп, магнит, воздушный термометр, барометр и др.

2. Были усовершенствованы и созданы новые измерительные приборы.

Механические часы появились в средневековой Европе прежде всего как часы башенные, служащие для указания на время богослужения. До изобретения механических часов для этого использовался колокол, в который бил часовой, определявший время по песочным часам - каждый час. Механические часы на башне Вестминстерского аббатства появились в 1288 г. Позже механические башенные часы стали использоваться во Франции, Италии, германских государствах. Существует мнение, что механические часы изобрели мельничные мастера, развивая идею о непрерывном и периодическом движении мельничного привода. Главной задачей при создании часового механизма было обеспечение точности хода или постоянства скорости вращения зубчатых колес. Разработка часовых механизмов была невозможна без технических знаний, проведения математических расчетов. Измерение времени имеет прямую связь и с астрономией. Таким образом, часовое дело соединило механику, астрономию, математику в решении практической задачи измерения времени.
Компас как устройство, использующее ориентацию естественного магнита в определенную сторону, изобретен в Китае. Китайцы приписывали способность ориентации естественных магнитов воздействию звезд. В I - III вв. компас стал применяться в Китае как «указатель Юга». Как попал компас в Европу, до сих пор неизвестно. Начало его применения европейцами в мореплавании относится к XII в. Применение компаса на судах явилось важной предпосылкой географических открытий. Свойство компаса впервые обстоятельно представил французский ученый Пьер да Марикур (Петр Перегрин). Он описал в связи с этим и свойства магнитов, и явление магнитной индукции. Компас стал первой действующей научной моделью, на основе которой развивалось учение о притяжениях, вплоть до великой теории Ньютона.

Оптика

Первые увеличительные стекла появились очень давно, около 700 года до нашей эры. Многие ученые средневековья, основываясь на опыте арабских ученых, занимались изучением оптики.

Роберт Гроссетест (1168-1253) родился в Сассексе. С 1209 года -преподаватель Парижского университета. Его основные труды посвящены оптике и преломлению света. Подобно Аристотелю, он всегда проверял на практике научные гипотезы.

Ученик Гроссетеста, Роджер Бэкон (1214-1294) родился в Самерсете. Учился в Оксфордском университете, а в 1241 году уехал в Париж. Он не оставил самостоятельных экспериментов, но провел ряд исследований по оптике и строению глаза. Он воспользовался схемой глаза, сделанной Аль-Хайсаном, для получения изображений. Бэкон хорошо понимал принцип преломления света и одним из первых предложил использовать увеличительные линзы в качестве очков.

Они состояли из двух выпуклых линз, увеличивающих предметы так, чтобы люди могли их видеть.

Изготовление и применение очков подготовили изобретение подзорной трубы, микроскопа и привели к созданию теоретических основ оптики.

Возникновение оптики дало не только огромный материал наблюдений, но и совершенно иные, чем раньше, средствадля науки, позволило сконструировать новые приборы для исследований.

Компас, подзорная труба, а также выросшая техника морского дела позволили в конце XV и XVI вв. осуществить великие географические открытия.

Оптика послужила появлению такого измерительного прибора, как бинокль (определение дальности до предмета), используется для измерения звёзд и измерения преломления света. Компас как измерительный прибор применяется для определения изменения магнитного поля.

3. Началась математизация физики.

Физика

Физика в том смысле, который вкладывали в это понятие сами средневековые философы и ученые, была синонимом науки о движении. «Так как природа есть начало движения и изменения, а предмет нашего исследования — природа, то нельзя оставлять невыясненным, что такое движение: ведь незнание движения необходимо влечет за собой незнание природы». Эти начальные строки третьей книги «Физики» Аристотеля были хорошо известны всем натурфилософам средних веков.

Движение, по Аристотелю, всегда есть движение к определенному конечному состоянию. Естественное движение — это просто движение к состоянию покоя. Оно не имеет других определений, кроме указания конечного пункта.

При таком подходе движение описывается через задание двух точек, начальной и конечной, так что путь, проходимый телом, есть отрезок между этими точками.

