Третья ось координат. Декартовы прямоугольные системы координат

Определение положения точки в пространстве

Итак, положение какой-либо точки в пространстве может быть определено только по отношению к каким-либо другим точкам. Та точка, относительно которой рассматривается положение других точек, называется точкой отсчете . Мы так же применим и другое наименование точки отсчета – точка наблюдения . Обычно с точкой отсчета (или с точкой наблюдения) связывают какую-либо систему координат , которую и называют системой отсчета. В выбранной системе отсчета положение КАЖДОЙ точки определяется ТРЕМЯ координатами.

Правая декартова (или прямоугольная) система координат

Эта система координат представляет собой три взаимно перпендикулярных направленных прямых, называемых так же осями координат , пересекающихся в одной точке (начале координат). Точка начала координат обычно обозначается буквой О.

Оси координат носят названия:

1. Ось абсцисс – обозначается как OX;

2. Ось ординат – обозначается как OY;

3. Ось аппликат – обозначается как OZ


Теперь объясним, почему эта система координат называется правой. Давайте посмотрим на плоскость XOY с положительного направления оси OZ, например из точки А, как это показано на рисунке.

Предположим, что мы начинаем поворачивать ось OX вокруг точки О. Так вот – правая система координат имеет такое свойство, что, если смотреть на плоскость XOY из какой-либо точки положительной полуоси OZ (у нас – это точка А), то, при повороте оси OX на 90 против часовой стрелки, её положительное направление совпадет с положительным направлением оси OY.

Такое решение было принято в научном мире, нам же остается принимать это так, как оно есть.


Итак, после того, как мы определились с системой отсчета (в нашем случае – правой декартовой системой координат), положение любой точки описывается через значения её координат или другими словами – через величины проекций этой точки на оси координат.

Записывается это так: A(x, y, z), где x, y, z – и есть координаты точки А.

Прямоугольную систему координат можно представить себе, как линии пересечения трех взаимно перпендикулярных плоскостей.

Следует заметить, что ориентировать прямоугольную систему координат в пространстве можно как угодно, при этом надо выполнить только одно условие – начало координат должно совпадать с центром отсчета (или точкой наблюдения).


Сферическая система координат

Положение точки в пространстве можно описать и другим способом. Предположим, что мы выбрали область пространства, в котором располагается точка отсчета О (или точка наблюдения), и еще нам известно расстояние от точки отсчета до некоторой точки А. Соединим эти две точки прямой ОА. Эта прямая называется радиус-вектором и обозначается, как r . Все точки, имеющие одно и тоже значение радиус-вектора, лежат на сфере, центр которой находится в точке отсчета (или точке наблюдения), а радиус этой сферы равен, соответственно радиус-вектору.

Таким образом, нам становится очевидным, что знание величины радиус-вектора не дает нам однозначного ответа о положении интересующей нас точки. Нужны еще ДВЕ координаты, ведь для однозначного определения местоположения точки количество координат должно равняться ТРЕМ.

Далее мы поступим следующим образом – построим две взаимно перпендикулярные плоскости, которые, естественно, дадут линию пересечения, и эта линия будет бесконечной, потому как и сами плоскости ничем не ограничены. Зададим на этой линии точку и обозначим ее, ну например, как точка О1. А теперь совместим эту точку О1 с центром сферы – точкой О и посмотрим, что получается?


А получается очень интересная картина:

· Как одна, так и другая плоскости будут центральными плоскостями.

· Пересечение этих плоскостей с поверхностью сферы обозначат большие круги

· Один из этих кругов – произвольно, мы назовем ЭКВАТОРОМ , тогда другой круг будет называться ГЛАВНЫМ МЕРИДИАНОМ.

· Линия пересечения двух плоскостей однозначно определит направление ЛИНИИ ГЛАВНОГО МЕРИДИАНА.


Точки пересечения линии главного меридиана с поверхностью сферы обозначим, как М1 и М2

Через центр сферы точку О в плоскости главного меридиана проведем прямую, перпендикулярную линии главного меридиана. Эта прямая носит название ПОЛЯРНАЯ ОСЬ .

Полярная ось пересечет поверхность сферы в двух точках, которые называются ПОЛЮСАМИ СФЕРЫ. Обозначим эти точки, как Р1 и Р2.

Определение координат точки в пространстве

Теперь рассмотрим процесс определения координат точки в пространстве, а так же дадим наименования этим координатам. Для полноты картины, при определении положения точки, укажем основные направления, от которых производится отсчет координат, а так же положительное направление при отсчете.

