В клетке больше калия или натрия. Концентрация ионов калия и натрия в клетке. Регуляция баланса натрия

Зачем нам нужно знать, что такое потенциал покоя?

Что такое "животное электричество"? Откуда в организме берутся "биотоки"? Как живая клетка, находящаяся в водной среде, может превратиться в "электрическую батарейку"?

На эти вопросы мы сможем ответить, если узнаем, как клетка за счёт перераспределения электрических зарядов создаёт себе электрический потенциал на мембране.

Как работает нервная система? С чего в ней всё начинается? Откуда в ней берётся электричество для нервных импульсов?

На эти вопросы мы также сможем ответить, если узнаем, как нервная клетка создаёт себе электрический потенциал на мембране.

Итак, понимание того, как работает нервная система, начинается с того, что надо разобраться, как работает отдельная нервная клетка - нейрон.

А в основе работы нейрона с нервными импульсами лежит перераспределение электрических зарядов на его мембране и изменение величины электрических потенциалов. Но чтобы потенциал изменять, его нужно для начала иметь. Поэтому можно сказать, что нейрон, готовясь к cвоей нервной работе, создаёт на своей мембране электрический потенциал , как возможность для такой работы.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом перемещаются электрические заряды на нервных клетках к как за счёт этого на мембране появляется электрический потенцила. Этим мы и займёмся, и назовём этот процесс появления электрического потенциала у нейронов - формирование потенциала покоя .

Определение

В норме, когда клетка готова к работе, у неё уже есть электрический заряд на поверхности мембраны. Он называется мембранный потенциал покоя .

Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).

"Потенциал" - это возможность , он сродни понятию "потенция". Электрический потенциал мембраны - это её возможности по перемещению электрических зарядов, положительных или отрицательных. В роли зарядов выступают заряженные химические частицы - ионы натрия и калия, а также кальция и хлора. Из них только ионы хлора заряжены отрицательно (-), а остальные - положительно (+).

Таким образом, имея электрический потенциал, мембрана может перемещать в клетку или из клетки указанные выше заряженные ионы.

Важно понимать, что в нервной системе электрические заряды создаются не электронами, как в металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. Электрический ток в организме и его клетках - это поток ионов, а не электронов, как в проводах. Обратите также внимание на то, что заряд мембраны измеряется изнутри клетки, а не снаружи.

Если говорить уж совсем примитивно просто, то получается, что снаружи вокруг клетки будут преобладать "плюсики", т.е. положительно заряженные ионы, а внутри - "минусики", т.е. отрицательно заряженные ионы. Можно сказать, что внутри клетка электроотрицательна . И теперь нам всего лишь надо объяснить, как это так получилось. Хотя, конечно, неприятно сознавать, что все наши клетки - отрицательные "персонажи". ((

Сущность

Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.

Внутри клетки - "отрицательность", а снаружи - "положительность".

Такое положение вещей достигается с помощью трёх явлений: (1) поведения мембраны, (2) поведения положительных ионов калия и натрия и (3) соотношения химической и электрической силы.

1. Поведение мембраны

В поведении мембраны для потенциала покоя важны три процесса:

1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны : ионные насосы-обменники . Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.

2) Открытые калиевые ионные каналы . Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.

3) Закрытые натриевые ионные каналы . Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризацией мембраны, т.е. уменьшением полярности).

2. Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники натрий насильно выводится из клетки, а калий затаскивается в клетку .

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

3. Соотношение химической и электрической силы

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Формирование потенциала покоя

Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.

И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).

И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.

Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na + и калия - K + .

Натрий-калиевый насос

А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники , образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.

Чтобы легче было запомнить, образно можно сказать так: "Клетка любит калий! " (Хотя об истинной любви здесь не может идти и речи!) Поэтому она и затаскивает калий в себя, несмотря на то, что его и так полно. Поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. Поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. Вот что делает любовь, пусть даже не настоящая!

Кстати, интересно, что клетка не рождается с потенциалом покоя в готовом виде. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от -10 до -70 mV, т.е. их мембрана становится более электроотрицательной, она поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках (ММСК) костного мозга человека искусственная деполяризация ингибировала дифференцировку клеток (Fischer-Lougheed J., Liu J.H., Espinos E. et al. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 2001; 153: 677-85; Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology 1998; 510: 467-76; Sundelacruz S., Levin M., Kaplan D.L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. Plos One 2008; 3).