Таким образом, движение — это то, что происходит между двумя позитивными состояниями покоя.

При рассмотрении движения тела всегда можно выделить наряду с положениями в начальном и конечном пунктах его движения произвольное число промежуточных точек-положений. Вместо движения в этом случае мы имеем множество точек покоя, между которыми возможен только скачкообразный переход. Понятие непрерывности как раз и должно снять эти трудности. Чтобы не было скачков, надо запретить существование двух точек, между которыми нельзя выбрать никакой промежуточной. Этот запрет и составляет определение непрерывности по Аристотелю. Но возможность выбора сколь угодно большого числа промежуточных точек сама может рассматриваться как аргумент против существования движения.

Предпосылки, лежащие в основе аристотелевского понятия непрерывности движения, были до конца продуманы и логически строго сформулированы в учении Уильяма Оккама (XIV в.). Оккам писал: «Вот что значит быть движимым движением перемещения: это значит, что некоторое тело сначала занимает одно место, — и при этом не принимается никакой другой вещи, — а в позднейшее время занимает другое место, без какой-либо промежуточной остановки и без какой-либо сущности, иной, чем место, это тело и другие постоянные вещи, и таким образом продолжается непрерывно. Следовательно, кроме этих постоянных вещей (тела и занимаемых им мест) нет нужды рассматривать что-то еще, но лишь следует добавить, что тело не находится одновременно во всех этих местах и не покоится ни в одном из них.»

Для Оккама, так же как и для Аристотеля, дать логическое определение чему-либо значит указать нечто неизменное, что лежит в его основе. Поэтому Оккам не может и не хочет пользоваться в своем определении никакими другими вещами, кроме постоянных. Он показывает, что движение можно определить через них негативным образом. Частица «не», привходящая при этом в определение движения (не находится, не покоится) не обозначает никакой самостоятельной сущности. Поэтому Оккам делает вывод, что для определения движения «не требуется никакой другой вещи, помимо тела и места».

Таким образом такая точка зрения ограничивается констатацией того, что состояние движения не совпадает с состоянием покоя. Но каково оно, Аристотель сказать не может, а Оккам уже не считает осмысленным и сам вопрос.

4. Развитие специфических в средневековье областей знания — астрологии, алхимии, магии — привело к формированию зачатков будущих экспериментальных естественных наук: астрономии, химии, физики, биологии. Промышленный переворот, который осуществился в Новое время, был во многом подготовлен техническими новациями Средневековья.

Астрономия

К XIV в. ученые усвоили многие идеи античности. Но они трактовали их излишне прямолинейно, считая, что Вселенная создана неизменной и совершенной, а Земля находится в ее центре.

Жан Буридан (1300-1385), преподаватель парижского университета, принял античную «теорию толчка». Согласно этой теории, Бог создал планеты и звезды, но движутся они вокруг Земли самостоятельно и с постоянной скоростью. Буридан опасался публиковать свой труд, т. к. он противоречил учению Аристотеля о том, что планетами движет воля Бога.

Николя Орезм (1320-1382) родился в Нормандии. С 1340 года он учился в Париже, у Буридана и пошел гораздо дальше своего учителя в критике трудов Аристотеля. Орезм утверждал, что Земля не неподвижна, а каждый день совершает оборот вокруг своей оси. Для расчета движения он пользовался математическими выкладками. Идеи Орезма позже помогли ученым сформулировать новые представления о строении Вселенной. Это позволило в XVII в. Галилею и другим ученым отвергнуть систему Аристотеля

Алхимия

Алхимия- практическое искусство (не входила в число теоретических дисциплин), черное искусство, без демонов не обойдешься.

Алхимики, многие из которых были образованнейшими людьми своего времени, стремились получить философский камень. Медь соединяли с оловом, думая что приближаются к золоту. Даже не задумываясь что изготовляют бронзу, давно известную человечеству.