1. Задаем положение в пространстве точки отсчета (или точки наблюдения). Обозначим эту точку буквой О.

2. Строим сферу, радиус которой равен длине радиус-вектора точки А. (Радиус-вектор точки А – это расстояние между точками О и А). Центр сферы располагается в точке отсчета О.


3. Задаем положение в пространстве плоскости ЭКВАТОРА, а соответственно плоскости ГЛАВНОГО МЕРИДИАНА. Следует напомнить, что эти плоскости взаимно перпендикулярны и являются центральными.

4. Пересечение этих плоскостей с поверхностью сферы определяет нам положение круга экватора, круга главного меридиана, а так же направление линии главного меридиана и полярной оси.

5. Определяем положение полюсов полярной оси и полюсов линии главного меридиана. (Полюса полярной оси – точки пересечение полярной оси с поверхностью сферы. Полюса линии главного меридиана – это точки пересечения линии главного меридиана с поверхностью сферы).


6. Через точку А и полярную ось строим плоскость, которую назовем плоскостью меридиана точки А. При пересечении этой плоскости с поверхностью сферы получится большой круг, который мы назовем МЕРИДИАНОМ точки А.

7. Меридиан точки А пересечет круг ЭКВАТОРА в некоторой точке, которую мы обозначим, как Е1

8. Положение точки Е1 на экваториальном круге определяется длиной дуги, заключенной между точками М1 и Е1. Отсчет ведется ПРОТИВ часовой стрелки. Дуга экваториального круга, заключенная между точками М1 и Е1 называется ДОЛГОТОЙ точки А. Долгота обозначается буквой .

Подведем промежуточный итог. На данный момент нам известны ДВЕ из ТРЕХ координат, описывающих положение точки А в пространстве – это радиус-вектор (r) и долгота (). Теперь мы будем определять третью координату. Эта координата определяется положением точки А на ее меридиане. Но вот положение начальной точки, от которой происходит отсчет, однозначно не определено: мы можем начинать отсчет как от полюса сферы (точка Р1), так и от точки Е1, то есть от точки пересечения линий меридиана точки А и экватора (или другими словами – от линии экватора).


В первом случае, положение точки А на меридиане называется ПОЛЯРНЫМ РАССТОЯНИЕМ (обозначается как р ) и определяется длиной дуги, заключенной между точкой Р1 (или точкой полюса сферы) и точкой А. Отсчет ведется вдоль линии меридиана от точки Р1 к точке А.

Во втором случае, когда отсчет ведется от линии экватора, положение точки А на линии меридиана называется ШИРОТОЙ (обозначается как  и определяется длиной дуги, заключенной между точкой Е1 и точкой А.

Теперь мы можем окончательно сказать, что положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги полярного расстояния (р)

В этом случае координаты точки А запишутся следующим образом: А(r, , p)

Если пользоваться иной системой отсчета, то положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги широты ()

В этом случае координаты точки А запишутся следующим образом: А(r, , )

Способы измерения дуг

Возникает вопрос – как же нам измерить эти дуги? Самый простой и естественный способ – это провести непосредственное измерение длин дуг гибкой линейкой, и это возможно, если размеры сферы сравнимы с размерами человека. Но как поступить, если это условие не выполнимо?

В этом случае мы прибегнем к измерению ОТНОСИТЕЛЬНОЙ длины дуги. За эталон же мы примем длину окружности, частью которой является интересующая нас дуга. Как это можно сделать?

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из которых выбрано направление и единичный отрезок, то говорят, что задана прямоугольная система координат в пространстве.

Прямые с выбранными на них направлениями называются осями координат и обозначаются так: Ох, Оy, Оz, имеют свои названия: ось абсцисс, ось ординат и ось аппликат соответственно, а их общая точка - началом координат. Обычно она обозначается буквой О.

Вся система координат обозначается Охуz.

Если через оси координат Ох и Оу, Оу и Оz, Оz и Ох провести плоскости, то такие плоскости будут называться координатными плоскостями и обозначаться: Оху, Оуz, Оzх соответственно.

Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч — отрицательной полуосью.

В прямоугольной системе координат каждой точке М пространства сопоставляется тройка чисел, которые называются ее координатами. Они определяются аналогично координатам точек на плоскости.

Посмотрим, как это делается.

Проведем через точку М три плоскости, перпендикулярные осям координат, и обозначим через М₁, М₂ и М₃ точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат.