Образно говоря, можно выразиться так:

Создавая потенциал покоя, клетка "заряжается любовью".

Это любовь к двум вещам:

1) любовь клетки к калию,

2) любовь калия к свободе.

Как ни странно, но результат этих двух видов любви - пустота!

Именно она, пустота, создаёт в клетке отрицательный электрический заряд - потенциал покоя. Точнее, отрицательный потенциал создают пустые места, оставшиеся от убежавшего из клетки калия.

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na +) в клетке.

2. Избыток калия (K +) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

Анализ

От химического - к электрическому

А теперь - самое главное, следите за излагаемой мыслью! Мы должны перейти от движения химических частиц к движению электрических зарядов.

Калий заряжен положительным зарядом, и поэтому он, когда выходит из клетки, выносит из неё не только себя, но и "плюсики" (положительные заряды). На их месте в клетке остаются "минусы" (отрицательные заряды). Это и есть мембранный потенциал покоя!

Мембранный потенциал покоя - это дефицит положительных зарядов внутри клетки, образовавшийся за счёт утечки из клетки положительных ионов калия.

Заключение

Рис. Схема формирования потенциала покоя (ПП). Автор благодарит Попову Екатерину Юрьевну за помощь в создании рисунка.

Составные части потенциала покоя

Потенциал покоя - отрицательный со стороны клетки и состоит как бы из двух частей.

1. Первая часть - это примерно -10 милливольт, которые получаются от неравносторонней работы мембранного насоса-обменника (ведь он больше выкачивает "плюсиков" с натрием, чем закачивает обратно с калием).

2. Вторая часть - это утекающий всё время из клетки калий, утаскивающий положительные заряды из клетки. Он дает большую часть мембранного потенциала, доводя его до -70 милливольт.

Калий перестанет выходить из клетки (точнее, его вход и выход сравняются) только при уровне электроотрицательности клетки в -90 милливольт. Но этому мешает постоянно подтекающий в клетку натрий, который тащит с собой свои положительные заряды. И в клетке поддерживается равновесное состояние на уровне -70 милливольт.

Обратите внимание на то, что для создания потенциала покоя нужны затраты энергии. Эти затраты производятся ионными насосами, которые обменивают "свой" внутренний натрий (ионы Na +) на "чужой" внешний калий (K +). Вспомним, что ионные насосы являются ферментами АТФазами и расщепляют АТФ, получая из неё энергию на указанный обмен ионов разного типа друг на друга.Тут очень важно понять, что с мембраной "работают" сразу 2 потенциала: химический (концентрационный градиент ионов) и электрический (разность электрических потенциалов по разные стороны мембраны). Ионы перемещаются в ту или иную сторону под действием обеих этих сил, на которые и тратится энергия. При этом один из двух потенциалов (химический или электрический) уменьшается, а другой увеличивается. Разумеется, если рассматривать электрический потенциал (разность потенциалов) отдельно, то не будут учитываться "химические" силы, перемещающие ионы. И тогда может сложиться неверное впечатление о том, что энергия на движение ионо берётся как бы ниоткуда. Но это не так. Необходимо рассматривать обе силы: химическую и электрическую. При этом крупные молекулы с отрицательными зарядами, находящиеся внутри клетки играют роль "статистов", т.к. их не перемещают через мембрану ни химические, ни электрические силы. Поэтому эти отрицательные частицы обычно и не рассматривают, хотя они существуют и именно они обеспечивают отрицательную сторону разности потенциалов между внутренней и наружной сторонами мембраны. А вот шустрые ионы калия, как раз способны к перемещению, и именно их утечка из клетки под действием химических сил создаёт львиную долю электрического потенциала (разности потенциалов). Ведь именно ионы калия перемещают на наружную сторону мембраны положительные электрические заряды, будучи положительно заряженными частицами.

Так что всё дело в натрий-калиевом мембранном насосе-обменнике и последующем вытекании из клетки "лишнего" калия. За счёт потери положительных зарядов при этом вытекании внутри клетки нарастает электроотрицательность. Она-то и есть "мембранный потенциал покоя". Он измеряется внутри клетки и составляет обычно -70 мВ.

Выводы

Говоря образно, "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками".

Мембранный потенциал покоя образуется за счёт двух процессов:

1. Работа калий-натриевого насоса мембраны.

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Финал

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.