Считалось, что достаточно изменить свойства простого металла (цвет, тягучесть, ковкость) и он станет золотым. Усилилась вера в то, что для превращения одних металлов в другие нужно особое вещество- «философский камень». Алхимики бьются над проблемой добыть этот «магистерий», или «эликсир жизни». Они часто работали под покровительством какого-либо знатного аристократа. Алхимик получал от него деньги и время… Очень немного времени. Нужны были результаты, а т. к. их не было мало кто из представителей «почтенного алхимического искусства доживал до старости.

Величайшим алхимиком всех времен считался Альберт фон Больштедт по прозванию Великий Альберт. Он был отпрыском благородной фамилии. Учился много лет в Италии. По окончанию учебы вступил в монашеский орден доминиканцев и по распоряжению орденского начальства отправился в Германию учить местное духовенство всему тому, чему до того учили его: читать, писать и мыслить.

Великий Альберт был очень образованным человеком для своего времени. Слава его была столь велика, что Парижский университет пригласил его профессором на кафедру богословия. Но еще громче, чем признание ученого, гремела его черная слава колдуна и чародея. О нем сохранилась легенда, будто он один из немногих обладал тайной философского камня. Будто с помощью этого волшебного средства он не только добывал золото, но и излечивал неизлечимых и возвращал молодость старцам.

Мало-помалу алхимики отчаялись найти философский камень и обратились к другим теориям. Главной их целью становится изготовление лекарств.

Магия — понималась как глубокое знание скрытых сил и законов Вселенной без их нарушения и, следовательно, без насилия над Природой. Маг - это больше практик-экспериментатор, нежели теоретик-концептуалист. Маг желает, чтобы опыт удался, и при-бегает к всевозможным приемам, формулам, молитвам, закли-наниям и пр.

Заключение

Подводя итоги, хотелось бы отметить, что средневековая культура весьма специфична и неоднородна. Так как, с одной стороны, Средневековье продолжает традиции Античности, то есть ученые-философы придерживаются принципа созерцательности (один из последователей Аристотеля, который на приглашение Галилея посмотреть в телескоп и воочию убедиться в наличии пятен на Солнце отвечал: «Напрасно, сын мой. Я дважды прочел Аристотеля и ничего не нашел у него о пятнах на Солнце. Пятен нет. Они происходят либо от несовершенства твоих стекол, либо от недостатка твоих глаз»). В те времена Аристотель для многих ученых мужей был чуть ли не «идолом», мнение которого воспринималось, как действительность. Его взгляды на онтологию имели серьёзное влияние на последующее развитие человеческой мысли. Нет, я не говорю, что он был не прав!!! Аристотель – великий философ, однако, в тоже время он такой же человек как и все, а людям свойственно ошибаться.

Теологическое мировоззрение, заключающееся в истолковании явлений действительности как существующих по «промыслу Божию». То есть, многие ученые-философы считали, что все вокруг создано Богом по понятным только ему одному законам, а человек должен принимать эти законы как что-то священное и ни в коем случае не пытаться разобраться в них. А так же их принципиальный отказ от опытного познания. Конкретные методики натуральных магов не представляли еще эксперимента в общепринятом смысле слова - это было нечто похожее на заклинания, нацеленные на вызывание духов, потусторонних сил. Иначе говоря, средневековый ученый оперировал не с вещами, а с силами, за ними скрытыми. Он еще не мог понять эти силы, но четко осознавал, когда и на что они действуют.

С другой стороны, Средневековье порывает с традициями античной культуры, «подготавливая» переход к совершенно иной культуре Возрождения. В XIIIв в науке зарождается интерес к опытному знанию. Подтверждением этого выступает значительный прогресс алхимии, астрологии, натуральной магии, медицины, имеющих «экспериментальный» статус. Несмотря на запреты церкви, обвинения в вольнодумстве, в сознании средневекового ученого сформировалось четкое желание «познать мир», все чаще и чаще он стал задумываться о происхождении всего сущего и пытаться объяснить свои предположения с другой точки зрения, чем церковная, позже эта точка зрения будет называться научной.

Догматика - раздел богословия, в котором даётся систематизированное изложение догматов (положений) какой-либо религии. Систему догматов имеют христианство, ислам, буддизм и другие религии.