Первая координата точки М (она называется абсциссой и обозначается обычно буквой х) определяется так: х = ОМ₁, если М₁ - точка положительной полуоси;

х= - ОМ₁, если М₁ - точка отрицательной полуоси; х =0, если М₁ совпадает с точкой О.

Аналогично с помощью точки М₂ определяется вторая координата (ордината) у точки М,

а с помощью точки М₃ — третья координата (аппликата) z точки М.

Координаты точки М записываются в скобках после обозначения точки М (х; у; z).

Запомните, что первой указывают абсциссу, второй - ординату, третьей — аппликату.

Найдем координаты точек А, В, С, D, E, F, представленные на рисунке.

Проведем через точку А три плоскости, перпендикулярные к осям координат, тогда точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат будут координатами точки А. Точка А имеет координаты: абсцисса = 9, ордината = 5, аппликата = 10 и записывается это так: А (9; 5;10).

Аналогично записываются координаты следующих точек:

Точка В имеет координаты: абсцисса = 4, ордината = -3, аппликата = 6

Точка С имеет координаты: абсцисса = 9, ордината = 0, аппликата = 0

Точка имеет D координаты: абсцисса = 4, ордината = 0, аппликата = 5

Точка Е имеет координаты: абсцисса = 0, ордината = 8, аппликата = 0

Точка F имеет координаты: абсцисса = 0, ордината = 0, аппликата = -3

Если точка М (х; у; z) лежит на координатной плоскости на оси координат, то некоторые ее координаты равны нулю.

Если МЄОху (точка М принадлежит плоскости Оху), то аппликата точки М равна нулю: z=0.

Аналогично, если МЄОхz (точка М принадлежит плоскости Оxz), то у = 0, а если МЄОуz (точка М принадлежит плоскости Oyz), то х = 0.

Если МЄОх (точка М лежит на оси абсцисс) ордината и аппликата точки М равны нулю: у=о и z=0. В нашем примере это точка С.

Если МЄОу (точка М лежит на оси ординат), то х=0 и z=0. В нашем примере это точка Е.

Если МЄОz (точка М лежит на оси аппликат), то х = 0 и у = 0. В нашем примере это точка F.

Если все три координаты точки М равны нулю, то это значит, что М=О (0; 0; 0) - начало координат.

Даны координаты четырех вершин куба ABCDA 1 B 1 C 1 D 1: A(0; 0; 0); B(0; 0; 1); D(0; 1; 0); A 1 (1; 0; 0). Найдите координаты остальных вершин куба.

Так как фигура — куб, то все стороны равны единице, все грани являются квадратами.

Точка С принадлежит плоскости Оху, то есть ее координата z равна нулю, координата х равна стороне СД и равна АВ, значит равна единице, координата игрек равна стороне куба СВ, значит равна АД и равна единице.

Аналогично, Точка В 1 принадлежи плоскости Охz, то еcть ее координата y равна нулю, координата х равна стороне координата х равна стороне А1B1 и равна АВ значит равна единице, координата зет равна стороне куба В В1значит равна АА1 и равна единице.

Точка Д 1 принадлежи плоскости Оуz, то еcть ее координата х равна нулю, координата у равна стороне А 1 Д 1 и равна АД, значит равна единице, координата зет равна стороне куба А 1 В 1 , значит равна АВ и равна единице.

Точка С 1 не принадлежит никакой плоскости, то еcть все координаты отличны от нуля, координата х равна стороне C 1 D 1 и равна АB, значит равна единице, координата игрек равна стороне куба В 1 С 1 , значит равна АД и равна единице, и координата зет равна стороне CC 1 , то есть AA 1 и также равна единице.

Найдите координаты проекций точки C(; ;) на координатные плоскости Oxy, Oxz, Oyz и координатные оси Ox, Oy, Oz.

1) опустим перпендикуляры на плоскость Oxy— это CN, на плоскость Oxz - CL, и на плоскость Oyz прямая CR.

Таким образом, проекция точки С на плоскость Oxy это точка N и она имеет координаты икс равный минус корень из трех, игрек равен минус корень из двух на два, зет равнен нулю.

Проекция точки С на плоскость Oxz - это точка L и она имеет координаты икс равен минус корень из трех, игрек равен нулю, зет равен корень из пяти минус корень из трех.

Проекция точки С на плоскость Oyz- это точка R и она имеет координаты икс равен нулю, игрек равен минус корень из двух на два, зет равен корень из пяти минус корень из трех.