Видео: Мембранный потенциал покоя (Resting membrane potential)

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны - активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор - управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация - небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала - деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному - отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны - изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме - увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме - мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы - импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула - правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя - реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта - это работа Na/K - насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ - кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис. 9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку - открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал - мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП - электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению - возбудимость. На рисунке МПП = -90 мв.

2. КУД - критический уровень деполяризации (или порога генерации мембранного потенциала действия) - это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) - такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку - кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация - ЛОКАЛЬНЫЙ ОТВЕТ (ЛО). Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Оглавление темы "Эндоцитоз. Экзоцитоз. Регуляция клеточных функций.":
1. Воздействие Na/K-насоса (натрий калиевого насоса) на мембранный потенциал и объем клетки. Постоянный объем клетки.
2. Концентрационный градиент натрия (Na), как движущая сила мембранного транспорта.
3. Эндоцитоз. Экзоцитоз.
4. Диффузия в переносе веществ внутри клетки. Значение диффузии в эндоцитозе и экзоцитозе.
5. Активный транспорт в мембранах органелл.
6. Транспорт в везикулах клетки.
7. Транспорт путем образования и разрушения органелл. Микрофиламенты.
8. Микротрубочки. Активные движения цитоскелета.
9. Аксонный транспорт. Быстрый аксонный транспорт. Медленный аксонный транспорт.
10. Регуляция клеточных функций. Регуляторные воздействия на клеточную мембрану. Мембранный потенциал.
11. Внеклеточные регуляторные вещества. Синаптические медиаторы. Локальные химические агенты (гистамин, фактор роста, гормоны, антигены).
12. Внутриклеточная коммуникация с участием вторых посредников. Кальций.
13. Циклический аденозинмонофосфат, цАМФ. цАМФ в регуляции функции клетки.
14. Инозитолфосфат «ИФ3». Инозитолтрифосфат. Диацилглицерол.

Воздействие Na/K-насоса (натрий калиевого насоса) на мембранный потенциал и объем клетки. Постоянный объем клетки.

Рис. 1.9. Схема, показывающая концентрации Na+, K+ и CI внутри и вне клетки и пути проникновения этих ионов через клеточную мембрану (через специфические ионные каналы или с помощью Na/K-насоса. При данных концентрационных градиентах равновесные потенциалы E(Na), E(K) и E(Cl) равны указанным, мембранный потенциал Ет = - 90 мВ

На рис. 1.9 показаны различные компоненты мембранного тока и приведены внутриклеточные концентрации ионов , которые обеспечивают их существование. Через калиевые каналы наблюдается выходящий ток ионов калия, так как мембранный потенциал несколько более электроположителен, чем равновесный потенциал для ионов калия. Общая проводимость натриевых каналов намного ниже, чем калиевых, т.е. натриевые каналы открыты намного реже, чем калиевые при потенциале покоя; однако в клетку входит примерно столько же ионов натрия, сколько выходит из нее ионов калия, потому что для диффузии ионов натрия в клетку необходимы большие градиенты концентрации и потенциала. Na/К-насос обеспечивает идеальную компенсацию пассивных диффузионных токов, так как переносит ионы натрия из клетки, а ионы калия - в нее. Таким образом, насос является электрогенным за счет разницы в числе перенесенных в клетку и из клетки зарядов, что при нормальной скорости его работы создает мембранный потенциал, примерно на 10 мВ более электроотрицательный, чем если бы он образовывался только за счет пассивных потоков ионов. В результате мембранный потенциал приближается к калиевому равновесному потенциалу, что уменьшает утечку ионов калия. Активность Na/K-насоса регулируется внутриклеточной концентрацией ионов натрия . Скорость работы насоса замедляется при снижении концентрации ионов натрия, подлежащих выводу из клетки (рис. 1.8), так что работа насоса и поток ионов натрия внутрь клетки уравновешивают друг друга, поддерживая внутриклеточную концентрацию ионов натрия на уровне примерно 10 ммоль/л.

