Темновой адаптацией называется приспособление глаза. Светоощущение как основная функция зрения, световая и темновая адаптация, их нарушение. Диапазон воспринимаемых глазом яркостей

Периферический орган зрения реагирует на происходящие перемены в освещении и функционирует в независимости от степени яркости освещения. Адаптация глаза представляет собой способность приспосабливаться к разным уровням освещенности. Реакция зрачка на происходящие перемены дает восприятие визуальной информации в миллионном диапазоне интенсивности от лунного до яркого освещения, несмотря на относительный динамический объем отклика зрительных нейронов.

Виды адаптации

Учеными изучены следующие виды:

  • световая - адаптация зрения при дневном или ярком освещении;
  • темновая - при темноте или слабом свете;
  • цветовая - условия изменения цвета подсветки объектов, которые расположены вокруг.

Как происходит?

Адаптация световая

Происходит при переходе из темноты к сильному освещению. Оно мгновенно ослепляет и изначально виден только белый, так как чувствительность рецепторов настроена на тусклый свет. Одну минуту времени занимает у конусов для поражения резким светом, чтобы захватить его. При привыкании светочувствительность сетчатки теряется. Полное привыкание глаза к естественному освещению происходит в течение 20 минут. Существует два способа:

  • резкое снижение чувствительности сетчатки;
  • сетчатые нейроны подвергаются скорому приспособлению, тормозящему функцию стержня и благоприятствующей конусной системе.

Темновая адаптация


Темновой процесс наступает при переходе из ярко освещенной области к темной.

Темновая адаптация представляет собой обратный процесс световой. Это случается при переходе от хорошо освещенной области к темной области. Первоначально наблюдается чернота, так как конусы перестают функционировать в свете низкой интенсивности. Механизм адаптации можно разделить на четыре фактора:

  • Интенсивность и время света: увеличивая уровни предварительно адаптируемых яркостей, время доминирования конического механизма расширяется, пока переключение стержневого механизма задерживается.
  • Размер и расположение сетчатки: расположение тестового пятна влияет на темную кривую из-за распределения стержней и конусов в сетчатке.
  • Длина волны порогового света непосредственно воздействует на темновую адаптацию.
  • Регенерация родопсина: при воздействии светлых фотопигментов как в стержневых, так и в конических фоторецепторных клетках получаются структурные изменения.

Стоит отметить, что ночное видение имеет гораздо более низкое качество, чем зрение при нормальном свете, так как ограничено уменьшенным разрешением и обеспечивает возможность отличать только оттенки белого и черного. Примерно полчаса занимает у глаза приспособиться к сумеркам и приобрести чувствительность в сотни тысяч раз более, чем при дневном свете.

Привыкание глаза к темноте занимает гораздо больше времени у пожилых людей, чем молодых.

Цветовая адаптация


Для человека цветовые предметы меняются при разном освещении только на короткий отрывок времени.

Заключается в смене восприятия рецепторов сетчатки глаза, у которых максимумы спектральной чувствительности располагаются в разных цветовых спектрах излучения. К примеру, при смене естественного дневного света на свет ламп в помещении, изменения произойдут в цветах предметов: зеленый цвет будет отражаться желто-зеленым оттенком, розовый - красным. Такие изменения видны только короткий отрывок времени, со временем они исчезают и кажется, что цвет объекта остается прежним. Глаз привыкает к излучению, отраженного от объекта и воспринимается как и при дневном свете.

ваны статьи Терстиге (1972), Ханта (1976), Бартлесона (1978), Райта (1981), Ленни и Д`Змура (1988).

Удачи любознательному читателю в изучении этой славной литературы!

8.1 СВЕТОВАЯ, ТЕМНОВАЯ И ХРОМАТИЧЕСКАЯ АДАПТАЦИИ

Адаптация - это способность организма менять свою чувствитель ность к стимулу в ответ на изменения в условиях стимуляции.

Отметим, что общая концепция адаптации охватывает все области воспри ятия.