2)Из точки N проводим перпендикуляры на ось Ох - прямая NK, а на Оу - прямая NG, и на ось Оz проводим перпендикуляр из точки R- это прямая RP.

Проекция точки С на ось Ох - точка К имеет координаты икс равный минус корень из трех, а игрек и зет равны нулю.

Проекция точки С на ось Оy- точка G имеет координаты икс и зет равны нулю, игрек равен минус корень из двух на два.

Проекция точки С на ось Оz- точка P имеет координаты икс и игрек равны нулю, зет равный корень из пяти минус корень из трех.

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат X "X и Y "Y O , которая называется началом координат, на каждой оси выбрано положительное направление. В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси Y "Y вверх, ось X "X смотрела направо.

Четыре угла (I, II, III, IV), образованные осями координат X "X и Y "Y , называются координатными углами или квадрантами (см. рис. 1).

Положение точки A на плоскости определяется двумя координатами x и y . Координата x равна длине отрезка OB , координата y - длине отрезка OC OB и OC определяются линиями, проведёнными из точки A параллельно осям Y "Y и X "X соответственно.

Координата x называется абсциссой точки A , координата y - ординатой точки A . Записывают так: .

Если точка A лежит в координатном углу I, то точка A имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то точка A имеет отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то точка A имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то точка A имеет положительную абсциссу и отрицательную ординату.

Рис. 2 : Декартова плоскость

Декартовыми прямоугольными координатами точки P на плоскости называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.

Прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX - ось абсцисс, OY - ось ординат, OZ - ось аппликат.

Если большой палец правой руки принять за направление X , указательный за направление Y , а средний за направление Z , то образуется правая система координат.

Аналогичными пальцами левой руки образуется левая система координат.

Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси.

Положение точки A в пространстве определяется тремя координатами x , y и z . Координата x равна длине отрезка OB , координата y - длине отрезка OC , координата z - длине отрезка OD в выбранных единицах измерения. Отрезки OB , OC и OD определяются плоскостями, проведёнными из точки A параллельно плоскостям YOZ , XOZ и XOY соответственно. Координата x называется абсциссой точки A , координата y - ординатой точки A , координата z - аппликатой точки A . Записывают так: .


Если на плоскости или в трехмерном пространстве ввести систему координат, то мы получим возможность описывать геометрические фигуры и их свойства с помощью уравнений и неравенств, то есть, мы сможем использовать методы алгебры. Поэтому понятие системы координат очень важно.

В этой статье мы покажем как задается прямоугольная декартова система координат на плоскости и в трехмерном пространстве и выясним как определяются координаты точек. Для наглядности приведем графические иллюстрации.

Навигация по странице.

Прямоугольная декартова система координат на плоскости.

Введем прямоугольную систему координат на плоскости.

Для этого проведем на плоскости две взаимно перпендикулярные прямые, выберем на каждой из них положительное направление , указав его стрелочкой, и выберем на каждой из них масштаб (единицу измерения длины). Обозначим точку пересечения этих прямых буквой О и будем считать ее началом отсчета . Так мы получили прямоугольную систему координат на плоскости.

Каждую из прямых с выбранным началом отсчета О , направлением и масштабом называют координатной прямой или координатной осью .

Прямоугольную систему координат на плоскости обычно обозначают Oxy , где Ox и Oy – ее координатные оси. Ось Ox называют осью абсцисс , а ось Oy – осью ординат .

Сейчас условимся с изображением прямоугольной системы координат на плоскости.

Обычно единица измерения длины на осях Ox и Oy выбирается одинаковая и откладывается от начала координат на каждой координатной оси в положительном направлении (отмечается штришком на координатных осях и рядом записывается единица), ось абсцисс направляется вправо, а ось ординат – вверх. Все остальные варианты направления координатных осей сводятся к озвученному (ось Ox - вправо, ось Oy - вверх) при помощи поворота системы координат на некоторый угол относительно начала координат и взгляда на нее с другой стороны плоскости (при необходимости).

Прямоугольную систему координат часто называют декартовой, так как ее на плоскости впервые ввел Рене Декарт. Еще чаще прямоугольную систему координат называют прямоугольной декартовой системой координат, собирая все воедино.

Прямоугольная система координат в трехмерном пространстве.

Аналогично задается прямоугольная система координат Oxyz в трехмерном евклидовом пространстве, только берется не две, а три взаимно перпендикулярных прямых. Другими словами, к координатным осям Оx и Oy добавляется координатная ось Oz , которую называют осью аппликат .

В зависимости от направления координатных осей различают правую и левую прямоугольные системы координат в трехмерном пространстве.

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит против хода часовой стрелки, то система координат называется правой .

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит по ходу часовой стрелки, то система координат называется левой .


Координаты точки в декартовой системе координат на плоскости.

Сначала рассмотрим координатную прямую Ox и возьмем некоторую точку M на ней.

Каждому действительному числу соответствует единственная точка M на этой координатной прямой. К примеру, точке, расположенной на координатной прямой на расстоянии от начала отсчета в положительном направлении, соответствует число , а числу -3 соответствует точка, расположенная на расстоянии 3 от начала отсчета в отрицательном направлении. Числу 0 соответствует начало отсчета.

С другой стороны, каждой точке M на координатной прямой Ox соответствует действительное число . Это действительное число есть ноль, если точка M совпадает с началом отсчета (с точкой O ). Это действительное число положительно и равно длине отрезка OM в данном масштабе, если точка M удалена от начала отсчета в положительном направлении. Это действительное число отрицательно и равно длине отрезка OM со знаком минус, если точка M удалена от начала отсчета в отрицательном направлении.

Число называется координатой точки M на координатной прямой.

Теперь рассмотрим плоскость с введенной прямоугольной декартовой системой координат. Отметим на этой плоскости произвольную точку М .

Пусть - проекция точки M на прямую Ox , а - проекции точки M на координатную прямую Oy (при необходимости смотрите статью ). То есть, если через точку M провести прямые, перпендикулярные координатным осям Ox и Oy , то точками пересечения этих прямых с прямыми Ox и Oy являются соответственно точки и .

Пусть точке на координатной оси Ox соответствует число , а точке на оси Oy - число .


Каждой точке М плоскости в заданной прямоугольной декартовой системе координат соответствует единственная упорядоченная пара действительных чисел , называемых координатами точки M на плоскости. Координату называют абсциссой точки М , а - ординатой точки М .

Верно и обратное утверждение: каждой упорядоченной паре действительных чисел соответствует точка М плоскости в заданной системе координат.

Координаты точки в прямоугольной системе координат в трехмерном пространстве.

Покажем как определяются координаты точки М в прямоугольной системе координат, заданной в трехмерном пространстве.

Пусть и - проекции точки M на координатные оси Ox , Oy и Oz соответственно. Пусть этим точкам на координатных осях Ox , Oy и Oz соответствуют действительные числа и .

Построение Декартовой прямоугольной системы координат

на плоскости

Декартова прямоугольная система координатна плоскости образуется двумя взаимно перпендикулярными осями координат OX 1 и OX 2 , которые пересекаются в точке O , называемой началом координат (рис.1). На каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси OX 2 вверх, ось OX 1 смотрела направо. OX 1 -- ось абсцисс, OX 2 -- ось ординат. Четыре угла (I, II, III, IV), образованные осями координат OX 1 и OX 2 , называются координатными углами или квадрантами .

Точка B A на координатную ось OX 1 ;

Точка C - ортогональная проекция точки A на координатную ось OX 2 ;

Построение Декартовой прямоугольной системы координат в пространстве

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX -- ось абсцисс, OY -- ось ординат,OZ -- ось аппликат.

Если большой палец правой руки принять за направление X , указательный - за направление Y а средний - за направление Z , то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (рис.2). Точка F - ортогональная проекция точки A на координатную плоскость OXY; Точка E - ортогональная проекция точки A на координатную плоскость OYZ; Точка G - ортогональная проекция точки A на координатную плоскость OX Z ;

Макетное представление Декартовой прямоугольной системы координат в пространстве показано на рисунках 3, 4 и 5.

Определение координат точки в Декартовой прямоугольной системе координат

Главным вопросом любой системы координат является вопрос определения координат точки, находящейся в ее плоскости или пространстве.

Определение координат точки на плоскости Декартовой системы координат

Положение точки A на плоскости определяется двумя координатами - x и y (рис.5). Координата x равна длине отрезка OB , координата y -- длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям OY и OX соответственно. Координата x называется абсциссой (лат. abscissa - отрезок), координата y -- ординатой (лат. ordinates - расположенный в порядке) точки A . Записывают так:

Если точка A лежит в координатном углу I, то она имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то - отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то она имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то - положительную абсциссу и отрицательную ординату.

Так определяются координаты в Декартовой системе координат на плоскости.