Чтобы поддерживать равновесие между насосными и пассивными мембранными токами , необходимо намного больше молекул Na/K-насоса, чем канальных белков для ионов калия и натрия. При открытом состоянии канала через него проходят десятки тысяч ионов за несколько миллисекунд, а поскольку канал обычно открывается несколько раз в секунду, всего за это время через него проходит более 105 ионов. Одиночный насосный белок перемещает несколько сотен ионов натрия в секунду, следовательно, плазматическая мембрана должна содержать примерно в 1000 раз больше насосных молекул, чем канальных. Измерения канальных токов в покое показали наличие в среднем одного калиевого и одного натриевого открытого канала на 1 мкм2 мембраны; из этого следует, что на том же пространстве должно присутствовать около 1000 молекул Na/K-насоса, т.е. расстояние между ними составляет в среднем 34 нм; диаметр насосного белка, как и канального, составляет 8-10 нм. Таким образом, мембрана достаточно плотно насышена насосными молекулами .


Тот факт, что поток ионов натрия внутрь клетки , а ионов калия - из клетки компенсируется работой насоса, имеет и другое следствие, заключающееся в сохранении стабильного осмотического давления и постоянного объема. Внутри клетки существует высокая концентрация крупных анионов, главным образом белков (А в табл. 1.1), которые не способны проникать через мембрану (или проникают через нее очень медленно) и поэтому являются фиксированным компонентом внутри клетки. Чтобы уравновесить заряд этих анионов, необходимо равное количество катионов. Благодаря действию Na/K-насоса этими катионами в основном оказываются ионы калия. Существенное повышение внутриклеточной концентрации ионов могло бы происходить только при возрастании концентрации анионов вследствие потока Cl по градиенту концентрации в клетку (табл. 1.1), но мембранный потенциал противодействует этому. Входящий ток Cl наблюдается только до тех пор, пока не будет достигнут равновесный потенциал для ионов хлора; это наблюдается, когда градиент ионов хлора практически противоположен градиенту ионов калия, так как ионы хлора заряжены отрицательно. Таким образом, устанавливается низкая внутриклеточная концентрация ионов хлора, соответствующая низкой внеклеточной концентрации ионов калия. Результатом является ограничение общего количества ионов в клетке. Если мембранный потенциал падает при блокаде Na/K-насоса, например при аноксии, то равновесный потенциал для ионов хлора снижается, а внутриклеточная концентрация ионов хлора соответственно повышается. Восстанавливая равновесие зарядов, ионы калия также входят в клетку; суммарная концентрация ионов в клетке возрастает, что повышает осмотическое давление; это заставляет воду поступать в клетку. Клетка набухает. Такое набухание наблюдается in vivo в условиях недостатка энергии.

Возбудимость - способность клеток и тканей переходить в состояние физиологической активности иод влиянием каких-либо внешних воздействий (раздражителей), достигших пороговой величины. Возбудимостью обладают любые живые клетки, в том числе растительные, но в наибольшей степени она выражена у клеток животных - таких, как нервные, мышечные и железистые.

Любому специалисту, связанному с исследованиями организма животного и человека, необходимо понимать, что именно возбудимые клетки составляют основу НС, воспринимают сигналы из внешней и внутренней среды организма, обеспечивают его ответные реакции.

Все возбудимые клетки обладают тремя свойствами:

1) ПН, или мембранным потенциалом, - разностью электрического потенциала между внутриклеточной средой и средой, окружающей клетку;

  • 2) IIД - способностью генерировать краткий электрический ответ под действием любого раздражителя, интенсивность которого достигла определенного порога;
  • 3) проводимостью - способностью распространять ПД по телу клетки и ее отросткам.

Проведем следующий эксперимент. Если взять нейрон, находящийся в настоящий момент в состоянии покоя, и ввести тонкий стеклянный микроэлектрод с кончиком диаметром не более 1 мкм, то такой кончик не нанесет клетке видимых повреждений. Полость стеклянного электрода должна быть заполнена жидкостью, хорошо проводящей ток (электролитом). Чаще всего для этой цели используют раствор хлористого калия (КС1). Электрод соединяют с вольтметром. Пока кончик электрода находится в межклеточной среде, стрелка микровольтметра стоит на нуле (рис. 8.1).

Рис . 8.1.

а - рисунок с микрофотографии; б - схема регистрации потенциала покоя путем

введения в нейрон кончика микроэлектрода; в - скачок мембранного потенциала в момент введения в нейрон кончика микроэлектрода (4)

В момент прокалывания мембраны нейрона регистрируется скачок потенциала вниз до уровня приблизительно -70 мВ. Это и есть мембранный потенциал, или ПП. Если электрод не двигать, а для нейрона создать правильные условия (состав окружающего раствора, температура), то ПП будет поддерживаться без всяких видимых изменений в течение нескольких часов. ПП найден во всех возбудимых клетках, и его величина колеблется от -30 до -100 мВ в зависимости от того, с какими клетками проводится опыт.

Потенциал покоя был открыт в середине XIX в. великим швейцарским физиологом Эмилем Дюбуа-РеймоноМу а его ученик Юлиус Бернштейн создал самую первую теорию, которая объясняла, почему внутри возбудимых клеток, находящихся в состоянии покоя, регистрируется явный избыток отрицательных зарядов. Исходя из данных, полученных целым рядом исследователей, Бернштейн частично установил, а частично предположил следующее:

  • - в цитоплазме возбудимых клеток содержится гораздо больше ионов К + , чем в окружающей среде, а ионов Na + и С1~ - гораздо меньше;
  • - возбудимые клетки покрыты полупроницаемой мембраной, которая в состоянии покоя свободно пропускает ионы Na + , Са 2+ , С1 _ и т.д.

Если это так, то часть ионов К + должна выходить через клеточную мембрану в межклеточную среду, оставляя в клетке избыток парных К + отрицательно заряженных частиц - анионов.

Поэтому на внутренней поверхности мембраны клетки создается отрицательный заряд (рис. 8.2).


Рис. 8.2. Роль ионов К + в возникновении и поддержании потенциала покоя (ПП):

а - возникновение ПП вследствие диффузии ионов К + через постоянно открытые каналы утечки; б - изменение уровня ПП при изменении концентрации К* во

внешней среде

Но избыток отрицательно заряженных частиц будет притягивать к себе ионы К + , препятствуя их выходу из клетки, а вышедшие в межклеточное пространство ионы К" также будут «отталкивать» положительно заряженные частицы, не давая выйти из клетки новым порциям К + . В итоге выход К + продолжается лишь до тех пор, пока сила диффузии (концентрационного давления) и сила электрического ноля не станут равны. Точка равновесия и соответствует уровню потенциала покоя.

Ток ионов при достижении ПП не останавливается, так как имеются постоянно открытые каналы и К + продолжает перемещаться сквозь мембрану, но число ионов, которые вошли в клетку и вышли из нее, теперь оказывается одинаковым. Такое состояние называется динамическим равновесием - равенством двух противоположно направленных процессов. Если один из процессов усилится или ослабнет, то точка равновесия сместится. Например, если, как это делал Бернштейн, искусственно увеличить концентрацию К + в межклеточной среде, то это, естественно, будет мешать выходу из клетки новых порций положительно заряженных частиц (К +), и ПП станет менее отрицательным, смещаясь к нулю (см. рис. 8.2). Если же искусственно уравнять концентрацию К + в цитоплазме и вне клетки, то ПП будет равен нулю. Так Бернштейн доказал, что ПП в возбудимой клетке определяется разницей концентрации К + внутри этой клетки и во внеклеточной среде. Бернштейн предложил для количественной оценки ПП использовать уравнение, выведенное Вальтером Нернстом для искусственной системы, представляющей собой два раствора КС1 различной концентрации, разделенных искусственной мембраной, проницаемой только для К + (рис. 8.3).


Рис. 83.

а - принципиальная схема установки с двумя сосудами (1 и 2), содержащими разные концентрации КС1 и разделенными мембраной, проницаемой только для К + ;

6 - поток (показан стрелками) катионов (+) через мембрану из области с их большей концентрацией (1) в область с меньшей концентрацией (2), приводящий к возникновению на мембране потенциала

В один сосуд он налил 10%-ный раствор КС1, а во второй - 1%-ный раствор этой соли. В обоих растворах произошла диссоциация КС1 на К + и СП, но в сосуде 1 исходно было в 10 раз больше и катионов (К +), и анионов (С1“), чем в сосуде 2. Так как разделяющая растворы полупроницаемая мембрана хорошо пропускает катионы, то часть ионов калия (К +) перешла из сосуда 1, где концентрация КС1 исходно была выше, в сосуд 2, в котором концентрация КС1 была в 10 раз ниже. Поскольку ионы калия несут положительный заряд, то положительных зарядов в сосуде 2 будет больше, чем отрицательных. В сосуде 1 таким образом окажется некоторый избыток «брошенных» анионов хлора, потерявших свои катионы калия. Но отрицательно заряженные ионы С1“ будут притягивать назад часть положительно заряженных ионов К + за счет взаимодействия электрических зарядов. Через какие-то мгновения потоки К + из сосуда 1 в сосуд 2 и наоборот станут равными. Однако в сосуде 1 ионов К + будет все равно меньше, чем ионов С1 _ (ведь часть К* перешла в сосуд 2), а в сосуде 2 будет больше ионов К + , чем ионов С1 _ (за счет пришедших из сосуда 1). Следовательно, раствор в сосуде 1 будет заряжен отрицательно по отношению к раствору в сосуде 2.