Схоластика — тип религиозной философии, стремящейся дать рациональное теоретическое обоснование религиозному мировоззрению путем применения логических методов доказательства. Для схоластики характерно обращение к Библии как к основному источнику знаний.

Теология - (от-греч. theos - Бог и …логия) (богословие) - совокупность религиозных, доктрин и учений о сущности и действии Бога.

Особенности средневековой науки.

Предполагает концепцию абсолютного Бога, сообщающего человеку знание о себе в откровении.

Начало формы

Конец формы

©2015-2018 poisk-ru.ru

Грамотность была не реальностью, а идеальным символом культуры. Грамотных было не так уж много, книга – редкость. Бытовая реальность – поющий народ. Но фигура писца становится выше, благороднее фигуры певца (в Античности– наоборот). Священное Писание как Божье слово делало все атрибуты книжности почетными, а переписчик книг становился причастным божественному. Однако, в христианстве культ книги не столь абсолютен, как в иудаизме и исламе. «Буква убивает, а дух животворит» (П Кор. 3, 6).И все же Бог-Слово получает в христианстве атрибут – свиток, книгу, кодекс. Книга – символ откровения, она легко становится символом сокровенного, тайны. Прежде чтецом называли раба, занимающего господ чтением. Теперь чтец – одна из низших ступеней церковнослужителей.

Средневековые школы. Последние языческие школы в Западной Европе были закрыты в 6 в. Юстинианом. Вместо них появляется церковная форма обучения. Школы были: монастырскими, епископальными (при кафедральных соборах, преимущественно для начального обучения чтению, письму, общим представлениям о Библии и литургии) и придворными. Последние имели такую же религиозную направленность. Но именно в этих школах начинает культивироваться идея возрождения Античности . Вот что пишет об этом директор одной из придворных школ Алкуин Йоркский (730-804): «Так возрастут на земле франков новые Афины, еще более блистательные, чем в древности, ибо наши Афины оплодотворены Христовым учением, а потому превзойдут в мудрости Академию».

Возникновение университетов (11-12 вв.). В отличие от школ, университеты были продуктом именно Средневековья. Такого рода свободных корпораций учеников и преподавателей с их привилегиями, установленными программами, дипломами, званиями не было ни в Античности, ни на Востоке.

Наука в период средневековья

И хотя университеты по-прежнему обслуживали нужды государства и церкви, для них была характерна большая степень автономности от местных (в том числе и городских) властей и особый дух свободного братства. Деятельность университетов имела три очень важных культурных следствия. Во-первых, рождение профессионального сословия ученых (священников и мирян), которым церковь давала право на преподавание истин Откровения. Наряду с церковной и светской властью появляется власть интеллектуалов, воздействие которых на духовную культуру и социальную жизнь будет становиться все больше. Во-вторых, университетское братство с самого начала не знало сословных различий. Студентами становились дети крестьян и ремесленников. Появляется новый смысл понятия «благородства» как аристократизма ума и поведения. В-третьих, именно в рамках университетов оформляется в Средневековье установка на рациональное постижение Откровения, попытка примирить разум и веру. Средневековый университет делился на факультет свободных искусств и факультет теологии (высшая ступень образования). На факультете искусств изучали грамматику, логику, математику, физику, этику. Эти науки опирались только на разум. Именно здесь шло освоение заново открытых работ античных (Аристотель, Платон, Евклид, Архимед, Птолемей, Гиппократ и др.) и византийских (Отцы Церкви) ученых и философов, а также арабо-мусульманских авторов (Авиценна, Аверроэс, Аль-Хорезми, Аль-Фараби и др.).Здесь вызревали новые идеи. На факультете теологии главным было точное изучение Библии через толкование текста. Но примечательно то, что учащиеся теологического факультета сначала должны были закончить факультет искусств, т.е. они были знакомы со всеми критически обсуждавшимися идеями и проблемами. Поэтому в толкование Писания привносилось рациональное начало. Университеты породили и новые формы преподавания: лекции и семинары, где постоянно шли дискуссии, любая тема предлагалась в форме вопроса. Хотя эти эффективные методы не исключали умозрительности, цитирования, опоры на авторитеты.