Механизмы адаптации по продолжительности могут быть сверхкороткими (порядка миллисекунд) или наоборот - сверхдлинными, тянущимися недели, месяцы и даже годы. В целом механизмы адаптации служат понижению чувст вительности наблюдателя к стимулу при росте физической интенсивности по следнего (к примеру, можно ясно слышать тиканье часов посреди тихой ночи

и совсем не слышать его на шумном приеме).

В отношении зрения важны три вида адаптации: световая, темновая и хро матическая.

Световая адаптация

Световая адаптация - это процесс понижения чувствительности зре ния по мере роста общего уровня освещения.

К примеру: ясной ночью легко увидеть миллионы звезд, но в полдень их на небе столько же - однако днем звезд не видно. Так получается потому, что днем суммарная яркость неба на несколько порядков выше, чем ночью, и по этому днем чувствительность зрения понижена в сравнении с ночной чувстви тельностью. Таким образом, разница в яркостях ночного неба и звезд в состоя нии обеспечить зрительное восприятие последних, тогда как днем она недоста точно велика.

Другой пример: представьте себе, что вы проснулись среди ночи и включили яркий свет. В первый момент вы ослеплены, не в состоянии разобрать что либо

и можете даже почувствовать легкую боль, но спустя уже несколько десятков секунд вы начинаете постепенно различать предметы. Так происходит потому, что в темноте механизмы зрения находились в наиболее чувствительном со стоянии и сразу после включения света (из за своей повышенной чувствитель ности) оказываются перегруженными, но спустя непродолжительное время они адаптируются, понижая чувствительность и обеспечивая тем самым нор мальное зрение.

Темновая адаптация

Темновая адаптация подобна световой, за исключением того, что процесс идет в обратном направлении, то есть:

Г Л А В А 8

ХРОМАТИЧЕСКАЯ АДАПТАЦИЯ

Темновая адаптация - это процесс повышения чувствительности зре ния по мере снижения уровня фотометрической яркости.

Несмотря на то, что феномены световой и темновой адаптаций сходны меж ду собой, - это все таки два самостоятельных явления, обусловленные разны ми механизмами и выполняющие разную зрительную работу (например, свето вая адаптация наступает значительно быстрее, нежели темновая).

Каждый может испытать темновую адаптацию, войдя с залитой солнцем улицы в полумрак кинотеатра: в первый момент помещение кажется совер шенно темным, и многие просто останавливаются на пороге, потому что ничего не видят. Однако по прошествии короткого периода времени предметы в поме щении (кресла, зрители) начинают выступать из темноты. Спустя еще несколь ко минут они станут уже хорошо различимыми, и не составит большого труда распознать фигуры знакомых, найти нужное кресло и т.п., поскольку механиз мы темновой адаптации постепенно увеличивают общую чувствительность зрительной системы.

О световой и темновой адаптациях можно говорить как об аналогии автома тическому контролю экспозиции в фотоаппаратах.

Хроматическая адаптация

Процессы световой и темновой адаптаций радикально влияют на цветовое восприятие стимулов и поэтому учитываются многими моделями цветового восприятия. Однако третий вид адаптации зрения - хроматическая адапта ция - самый важный, и его обязательно должны учитывать все модели.

Хроматическая адаптация - это процесс в значительной мере незави симой регулировки чувствительности механизмов цветового зрения.

Более того, часто звучит мнение, что хроматическая адаптация основана только на независимом изменении чувствительности трех типов колбочковых фоторецепторов (в то время как световая и темновая адаптации - это результат общего изменения чувствительности всего рецепторного аппарата). Однако важно помнить, что существуют иные механизмы цветового зрения (действую щие, к примеру, на оппонентном уровне и даже на уровне распознавания объ ектов), способные к изменению чувствительности, которые также можно отне сти к механизмам хроматической адаптации.

В качестве примера хроматической адаптации возьмем лист белой бумаги, освещенной дневным светом. Если этот лист перенести в помещение, освещен ное лампами накаливания, он по прежнему будет восприниматься белым, не смотря на то, что энергия, отраженная от листа, сменилась с преимущественно «синей», на преимущественно «желтую» (это то самое изменение, к которому не может приспособиться цветная обращаемая фотопленка, о чем мы говорили во введении к данной главе).

Рис. 8.1 иллюстрирует данную ситуацию: на рис. 8.1 (а) показана типичная сцена при дневном освещении; на рис. 8.1 (b) - та же сцена, освещенная лампа

Рис. 8.2 Пример постобразов, вызванных локальной ретинальной адаптацией.

На 30 секунд зафиксируйте взгляд на черной точке, а затем переведите его на равномерную бе лую поверхность. Обратите внимание на цвета постобразов и сравните их с цветами оригиналь ных стимулов.

ми накаливания и воспринятая некоей зрительной системой, не способной к адаптации; на рис. 8.1 (с) - опять та же сцена при свете ламп накаливания, воспринятая некоей зрительной системой, способной к адаптации подобно зри тельной системе человека.

Второй иллюстративный пример хроматической адаптации - т.н. постоб разы , показанные на рис. 8.2: сосредоточьтесь на черной точке в центре фигуры и запомните позиции ее цветов; спустя примерно 30 секунд переведите взгляд на освещенную белую область, например, на белую стену или чистый лист бу маги. Обратите внимание на появившиеся цвета и их взаиморасположение. Возникшие постобразы - это результат независимого изменения чувствитель ности цветовых механизмов. К примеру, области сетчатки, экспонированные красным стимулом рисунка 8.2, понижают свою чувствительность к «крас ной» энергии по мере адаптирующей экспозиции вызывая недостаточность «красного» ответа данной области сетчатки (в норме ожидаемого при воздейст вии белых стимулов), в результате при взгляде на белую поверхность появляет ся голубой постобраз. Возникновение остальных цветов в постобразах объясня ется аналогично.

Итак, если о световой адаптации можно говорить как об аналогии автомати ческому контролю экспозиции, то об адаптации хроматической мы говорим как об аналогии автоматическому балансу белого в видео или цифровых фото камерах.

Райт (1981) дает исторический обзор того, зачем и как изучалась хроматиче ская адаптация.

Если человек находится на ярком свете в течение нескольких часов, и в палочках, и в колбочках происходит разрушение фоточувствительных веществ до ретиналя и опсинов. Кроме того, большое количество ретиналя в обоих типах рецепторов превращается в витамин А. В результате концентрация фоточувствительных веществ в рецепторах сетчатки значительно уменьшается, и чувствительность глаз к свету снижается. Этот процесс называют световой адаптацией.

Наоборот, если человек длительно находится в темноте , ретиналь и опсины в палочках и колбочках снова превращаются в светочувствительные пигменты. Кроме того, витамин А переходит в ретиналь, пополняя запасы светочувствительного пигмента, предельная концентрация которого определяется количеством опсинов в палочках и колбочках, способных соединяться с ретиналем. Этот процесс называют темповой адаптацией.

На рисунке показан ход темновой адаптации у человека , находящегося в полной темноте после нескольких часов пребывания на ярком свете. Видно, что сразу после попадания человека в темноту чувствительность его сетчатки очень низкая, но в течение 1 мин она увеличивается уже в 10 раз, т.е. сетчатка может реагировать на свет, интенсивность которого составляет 1/10 часть от предварительно требуемой интенсивности. Через 20 мин чувствительность возрастает в 6000 раз, а через 40 мин - примерно в 25000 раз.

Кривую, называют кривой темповой адаптации . Обратите внимание на ее изгиб. Начальная часть кривой связана с адаптацией колбочек, поскольку все химические события зрения в колбочках происходят примерно в 4 раза быстрее, чем в палочках. С другой стороны, изменения чувствительности колбочек в темноте никогда не достигают такой степени, как у палочек. Следовательно, несмотря на быструю адаптацию, колбочки всего через несколько минут прекращают адаптироваться, а чувствительность медленно адаптирующихся палочек продолжает возрастать в течение многих минут и даже часов, достигая чрезвычайной степени.

Кроме того, большая чувствительность палочек связана с конвергенцией 100 или более палочек на одиночную ганглиозную клетку в сетчатке; реакции этих палочек суммируются, увеличивая их чувствительность, что изложено далее в этой главе.

Другие механизмы световой и темновой адаптации . Кроме адаптации, связанной с изменениями концентрации родопсина или цветных фоточувствительных веществ, глаза имеют два других механизма световой и темновой адаптации. Первый из них - изменение размера зрачка. Это может вызвать примерно 30-кратную адаптацию в течение долей секунды путем изменения количества света, попадающего на сетчатку через отверстие зрачка.

Другим механизмом является нервная адаптация, происходящая в последовательной цепочке нейронов самой сетчатки и зрительного пути в головном мозге. Это значит, что при увеличении освещенности сигналы, передаваемые биполярными, горизонтальными, амакриновыми и ганглиозными клетками, сначала интенсивны. Однако на разных этапах передачи по нервному контуру интенсивность большинства сигналов быстро снижается. В этом случае чувствительность изменяется лишь в несколько раз, а не в тысячи, как при фотохимической адаптации.

Нервная адаптация , как и зрачковая, происходит за доли секунды, для полной адаптации посредством фоточувствительной химической системы требуются многие минуты и даже часы.

Учебное видео определения темновой адаптации по методу Кравкова-Пуркинье

Оглавление темы "Физиология сетчатки. Проводящие зрительные пути":

Для различения цветов решающее значение имеет их яркость. Приспособление глаза к различным уровням яркости называется адаптацией. Различают световую и темновую адаптации.

Световая адаптация означает снижение чувствительности глаза к свету в условиях большой освещенности. При световой адаптации функционирует колбочковый аппарат сетчатки. Практически световая адаптация происходит за 1 – 4 мин. Полное время световой адаптации – 20-30 мин.

Темновая адаптация – это повышение чувствительности глаза к свету в условиях малой освещенности. При темновой адаптации функционирует палочковый аппарат сетчатки.

При яркостях от 10-3 до 1 кд/м 2 происходит совместная работа палочек и колбочек. Это так называемое сумеречное зрение .

Цветовая адаптация предполагает изменение характеристик цвета под действием хроматической адаптации. Этим термином называют снижение чувствительности глаза к цвету при более или менее длительном наблюдении его.

4.3. Закономерности цветовой индукции

Цветовая индукция – это изменение характеристик цвета под влиянием наблюдения другого цвета, или, проще говоря, взаимное влияние цветов. Цветовая индукция – это стремление глаза к единству и цельности, к замыканию цветового круга, что в свою очередь служит верным знаком стремления человека к слиянию с миром во всей его цельности.

Приотрицательной индукции характеристики двух взаимно индуцирующих цветов изменяются в противоположном направлении.

Приположительной индукции характеристики цветов сближаются, происходит их "подравнивание", нивелирование.

Одновременная индукция наблюдается во всякой цветовой композиции при сопоставлении различных цветовых пятен.

Последовательную индукцию можно наблюдать на простом опыте. Если положить цветной квадрат (20х20 мм) на белый фон и фиксировать на нем взгляд в течение полминуты, то затем на белом фоне мы увидим цвет, контрастный цвету выкраски (квадрата).

Хроматическая индукция – это изменение цвета любого пятна на хроматическом фоне в сравнении с цветом того же пятна на белом фоне.

Яркостная индукция. При большом контрасте по яркости явление хроматической индукции значительно ослабевает. Чем меньше различие по яркости между двумя цветами, тем сильнее на восприятие этих цветов влияет их цветовой тон.

Основные закономерности отрицательной цветовой индукции.

На меру индукционного окрашивания влияют следующие факторы .

Расстояние между пятнами. Чем меньше расстояние между пятнами, тем больше контраст. Этим объясняется явление краевого контраста – кажущееся изменение цвета к краю пятна.

Четкость контура. Четкий контур увеличивает яркостный контраст и уменьшает хроматический.

Отношение яркостей цветовых пятен. Чем ближе значения яркости пятен, тем сильнее хроматическая индукция. И наоборот, увеличение яркостного контраста приводит к уменьшению хроматического.

Отношение площадей пятен. Чем больше площадь одного пятна относительно площади другого, тем сильнее его индукционное действие.

Насыщенность пятна. Насыщенность пятна пропорциональна его индукционному действию.

Время наблюдения. При длительном фиксировании пятен контраст уменьшается и может даже исчезнуть совсем. Лучше всего индукция воспринимается при быстром взгляде.

Область сетчатки, фиксирующая цветовые пятна. Периферические области сетчатки чувствительнее к индукции, чем центральная. Поэтому отношения цветов более точно оцениваются, если смотреть несколько в сторону от места их контакта.

В практике нередко возникает задача ослабления или устранения индукционного окрашивания. Этого можно достичь следующими способами:

подмешиванием цвета фона в цвет пятна;

обведением пятна четким темным контуром;

обобщением силуэта пятен, сокращением их периметра;

взаимным удалением пятен в пространстве.

Oтрицательная индукция может быть вызвана следующими причинами:

местной адаптацией – снижением чувствительности участка сетчатки к фиксируемому цвету, в результате чего цвет, который наблюдается вслед за первым, как бы теряет способность интенсивного возбуждения соответствующего центра;

автоиндукцией , т. е. способностью органа зрения в ответ на раздражение каким-либо цветом продуцировать противоположный цвет.

Цветовая индукция – причина множества явлений, объединяемых общим термином "контрасты". В научной терминологии под контрастом подразумевают вообще всякое различие, но при этом вводят понятие меры. Контраст и индукция не одно и то же, поскольку контраст – мера индукции.

Яркостный контраст характеризуется отношением разности яркости пятен к большей яркости. Яркостный контраст может быть большим, средним и малым.

Контраст по насыщенности характеризуется отношением разности величин насыщенности к большей насыщенности. Контраст по насыщенности краски может быть большим, средним и малым.

Контраст по цветовому тону характеризуется величиной интервала между цветами в 10-ти ступенчатом круге. Контраст по цветовому тону может быть большим, средним и малым.

Большой контраст:

    большой контраст по цветовому тону при среднем и большом контрасте по насыщенности и яркости;

    средний контраст по цветовому тону при большом контрасте по насыщенности или яркости.

Средний контраст:

    средний контраст по цветовому тону при среднем контрасте по насыщенности или яркости;

    малый контраст по цветовому тону при большом контрасте по насыщенности или яркости.

Малый контраст:

    малый контраст по цветовому тону при среднем и малом контрасте по насыщенности или яркости;

    средний контраст по цветовому тону при малом контрасте по насыщенности или яркости;

    большой контраст по цветовому тону при малом контрасте по насыщенности и яркости.

Полярный контраст (диаметральный) формируется при достижении различиями в своих крайних проявлениях. Наши органы чувств функционируют только посредством сравнений.

Если человек находится на ярком свете в течение нескольких часов, и в палочках, и в колбочках происходит разрушение фоточувствительных веществ до ретиналя и опсинов. Кроме того, большое количество ретиналя в обоих типах рецепторов превращается в витамин А. В результате концентрация фоточувствительных веществ в рецепторах сетчатки значительно уменьшается, и чувствительность глаз к свету снижается. Этот процесс называют световой адаптацией .

Наоборот, если человек длительно находится в темноте, ретиналь и опсины в палочках и колбочках снова превращаются в светочувствительные пигменты. Кроме того, витамин А переходит в ретиналь, пополняя запасы светочувствительного пигмента, предельная концентрация которого определяется количеством опсинов в палочках и колбочках, способных соединяться с ретиналем. Этот процесс называют темповой адаптацией.

На рисунке показан ход темновой адаптации у человека, находящегося в полной темноте после нескольких часов пребывания на ярком свете. Видно, что сразу после попадания человека в темноту чувствительность его сетчатки очень низкая, но в течение 1 мин она увеличивается уже в 10 раз, т.е. сетчатка может реагировать на свет, интенсивность которого составляет 1/10 часть от предварительно требуемой интенсивности. Через 20 мин чувствительность возрастает в 6000 раз, а через 40 мин - примерно в 25000 раз.

Законы световой и темновой адаптации

  1. Темновая адаптация определяется достижением максимума световой чувствительности в течение первых 30 - 45 мин;
  2. Световая чувствительность нарастает тем скорее, чем менее до этого глаз был адаптирован к свету;
  3. Во время темновой адаптации светочувствительность повышается в 8 - 10 тысяч раз и более;
  4. После 45 мин пребывания в темноте световая чувствительность повышается, но незначительно, если обследуемый остается в темноте.

Темновая адаптация глаза есть приспособление органа зрения к работе в условиях пониженного освещения. Адаптация колбочек завершается в пределах 7 мин, а палочек - в течение приблизительно часа. Существует тесная связь между фотохимией зрительного пурпура (родопсина) и изменяющейся чувствительностью палочкового аппарата глаз, т. е. интенсивность ощущения в принципе связана с количеством родопсина, «обесцвечиваемого» под воздействием света. Если перед исследованием темновой адаптации сделать яркий за-свет глаза, например, предложить смотреть на ярко освещенную белую поверхность 10-20 мин, то в сетчатке произойдет значительное изменение молекул зрительного пурпура, и чувствительность глаза к свету будет ничтожной (свето(фото) стресс). После перехода к полной темноте чувствительность к свету начнет весьма быстро расти. Способность глаза восстанавливать чувствительность к свету измеряют с помощью специальных приборов - адаптометров Нагеля, Дашевского, Белостоцкого - Гофмана, Гартингера и др. Максимум чувствительности глаза к свету достигается в течение приблизительно 1-2 ч, повышаясь по сравнению с первоначальной в 5000-10 000 раз и более.

Измерение темновой адаптации
Темновая адаптация может быть измерена следующим образом. Сначала испытуемый в течение короткого промежутка времени смотрит на ярко освещенную поверхность (обычно до достижения им определенной, контролируемой степени световой адаптации). При этом чувствительность испытуемого уменьшается, и тем самым создается точно регистрируемая точка отсчета времени, необходимого для его темновой адаптации. Затем выключают свет и через определенные промежутки времени определяют порог восприятия испытуемым светового стимула. Определенный участок сетчатки стимулируется раздражителем с определенной длиной волны, имеющим определенные продолжительность и интенсивность. По результатам такого эксперимента строится кривая зависимости минимального количества энергии, необходимого для достижения порога, от времени пребывания в темноте. Кривая показывает, что увеличение времени пребывания в темноте (абсцисса) приводит к снижению порога (или к возрастанию чувствительности) (ордината).

Кривая адаптации к темноте состоит из двух фрагментов: верхний относится к колбочкам, нижний - к палочкам. Эти фрагменты отражают разные стадии адаптации, скорость протекания которых различна. В начале адаптационного периода порог резко снижается и быстро достигает постоянного значения, что связано с увеличением чувствительности колбочек. Общее возрастание чувствительности зрения за счет колбочек значительно уступает возрастанию чувствительности за счет палочек, и темновая адаптация наступает за 5-10 мин пребывания в темном помещении. Нижний фрагмент кривой описывает темновую адаптацию палочкового зрения. Рост чувствительности палочек наступает после 20-30-минутного пребывания в темноте. Это значит, что в результате примерно получасовой адаптации к темноте глаз становится примерно в тысячу раз более чувствительным, чем был в начале адаптации. Однако хотя увеличение чувствительности в результате темновой адаптации, как правило, происходит постепенно и для завершения этого процесса требуется время, даже весьма непродолжительное воздействие света может прервать его.

Ход кривой темновой адаптации зависит от скорости фотохимической реакции в сетчатке, а достигнутый уровень зависит уже не от периферического, а от центрального процесса, а именно от возбудимости высших корковых зрительных центров.