Между растворами установится нернстовский потенциал, который, согласно уравнению Нернста, равен

где Е - величина потенциала, возникающего между растворами, налитыми в сосуд 1 и сосуд 2; R - газовая постоянная; Т - температура; F - число Фарадея; Z - валентность; [С { - концентрация ионов К + в сосуде 1; [С 2 ] концентрация ионов К + в сосуде 2.

Бернштейн предложил использовать приведенное выше уравнение Нернста для определения мембранного потенциала, как только узнал, что именно К + может проходить через мембрану покоящейся возбудимой клетки. Однако соотношение концентраций катионов калия внутри и снаружи клетки оказалось не 1: 10 (как в искусственной экспериментальной системе Нернста), а совсем другим. Так, в мышечных клетках калия в 49 раз больше, чем в среде, окружающей клетки. Зато в окружающей среде, т.е. вокруг возбудимых клеток, ионов натрия (Na +) приблизительно в 10 раз больше, чем внутри клеток. Однако, когда клетка находится в состоянии покоя, натрий не может проникать сквозь клеточную мембрану внутрь клетки и не участвует в создании 1111. За последние 70 лет многие ученые путем оригинальных экспериментов окончательно доказали, что отрицательный заряд покоящейся возбудимой клетки обусловлен тем, что часть ионов калия выходит через наружную мембрану во внешнюю среду до тех пор, пока не установится динамическое равновесие: сколько ионов калия вышло из клетки, столько же и войдет обратно. При этом на мембране устанавливается ПП, характерный для данного вида возбудимых клеток и определяемый тем, что в цитоплазме клетки остается избыток отрицательно заряженных ионов - анионов, главным образом, крупных белковых молекул, имеющих отрицательный заряд, «покинутых» катионами, т.е. ионами калия. Анионы пройти через мембрану не могут и остаются в клетке, определяя отрицательный заряд цитоплазмы.

Однако впоследствии было показано, что в мембране нейронов имеется небольшое количество постоянно открытых каналов для калия, по которым катионы натрия по градиенту концентрации (вокруг нейрона в 10 раз больше натрия, чем в цитоплазме) постоянно проникают в клетку, сдвигая 1111 к менее отрицательным значениям.

Входящий в клетку небольшой ток натрия (ток утечки), изменяя IIII, делает нейрон более возбудимым; чем этот ток значительнее, тем сильнее IIII сдвинут к тем пороговым величинам, за которыми следует переход нейрона в состояние возбуждения. Таким образом, возникает возможность поддерживать нейроны одних систем на высоком уровне возбудимости, а других - на пониженном. Как было выяснено, в межклеточной среде содержится в пять раз больше ионов хлора (С1“), чем в цитоплазме, однако в покое ток ионов хлора через наружную мембрану в клетку очень мал и составляет всего 4%, если сравнить с током ионов калия, но, строго говоря, для точного определения величины ГГП в уравнении Нернста надо подставить величины проницаемости для всех видов ионов, которые могут в покое проникать через мембрану клетки и менять ПП. Полученное уравнение носит имя Голдмана - Ходжкина - Катца:

где Р - проницаемость мембраны для соответствующих ионов.

Механизм генерации ПП, концентрация ионов вне и внутри клеток, проницаемость наружной мембраны для ионов - все это исследовалось на различных объектах, однако основной вид клеток, на котором проводились опыты, - нейроны кальмаров (точнее, аксоны этих нейронов). В 1930-е гг. было обнаружено, что аксоны нейронов некоторых нервных узлов (звездчатого ганглия) этих головоногих имеют гигантский диаметр (до 1 мм), и с ним очень удобно экспериментировать.