С течением времени в университетах складывалась своя специализация. Так, в Болонье обучались юристы, в Саламанке, Монпелье, Солерно – медики. Начинался процесс формирования и систематического изучения гуманитарных и естественных наук. При этом все науки были еще долгое время подчинены теологии.

Техника в Средние века также долгое время считалась лишь вспомогательным средством для имитации других явлений. К примеру, в первом из известных средневековых технических трактатов монаха Теофила, техника рассматривается как набор секретов по украшению храма и демонстрации чудес. Что же касается трудовой деятельности, то здесь техника не отделялась от работника. Но с развитием бюргерских городов в 12-13 вв. постепенно происходит поворот к осознанию самоценности техники. Самым важным по культурным следствиям приспособлением, значимость которого осознало Средневековье, стало колесо и вообще принцип механического вращательного движения. В позднее Средневековье начинают широко использоваться водяные и ветряные мельницы. Появление механических часов в 13 в. способствовало проникновению в повседневную жизнь идеи линейного времени, все больше вытесняющего время циклическое. В недрах феодального общества шел процесс зарождения промышленного производства.

Дата публикования: 2015-07-22; Прочитано: 210 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Поиск Лекций

Особенности и характерные черты Средневековой науки.

Тема 2 вопр.3

Эпоху Средневековья относят к началу II в. н.э., а ее завершение к XIV — XV вв. В истории Европы этот период называют не иначе как "мрачный", имея при этом в виду общий упадок цивилизации, крушение Римской империи, нашествие варваров, проникновение религии во все сферы духовной культуры.

В наследство от Античности Средневековью досталось три фундаментальные научные программы: атомистическая программа Демокрита, математическая программа пифагорейцев, континуалистическая (преемственная) программа Аристотиля. Несмотря на то, что Средневековье никаких новых программ не создавало, всё же в рамках программ Аристотеля и Платона происходил процесс создания целого ряда понятий и методов исследований, которые разрушая античные программы изнутри, подготовили почву для создания механики Нового времени.

Учёные средневековья дают новую интерпретацию ключевым категориям научного мышления, таким, как бесконечность, пространство, время и т.д. Новые интерпретации античной науки, прежде всего аристотелевской физики, оказались возможными потому, что христианская идеология внесла коренные изменения в понимание объекта естественно–научного знания – природы, с одной стороны, и субъекта научного знания – человека, с другой. Эти изменения коснулись всего типа мышления и шли параллельно с теми социальными сдвигами, которые постепенно изменяли характер общественных отношений и способствовали формированию феодализма.

Знания, которые формируются в эпоху Средних веков в Европе, вписаны в систему средневекового миросозерцания, для которого характерно стремление к всеохватывающему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание – это знание всеобщее, доказательное. Но обладать им может только творец, только ему доступно знать, и это знание универсальное. В этой парадигме (образцовое понятие (феномен) принятый общим решением всех учёных пришедших к одному мнению ) нет места знанию неточному, частному, относительному, не исчерпывающему. Так как всё на земле сотворено, то существование любой вещи определено свыше, следовательно она не может быть несимволической. Вспомним новозаветное: «В начале было Слово, и Слово было у Бога, и слово было Бог». Слово выступает орудием творения, а переданное человеку, оно выступает универсальным орудием постижения мира. Понятия отождествляются с их объективными аналогами, что выступает условием возможности знания. Если человек овладевает понятием, значит, он получает исчерпывающее знание о действительности, которое происходит из понятий. Познавательная деятельность сводиться к исследованию последних, а наиболее репрезентативными являются тексты Святого писания.

Ключевым положением средневекового мышления является положение о творческом всемогуществе Бога и его всевидении. Поэтому все свойства вещей, все законы, которым подчиняется их поведение, будучи творением Бога в принципе не представляют собой чего то вечного и неизменного. Так же, как некогда они были сотворены, они могут быть преобразованы и даже уничтожены.

. Крупнейший философ Средневековья Фома Аквинский соединил понятие «вера» и «разум»: «не просто верь, а знай, во что веришь», однако вера всё-таки выше знания, так как часть божественных истин носит сверхразумный характер, а научные и философские истины просто разумны .