Итак, ПП возбудимой клетки определяется несколькими факторами, главными из которых, безусловно, являются разница концентраций К + внутри и снаружи клетки и свободный ток К + , идущий через мембрану. Определенную роль в генерации ПП играют слабые входящие токи Na + и С1“, для которых мембрана клетки, находящейся в состоянии покоя, почти непроницаема. Изменяя любой из этих параметров, можно в той или иной степени менять ПП, тем самым изменяя способность клетки к возбуждению.

История открытия

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К + , и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазмой мышцы и окружающей средой, который составлял около - 70 мВ.

Согласно теории Ю. Бернштейна, при возбуждении клетки её мембрана повреждается, и ионы К + вытекают из клетки по концентрационному градиенту до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя. Это утверждение, относящееся скорее к потенциалу действия , было опровергнуто Ходжкином и Хаксли в 1939 году.

Теорию Бернштейна касательно потенциала покоя подтвердил Кеннет Стюарт Коул (Kenneth Stewart Cole), иногда его инициалы ошибочно пишут как K.C. Cole, из-за его прозвища, Кейси («Kacy»). ПП и ПД изображены на известной иллюстрации Коула и Curtis, 1939. Этот рисунок стал эмблемой Membrane Biophysics Group of the Biophysical Society (см. иллюстрацию).

Общие положения

Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки.

Концентрации ионов в клетке скелетной мышцы и во внеклеточной среде

Потенциал покоя для большинства нейронов составляет величину порядка −60 мВ - −70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

ПП формируется в два этапа.

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3: 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ , обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

См. также

Примечания

Ссылки

Дудель Й., Рюэгг Й., Шмидт Р. и др. Физиология человека: в 3-х томах. Пер. с англ / под ред Р. Шмидта и Г. Тевса. - 3. - М .: Мир, 2007. - Т. 1. - 323 с илл. с. - 1500 экз. - ISBN 5-03-000575-3


Wikimedia Foundation . 2010 .

Смотреть что такое "Потенциал покоя" в других словарях:

    ПОТЕНЦИАЛ ПОКОЯ, электрический потенциал между внутренней и наружной средой клетки, возникающий на ее мембране; у нейронов и мышечных клеток достигает величины 0,05 0,09 В; возникает из за неравномерного распределения и накопления ионов по разные … Энциклопедический словарь

    Мембранный потенциал покоя, разность потенциалов, существующая у живых клеток в состоянии физиол. покоя, между их цитоплазмой и внеклеточной жидкостью. У нервных и мышечных клеток П. п. варьирует обычно в диапазоне 60 90 мВ, причём внутр. сторона …

    потенциал покоя - напряжение покоя — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы напряжение покоя EN rest potentialresting… … Справочник технического переводчика

    потенциал покоя - Rest(ing) Potential Потенциал покоя Потенциал, существующий между средой, в которой находится клетка, и ее содержимым … Толковый англо-русский словарь по нанотехнологии. - М.

    Потенциал покоя - Потенциал неактивного нейрона. Называется также мембранным потенциалом … Психология ощущений: глоссарий

    потенциал покоя - разность потенциала между содержимым клетки и внеклеточной жидкостью. В нервных клетках п.п. участвует в поддержании готовности клетки к возбуждению. * * * Мембранный биоэлектрический потенциал (около 70мВ) в нервной клетке, находящейся в… … Энциклопедический словарь по психологии и педагогике

    Потенциал покоя - – разность электрических зарядов между наружной и внутренней поверхностями мембраны в состоянии физиологического покоя клетки, регистрируемый до начала действия раздражителя … Словарь терминов по физиологии сельскохозяйственных животных

    Мембранный потенциал, регистрируемый до начала действия раздражителя … Большой медицинский словарь

    - (физиологический) разность потенциалов между содержимым клетки (волокна) и внеклеточной жидкостью; скачок потенциала локализуется на поверхностной мембране, при этом её, внутренняя сторона заряжена электроотрицательно по отношению к… … Большая советская энциклопедия

    Быстрое колебание (спайк) мембранного потенциала, возникающее при возбуждении нервных, мышечных, нек рых железистых и растит, клеток; электрич. сигнал, обеспечивающий быструю передачу информации в организме. Подчиняется правилу «всё или ничего»… … Биологический энциклопедический словарь

Книги

  • 100 способов изменить жизнь. Часть 1 , Парфентьева Лариса. О книге Сборник вдохновляющих историй о том, как изменить жизнь к лучшему, от человека, сумевшего развернуть свою собственную жизнь на 180 градусов. Эта книга родилась из еженедельной рубрики…