Поскольку в эпоху Средневековья наука и философия были тесно переплетенные религией, поскольку их развитие шло или в направлении продолжения и усиления церковной догматики с помощью схоластики, или в направлении неприятия церковных авторитетов и разработки противоположных методов, приводящих к результатам, которые не вписывались в традиционное видение мира. Таким образом, наука и философия Средневековья по сравнению с античностью, приобретает ещё больший уклон в сторону мистической созерцательности . Не использовались или были забыты многие крупные научные открытия (предположения) античности. Второй стороной можно назвать то, что в позднее Средневековье в науке и философии был выработан ряд идей, впоследствии вошедших в состав науки Нового времени (понятие скорости, предоставление о равноускоренном и равномерном движении, возможности движения в пустоте и многое другое).

Систему образования на первых порах в средневековье представляли монастырские школы, которые готовили священнослужителей. Более высокий класс школ, тоже готовивших священ-нослужителей, представляли собой так называемые епископские школы, начавшие появляться примерно с VIII в.

В их деятельности принимал участие епископ и приближенные к нему духовные лица, а повседневное обучение осуществляли специально подготовленные учителя. Университет средневековой Европы существенно отличался от современного университета, однако до нашего времени сохранились ученые степени доктора и магистра, звания профессора и доцента, лекции как основная форма сообщения знаний, факультеты как подразделения университета. Отмерла такая форма обучения, как диспут, имевшая широкое распространение в средневековых университетах, но научные дискуссии и семинары имеют большое значение и в современной науке, и в высшей школе.

Лекция (буквально - чтение) в средневековом университете по необходимости была основной формой сообщения знаний. Книг было мало, они были дороги, и поэтому чтение и комментирование богословских и научных трудов являлось важной формой информации.

Преподавание велось на латинском языке, равно как и богослужение в католических храмах. До XVIII в. латинский язык был международным научным языком, на нем писали Коперник, Ньютон и Ломоносов.

До сих пор в европейских университетах торжественные речи читаются, а дипломы пишутся на латинском языке. На торжественных актах профессора появляются в средневековых докторских мантиях и шапочках. Так современная наука сохраняет память о первых университетах, возникновение которых явилось одной из главных предпосылок научного прогресса.

Основные черты Средневековья Средневековье знало семь свободных искусств: грамматика, диалектика, риторика (триумвиум); арифметика, геометрия, астрономия, музыка, пение церковных гимнов (квадриум). Каждый ученый был обязан владеть всеми этими науками-искусствами. Основными чертами средневековой науки являются:

1. Рациональность — постижение явлений на основе разума и чувственного опыта.

2. Телеологизм — толкование любых проблем с точки зрения Священного писания. Природа создана Богом для блага человека, а явления природы являются промыслом Божьим, непостижимым для человека. В целом толкование явлений действительности сводилось к констатации проявления Божественного промысла.

3. Иерархичность — идея приближенности или отдаленности от Бога. В соответствии с этим подходом, природа не обладает самостоятельностью, это часть иерархии, во главе которой стоит Бог, за ним идет человек, затем находится живая природа, а за ней неживая. Каждая вещь рассматривалась как зеркало — гладкое или менее гладкое — отражающее свет Божий.

Образование и наука в средние века.

Отсутствие оформленных научных понятий явилось следствием утраты наукой в раннем средневековье (до XIII-XIV вв.) своих теоретических позиций. Все научные достижения рассматривались с точки зрения практической пользы.

5. Экспериментальность — логически вытекает из утверждения церкви о том, что мир создан для человека, который является его господином и имеет право его переделывать.

6. Моральный символизм — характерная черта средневекового знания. Интерес к явлениям природы ведет не к научным обобщениям, а делает их символами церкви, например, Луна — это образ Церкви, отражающая божественный свет; ветер — символ Духа и т. д.

7. Универсализм — стремление к охвату мира в целом, осознание его законченного всеединства. Мир, человек и природа сотворены Богом и поэтому родственны между собой. Знания о природе познаются через познание Бога.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных