Строение клетки. Состав и строение животной клетки Таблица клетка строение химический состав и жизнедеятельность

Клетки, образующие ткани растений и животных, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Биологические превращения, происходящие в клетке, неразрывно связаны с теми структурами живой клетки, которые отвечают за выполнение гой или иной функции. Такие структуры получили название органоидов.

Клетки всех типов содержат три основных, неразрывно связанных между собой компонента:

  1. структуры, образующие ее поверхность: наружная мембрана клетки, или клеточная оболочка, или цитоплазматическая мембрана;
  2. цитоплазма с целым комплексом специализированных структур — органоидов (эндоплазматическая сеть, рибосомы, митохондрии и пластиды, комплекс Гольджи и лизосомы, клеточный центр), присутствующих в клетке постоянно, и временных образований, называемых включениями;
  3. ядро - отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

Строение клетки

Поверхностный аппарат клетки (цитоплазматическая мембрана) растений и животных имеет некоторые особенности.

У одноклеточных организмов и лейкоцитов наружная мембрана обеспечивает проникновение в клетку ионов, воды, мелких молекул других веществ. Процесс проникновения в клетку твердых частиц называется фагоцитозом, а попадание капель жидких веществ - пиноцитозом.

Наружная плазматическая мембрана регулирует обмен веществ между клеткой и внешней средой.

В клетках эукариот есть органоиды, покрытые двойной мембраной, - митохондрии и пластиды. Они содержат собственные ДНК и синтезирующий белок аппарат, размножаются делением, то есть имеют определенную автономию в клетке. Кроме АТФ, в митохондриях происходит синтез небольшого количества белка. Пластиды свойственны клеткам растений и размножаются путем деления.

Строение клеточной оболочки
Виды клеток Строение и функции наружного и внутреннего слоев клеточной оболочки
наружный слой (хим. состав, функции)

внутренний слой - плазматическая мембрана

химический состав функции
Клетки растений Состоят из клетчатки. Этотслой служит каркасом клетки и выполняет защитную функцию Два слоя белка, между ними - слой липидов Ограничивает внутреннюю среду клетки от внешней и поддерживает эти различия
Клетки животных Наружный слой (гликокаликс) очень тонкий и эластичный. Состоит из полисахаридов и белков. Выполняет защитную функцию. Тоже Специальные ферменты плазматической мембраны регулируют проникновение многих иононов и молекул в клетку и выход их во внешнюю среду

К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, различные типы вакуолей.

Современные средства исследования позволили биологам установить, что по строению клетки все живые существа следует делить на организмы «безъядерные» - прокариоты и «ядерные» - эукариоты.

У прокариот-бактерий и сине-зеленых водорослей, а также вирусов имеется всего одна хромосома, представленная молекулой ДНК (реже РНК), расположенной непосредственно в цитоплазме клетки.

Строение органоидов цитоплазмы клетки и их функции
Главные рганоиды Строение Функции
Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды
  1. Обеспечивает взаимодействие ядра и органоидов
  2. Регулирует скорость биохимических процессов
  3. Выполняет транспортную функцию
ЭПС - эндоплазматическая сеть Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая
  1. Осуществляет реакции, связанные с синтезом белков, углеводов, жиров
  2. Способствует переносу и циркуляции питательных веществ в клетке
  3. Белок синтезируется на гранулированной ЭПС, углеводы и жиры — на гладкой ЭПС
Рибосомы Мелкие тельца диаметром 15-20 мм Осуществляют синтез белковых молекул, их сборку из аминокислот
Митохондрии Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная - гладкая, и внутренняя - образует выросты-кресты, на которых расположены дыхательные ферменты
  1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)
  2. Синтез АТФ осуществляется ферментами на мембранах митохондрий
Пластиды - свойственны только клеткам раститений, бывают трех типов: Двумембранные органеллы клетки
хлоропласты Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл Используют световую энергию солнца и создают органические вещества из неорганических
хромопласты Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина Придают различным частям растений красную и желтую окраску
лейкопласты Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) В них откладываются запасные питательные вещества
Комплекс Гольджи Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце
  1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети
  2. Образует лизосомы
Лизосомы Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды
Органоиды движения клеток
  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы - тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии
  1. Выполняют функцию движения
  2. За счет их происходит сокращение мышц
  3. Передвижение за счет сокращения особого сократительного белка
Клеточные включения Это непостоянные компоненты клетки — углеводы, жиры и белки Запасные питательные вещества, используемые в процессе жизнедеятельности клетки
Клеточный центр Состоит из двух маленьких телец - центриолей и центросферы - уплотненного участка цитоплазмы Играет важную роль при делении клеток

Эукариоты обладают большим богатством органоидов, имеют ядра, содержащие хромосомы в виде нуклеопротеидов (комплекс ДНК с белком гистоном). К эукариотам относятся большинство современных растений и животных как одноклеточных, так и многоклеточных.

Выделяют два уровня клеточной организации:

  • прокариотический - их организмы очень просто устроены - это одноклеточные или колониальные формы, составляющие царство дробянок, синезеленых водорослей и вирусов
  • эукариотический - одноклеточные колониальные и многоклеточные формы, от простейших - корненожки, жгутиковые, инфузории — до высших растений и животных, составляющие царство растений, царство грибов, царство животных

Строение и функции ядра клетки
Главные органоиды Строение Функции
Ядро растительной и животной клетки Округлой или овальной формы
Ядерная оболочка состоит из 2-х мембран с порами
  1. Отграничивает ядро от цитоплазмы
  2. Осуществляется обмен между ядром и цитоплазмой
Ядерный сок (кариоплазма) - полужидкое вещество Среда, в которой находятся ядрышки и хромосомы
Ядрышки сферической или неправильной формы В них синтезируется РНК, которая входит в состав рибосомы
Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Все органоиды клетки, несмотря на особенности их строения и функций, находятся во взаимосвязи и «работают» на клетку, как на единую систему, в которой связующим звеном является цитоплазма.

Особые биологические объекты, занимающие промежуточное положение между живой и неживой природой, представляют собой вирусы, открытые в 1892 г. Д. И. Ивановским, они составляют в настоящее время объект особой науки - вирусологии.

Вирусы размножаются только в клетках растений, животных и человека, вызывая различные заболевания. Вирусы имеют очень прослое строение и состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки. Вне клеток хозяина вирусная частица не проявляет никаких жизненных функций: не питается, не дышит, не растет, не размножается.

Химические вещества в клетке, особенно их состав, с точки зрения химии разделяют на макро- и микроэлементы. Однако существует еще и группа ультрамикроэлементов, в которую входят химические элементы, процентное соотношение которых составляет 0,0000001%.

Одних химических соединений в клетке больше, других меньше. Однако все основные элементы клетки относятся к группе макроэлентов. Приставка макро- означает много.

Живой организм на атомном уровне не отличается от предметов неживой природы. Он состоит из тех же атомов, что и неживые предметы. Однако количество химических элементов в живом организме, особенно тех, что обеспечивают основные жизненные процессы, намного больше в процентном соотношении.

Химические вещества клетки

Белки

Основными веществами клетки являются белки. Они занимают 50% массы клетки. Белки выполняют множество различных функций в организме живых существ, также белками являются многие другие по своему подобию и функциями вещества.

По своему химическому строению белки – это биополимеры, которые состоят из аминокислот, соединенных пептидными связями. Хочется отметить, что состав белков в основном занимают остатки аминокислот.

Для химического состава белков характерно постоянное среднее количество азота – примерно 16%. Хочется отметить, что под воздействием специфических ферментов, а также в процессе нагревания с кислотами белки поддаются гидролизу. Это одна из главных их особенность.

Углеводы

Углеводы распространены в природе очень широко и отыграют очень важную роль в жизнедеятельности растений и животных. Они берут участие в разных процессах обмена веществ в организме и являются компонентами многих природных соединений.

В зависимости от содержания, структуры и физико-химических свойств, углеводы поделены на две группы: простые – это моносахариды и сложные – продукты конденсации моносахаридов. Среди сложных углеводов также есть две группы: олигосахариды (количество моносахаридных остатков составляет от двух до десяти) и полисахариды (количество моносахаридных остатков составляет более десяти).

Липиды

Липиды – это основной источник энергии для организмов. В составе живых организмов липиды выполняют минимум три главных функции: они являются основными структурными компонентами мембран, являются распространенным энергетическим резервом, а также играют защитную роль в составе покрова животных, растений и микроорганизмов.

Химические вещества в клетке, которые относятся к классу липидов, обладают особенным свойством – они не растворимы в воде и малорастворимые в органических растворителях.

Нуклеиновые кислоты

В составе клеток живых организмов обнаружено два вида жизненно важных нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеиновые кислоты – это сложные соединения, которые имеют в составе азот.

В случае полного гидролиза нуклеиновые кислоты расщепляются на более мелкие соединения, а именно на: азотистые основания, углеводы и фосфатную кислоту. В случае неполного гидролиза нуклеиновых кислот создаются нуклеозиды и нуклеотиды. Главная функция нуклеиновых кислот – хранение генетической информации и транспорт биологически активных веществ.

Группа макроэлементов – основной источник жизни клетки

К группе макроэлементов относятся такие основные химические элементы как кислород, углерод, водород, азот, калий, фосфор, сера, магний, натрий, кальций, хлор и другие. Многие из них, например, фосфор, азот, сера входят в состав разных соединений, которые отвечают за жизненные процессы клеток организма. Каждый из этих элементов имеет свою функцию, без которой существование клетки было б невозможным.

  • Кислород, например, входит практически во все органические вещества и соединения клетки. Для многих, особенно аэробных организмов, кислород выполняет функцию окислителя, что в процессе их дыхания обеспечивает клетки этого организма энергией. Самое большое количество кислорода в живых организмах находится в составе молекул воды.
  • Углерод тоже входит в состав многих соединений клетки. Атомы углерода в молекуле СаСО3 составляют основу скелета живых организмов. Более того, углерод регулирует клеточные функции и играет важную роль в процессе фотосинтеза растений.
  • Водород находится в клетке в молекулах воды. Его главная роль в структуре клетки заключается в том, что много микроскопических бактерий окисляют водород для того, чтобы получать энергию.
  • Азот – один из главных составляющих клетки. Его атомы входят в состав нуклеиновых кислот, многих белков и аминокислот. Азот участвует в процессе регуляции кровяного давления в виде N О и выводится из живого организма в составе мочи.

Не менее важное значение для жизни организмов имеют и сера с фосфором. Первая содержится в составе многих аминокислот, поэтому и в белках. А фосфор составляет основу АТФ – основного и самого большого источника энергии живого организма. Более того, фосфор в виде минеральных солей содержится в зубной и костной тканях.

Важное значение в составе клетки организма имеют кальций и магний. Кальций свертывает кровь, поэтому он жизненно необходим живым существам. Также он регулирует много внутриклеточных процессов. Магний участвует в создании ДНК в организме, более того, он является кофактором многих ферментов.

Нужны клетке и такие макроэлементы как натрий с калием. Натрий поддерживает мембранный потенциал клетки, а калий необходим для нервного импульса и нормальной работы сердечных мышц.

Значение микроэлементов для живого организма

Все основные вещества клетки состоят не только из макроэлементов, но еще и из микроэлементов. Сюда относятся цинк, селен, йод, медь и другие. В клетке в составе основных веществ они находятся в мизерных количествах, однако играют важнейшую роль в процессах организма. Селен, например, регулирует много основных процессов, медь является одним из составляющих компонентов многих ферментов, а цинк является главным элементом в составе инсулина – основного гормона поджелудочной железы.

Химический состав клетки — видео

Из курса ботаники и зоологии вы знаете, что тела растений и живот ных построены из клеток. Организм человека тоже состоит из клеток. Благодаря клеточному строению организма возможны его рост, раз множение, восстановление органов и тканей и другие формы деятель ности.

Форма и размеры клеток зависят от выполняемой органом функции. Основным прибором для изучения строения клетки является микро скоп. Световой микроскоп позволяет рассматривать клетку при увеличении примерно до трех тысяч раз; электронный микроскоп, в котором вместо света используется поток электронов, - в сотни тысяч раз. Изучением строения и функций клеток занимается цитология (от греч. «цитос» - клетка).

Строение клетки.

Каждая клетка состоит из цитоплазмы и ядра, а снаружи она покрыта мембраной, разграничивающей одну клетку от соседних. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом. Главная функция мем браны состоит в том, что через нее движутся различные вещества из клетки в клетку и таким осуществляется обмен веществ меж ду образом клетками и межклеточным ве ществом.

Цитоплазма - вязкое полужид кое вещество. Цитоплазма содержит ряд мельчайших структур клетки - органоидов, которые выполняют раз личные функции. Рассмотрим самые важные из органоидов: митохонд рии, сеть канальцев, рибосомы, кле точный центр, ядро.

Митохондрии - короткие утол щенные тельца с внутренними пере городками. В них образуется вещество, богатое энергией, необходимой для процессов, происходящих в клетке АТФ. Замечено, что чем активнее работает клетка, тем больше в ней митохондрий.

Сеть канальцев пронизывает всю цитоплазму. По этим канальцам происходит передвижение веществ и ус танавливается связь между органои дами.

Рибосомы - плотные тельца, со держащие белок и рибонуклеиновую кислоту. Они являются местом обра зования белков.

Клеточный центр образован тельцами, которые участвуют в деле нии клетки. Они расположены возле ядра.

Ядро - это тельце, которое явля ется обязательной составной частью клетки. Во время клеточного деле ния строение ядра меняется. Когда деление клетки заканчивается, ядро возвращается к прежнему состоя нию. В ядре есть особое вещество - хроматин , из которого перед делением клетки образуются нитевидные тельца - хромосомы . Для клеток ха рактерно постоянное количество хро мосом определенной формы. В клетках тела человека содержится по 46 хромосом, а в половых клетках по 23.

Химический состав клетки. Клет ки организма человека состоят из разнообразных химических соедине ний неорганической и органической природы. К неорганическим вещест вам клетки относятся вода и соли. Вода составляет до 80% массы клет ки. Она растворяет вещества, учас твующие в химических реакциях: переносит питательные вещества, выводит из клетки отработанные и вредные соединения. Минеральные соли - хлорид натрия, хлорид ка лия и др. - играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы, такие, как кислород, водород, азот, сера, железо, магний, цинк, иод, фосфор, участвуют в создании жизненно важных органических соединений. Органические соединения образуют до 20-30% массы каждой клетки. Среди органических соединений наибольшее значение имеют углево ды, жиры, белки и нуклеиновые кислоты.

Углеводы состоят из углерода, водорода и кислорода. К углеводам от носятся глюкоза, животный крах мал - гликоген. Многие углеводы хорошо растворимы в воде и являют ся основными источниками энергии для осуществления всех жизненных процессов. При распаде 1 г углеводов освобождается 17,6 кДж энергии.

Жиры образованы теми же хими ческими элементами, что и углево ды. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным ис точником энергии в организме. При полном расщеплении 1 г жира осво бождается 38,9 кДж энергии.

Белки являются основными ве ществами клетки. Белки - самые сложные из встречающихся в приро де органических веществ, хотя и со стоят из относительно небольшого числа химических элементов - уг лерода, водорода, кислорода, азота, серы. Очень часто в состав белка вхо дит фосфор. Молекула белка имеет большие размеры и представляет со бой цепь, состоящую из десятков и сотен более простых соединений - 20 видов аминокислот.

Белки служат главным строи тельным материалом. Они участву ют в формировании мембран клет ки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль уско рителей течения химических реак ций - ферментов. Биохимические процессы могут происходить в клет ке только в присутствии особых ферментов, которые ускоряют хими ческие превращения веществ в сот ни миллионов раз.

Белки имеют разнообразное стро ение. Только в одной клетке насчи тывается до 1000 разных белков.

При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов – 17,6 кДж на 1 г.

Нуклеиновые кислоты образуют ся в клеточном ядре. С этим связано их название (от лат. «нуклеус» - ядро). Они состоят из углерода, кислорода, водорода и азота и фосфора. Нуклеи новые кислоты бывают двух типов - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). ДНК находят ся в основном в хромосомах клеток. ДНК определяет состав белков клетки и передачу наследственных при знаков и свойств от родителей к по томству. Функции РНК связаны с образованием характерных для этой клетки белков.


Клетка - это наименьшая структурная и функциональная единица живого. Клетки всех живых организмов, в том числе и человека, имеют сходное строение. Изучение строения, функций клеток, их взаимодействия между собой - основа к пониманию такого сложного организма, как человек. Клетка активно реагирует на раздражения, выполняет функции роста и размножения; способна к самовоспроизведению и передаче генетической информации потомкам; к регенерации и приспособлению к окружающей среде.
Строение. В организме взрослого человека насчитывают около 200 типов клеток, которые различаются формой, строением, химическим составом и характером обмена веществ. Несмотря на большое разнообразие, каждая клетка любого органа представляет собой целостную живую систему. У клетки выделяют цитолемму, цитоплазму и ядро (рис. 5).
Цитолемма. Каждая клетка имеет оболочку - цитолемму (клеточную мембрану), отделяющую содержимое клетки от внешней (внеклеточной) среды. Цитолемма не только ограничивает клетку снаружи, но и обеспечивает ее непосредственную связь с внешней средой. Цитолемма выполняет защитную, транспортную функ-

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма;

  1. - эндоплазматическая сеть (а - мембраны эндоплазматической сети,
  2. - рибосомы); 6 - ядро; 7 - связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 11 - секреторные вакуоли; 12 - митохондрии; 13 - лизосомы; 14 - три последовательные стадии фагоцитоза; 15 - связь клеточной оболочки
(цитолеммы) с мембранами эндоплазматической сети

ции, воспринимает воздействия внешней среды. Через цитолемму различные молекулы (частицы) проникают внутрь клетки и из клетки выходят в окружающую ее среду.
Цитолемма состоит из липидных и белковых молекул, которые удерживаются вместе с помощью сложных межмолекулярных взаимодействий. Благодаря им поддерживается структурная целостность мембраны. Основу цитолеммы также составляют пласты ли-
попротеидной природы (липиды в комплексе с белками). Имея толщину около 10 нм, цитолемма является самой толстой из биологических мембран. У цитолеммы - полупроницаемой биологической мембраны - выделяют три слоя (рис. 6, см. цв. вкл.). Наружный и внутренний гидрофильные слои образованы молекулами липидов (липидный бислой) и имеют толщину 5-7 нм. Эти слои непроницаемы для большинства водорастворимых молекул. Между наружным и внутренним слоями находится промежуточный гидрофобный слой липидных молекул. К мембранным липидам относится большая группа органических веществ, плохо растворимых в воде (гидрофобные) и хорошо растворимых в органических растворителях. В клеточных мембранах присутствуют фосфолипиды (гли- церофосфатиды), стероидные липиды (холестерин) и др.
Липиды составляют около 50 % массы плазматической мембраны.
Липидные молекулы имеют гидрофильные (любящие воду) головки и гидрофобные (боящиеся воды) концы. Липидные молекулы располагаются в цитолемме таким образом, что наружный и внутренний слои (липидный бислой) образованы головками липидных молекул, а промежуточный слой - их концами.
Мембранные белки не образуют в цитолемме сплошного слоя. Белки располагаются в липидных слоях, погружаясь в них на разную глубину. Молекулы белков имеют неправильную округлую форму и образуются из полипептидных спиралей. При этом неполярные участки белков (не несущие на себе зарядов), богатые неполярными аминокислотами (аланином, валином, глицином, лейцином), погружены в ту часть липидной мембраны, где располагаются гидрофобные концы липидных молекул. Полярные части белков (несущие заряд), также богатые аминокислотами, взаимодействуют с гидрофильными головками липидных молекул.
В плазматической мембране белки составляют почти половину ее массы. Различают трансмембранные (интегральные), полуин- тегральные и периферические белки мембраны. Периферические белки располагаются на поверхности мембраны. Интегральные и полуинтегральные белки погружены в липидные слои. Молекулы интегральных белков проникают через весь липидный слой мембраны, а полуинтегральные белки погружены в мембранные слои частично. Мембранные белки, по их биологической роли, подразделяют на белки-переносчи- ки (транспортные белки), белки-ферменты, рецепторные белки.
Мембранные углеводы представлены полисахаридными цепочками, которые прикреплены к мембранным белкам и липидам. Такие углеводы называют гликопротеинами и гликолипидами. Количество углеводов в цитолемме и других биологических мем
бранах невелико. Масса углеводов в плазматической мембране колеблется от 2 до 10 % массы мембраны. Углеводы располагаются на внешней поверхности клеточной мембраны, которая не контактирует с цитоплазмой. Углеводы на клеточной поверхности образуют надмембранный слой - гликокаликс, принимающий участие в процессах межклеточного узнавания. Толщина гликокаликса составляет 3-4 нм. В химическом отношении гликокаликс представляет собой гликопротеиновый комплекс, в состав которого входят различные углеводы, связанные с белками и липидами.
Функции плазматической мембраны. Одна из важнейших функций цитолеммы - транспортная. Она обеспечивает поступление в клетку питательных и энергетических веществ, выведение из клетки продуктов обмена и биологически активных материалов (секретов), регулирует прохождение в клетку и из клетки различных ионов, поддерживает в клетке соответствующий pH.
Существует несколько механизмов для поступления веществ в клетку и выхода их из клетки: это диффузия, активный транспорт, экзо- или эндоцитоз.
Диффузия - это движение молекул или ионов из области с высокой их концентрацией в область с более низкой концентрацией, т.е. по градиенту концентрации. За счет диффузии осуществляется перенос через мембраны молекул кислорода (02) и углекислого газа (С02). Ионы, молекулы глюкозы и аминокислот, жирных кислот диффундируют через мембраны медленно.
Направление диффузии ионов определяется двумя факторами: один из этих факторов - их концентрация, а другой - электрический заряд. Ионы обычно перемещаются в область с противоположными зарядами и, отталкиваясь из области с одноименным зарядом, диффундируют из области с высокой концентрацией в область с низкой концентрацией.
Активный транспорт - это перенос молекул или ионов через мембраны с потреблением энергии против градиента концентрации. Энергия в виде расщепления аденозинтрифосфорной кислоты (АТФ) необходима, чтобы обеспечивать движение веществ из среды с более низкой их концентрацией в среду с более высоким их содержанием. Примером активного транспорта ионов является натрий-калиевый насос (Na+, К+-насос). С внутренней стороны к мембране поступают ионы Na+, АТФ, а с наружной - ионы К+. На каждые два проникающих в клетку иона К+ из клетки выводится три иона Na+. Вследствие этого содержимое клетки становится отрицательно заряженным по отношению к внешней среде. При этом между двумя поверхностями мембраны возникает разность потенциалов.

Перенос через мембрану крупных молекул нуклеотидов, аминокислот и др. осуществляют мембранные транспортные белки. Это белки-переносчики и каналообразующие белки. Белки-переносчики, соединяясь с молекулой переносимого вещества, транспортируют ее через мембрану. Этот процесс может быть как пассивным, так и активным. Каналообразующие белки формируют заполненные тканевой жидкостью узкие поры, которые пронизывают липидный бислой. Эти каналы имеют ворота, открывающиеся на короткое время в ответ на специфические процессы, которые происходят на мембране.
Цитолемма участвует также в поглощении и выделении клеткой различного рода макромолекул и крупных частиц. Процесс прохождения через мембрану внутрь клетки таких частиц получил название эндоцитоза, а процесс выведения их из клетки - экзоцитоза. При эндоцитозе плазматическая мембрана образует выпячивания или выросты, которые, отшнуровываясь, превращаются в пузырьки. Оказавшиеся в пузырьках частицы или жидкость переносятся внутрь клетки. Различают два типа эндоцитоза - фагоцитоз и пиноцитоз. Фагоцитоз (от греч. phagos - пожирающий) - это поглощение и перенос в клетку крупных частиц - например, остатков погибших клеток, бактерий). Пиноцитоз (от греч. pino - пью) - это поглощение жидкого материала, крупномолекулярных соединений. Большинство частиц или молекул, поглощенных клеткой, заканчивают свой путь в лизосомах, где эти частицы перевариваются клеткой. Экзоци- тоз - это процесс, обратный эндоцитозу. В процессе экзоцитоза содержимое транспортных или секретирующих пузырьков выделяется во внеклеточное пространство. При этом пузырьки сливаются с плазматической мембраной, а затем раскрываются на ее поверхности и выделяют их содержимое во внеклеточную среду.
Рецепторные функции клеточной мембраны осуществляются благодаря большому количеству чувствительных образований - рецепторов, имеющихся на поверхности цитолеммы. Рецепторы способны воспринимать воздействия различных химических и физических раздражителей. Рецепторами, способными распознавать раздражители, являются гликопротеиды и гликолипиды цитолеммы. Рецепторы располагаются на всей клеточной поверхности равномерно или могут быть сконцентрированы на какой-либо одной части клеточной мембраны. Существуют рецепторы, распознающие гормоны, медиаторы, антигены, различные белки.
Межклеточные соединения образованы при соединении, смыкании цитолеммы рядом расположенных клеток. Межклеточные соединения обеспечивают передачу химических и электрических сигналов от одной клетки к другой, участвуют во взаимоотношениях
клеток. Существуют простые, плотные, щелевидные, синаптические межклеточные соединения. Простые соединения образуются, когда цитолеммы двух соседних клеток просто соприкасаются, прилежат одна к другой. В местах плотных межклеточных соединений цитолемма двух клеток максимально сближена, местами сливается, образуя как бы одну мембрану. При щелевидных соединениях (нексусах) между двумя цитолеммами имеется очень узкая щель (2-3 нм). Синаптические соединения (синапсы) характерны для контактов нервных клеток друг с другом, когда сигнал (нервный импульс) способен передаваться от одной нервной клетки другой нервной клетке только в одном направлении.
С точки зрения функции межклеточные соединения можно объединить в три группы. Это запирающие соединения, прикрепительные и коммуникационные контакты. Запирающие соединения соединяют клетки очень плотно, делают невозможным прохождение через них даже небольших молекул. Прикрепительные контакты механически связывают клетки с соседними клетками или внеклеточными структурами. Коммуникационные контакты клеток друг с другом обеспечивают передачу химических и электрических сигналов. Основными типами коммуникационных контактов являются щелевые контакты, синапсы.

  1. Из каких химических соединений (молекул) построена цитолемма? Как молекулы этих соединений расположены в мембране?
  2. Где расположены мембранные белки, какую роль они играют в функциях цитолеммы?
  3. Назовите и опишите виды транспорта веществ через мембрану.
  4. Чем отличается активный транспорт веществ через мембраны от пассивного?
  5. Что такое эндоцитоз и экзоцитоз? Чем они отличаются друг от друга?
  6. Какие вы знаете виды контактов (соединений) клеток друг с другом?
Цитоплазма. Внутри клетки, под ее цитолеммой, располагается цитоплазма, у которой выделяют гомогенную, полужидкую часть - гиалоплазму и находящиеся в ней органеллы и включения.
Гиалоплазма (от греч. hyalmos - прозрачный) представляет собой сложную коллоидную систему, которая заполняет пространство между клеточными органеллами. В гиалоплазме синтезируются белки, в ней находится энергетический запас клетки. Гиалоплазма объединяет различные структуры клетки и обеспе
чивает их химическое взаимодействие, она образует матрикс - внутреннюю среду клетки. Снаружи гиалоплазма покрыта клеточной мембраной - цитолеммой. В состав гиалоплазмы входит вода (до 90%). В гиалоплазме синтезируются белки, необходимые для жизнедеятельности и функционирования клетки. В ней находятся энергетические запасы в виде молекул АТФ, жировые включения, откладывается гликоген. В гиалоплазме располагаются структуры общего назначения - органеллы, которые имеются во всех клетках, и непостоянные образования - цитоплазматические включения. В число органелл входят зернистая и незернистая эндоплазматическая сеть, внутренний сетчатый аппарат (комплекс Гольджи), клеточный центр (цитоцентр), рибосомы, лизосомы. К включениям относятся гликоген, белки, жиры, витамины, пигментные и другие вещества.
Органеллы - это структуры клетки, выполняющие определенные жизненно важные функции. Различают органеллы мембранные и немембранные. Мембранные органеллы - это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделенные от гиалоплазмы мембранами. К мембранным органел- лам относят эндоплазматическую сеть, внутренний сетчатый аппарат (комплекс Гольджи), митохондрии, лизосомы, перо- ксисомы.
Эндоплазматическая сеть образована группами цистерн, пузырьков или трубочек, стенками которых служит мембрана толщиной 6-7 нм. Совокупность этих структур напоминает сеть. Эндоплазматическая сеть неоднородна по строению. Выделяют два типа эндоплазматической сети - зернистую и незернистую (гладкую).
У зернистой эндоплазматической сети на мембранах-трубочках располагается множество мелких округлых телец - рибосом. Мембраны незернистой эндоплазматической сети на своей поверхности рибосом не имеют. Основная функция зернистой эндоплазматической сети - участие в синтезе белка. На мембранах незернистой эндоплазматической сети происходит синтез липидов и полисахаридов.
Внутренний сетчатый аппарат (комплекс Гольджи) обычно располагается около клеточного ядра. Он состоит из уплощенных цистерн, окруженных мембраной. Рядом с группами цистерн находится множество мелких пузырьков. Комплекс Гольджи участвует в накоплении продуктов, синтезированных в эндоплазматической сети, и выведении образовавшихся веществ за пределы клетки. Кроме того, комплекс Гольджи обеспечивает формирование клеточных лизосом и пероксимом.
Лизосомы представляют собой шаровидные мембранные мешочки (диаметром 0,2-0,4 мкм), наполненные активными химиче

скими веществами, гидролитическими ферментами (гидролаза- ми), расщепляющими белки, углеводы, жиры и нуклеиновые кислоты. Лизосомы являются структурами, осуществляющими внутриклеточное переваривание биополимеров.
Пероксисомы - это небольшие, овальной формы вакуоли размером 0,3-1,5 мкм, содержащие фермент каталазу, разрушающую перекись водорода, которая образуется в результате окислительного дезаминирования аминокислот.
Митохондрии являются энергетическими станциями клетки. Это органеллы овоидной или шаровидной формы диаметром около 0,5 мкм и длиной 1 - 10 мкм. Митохондрии, в отличие от других органелл, ограничены не одной, а двумя мембранами. Наружная мембрана имеет ровные контуры и отделяет митохондрию от гиа- лоплазмы. Внутренняя мембрана ограничивает содержимое митохондрии, ее тонкозернистый матрикс, и образует многочисленные складки - гребни (кристы). Основной функцией митохондрии является окисление органических соединений и использование освободившейся энергии для синтеза АТФ. Синтез АТФ осуществляется с потреблением кислорода и происходит на мембранах митохондрий, на мембранах их крист. Освободившаяся энергия используется для фосфорилирования молекул АДФ (аденозинди- фосфорной кислоты) и превращения их в АТФ.
К немембранным органеллам клетки относятся опорный аппарат клетки, включающий микрофиламенты, микротрубочки и промежуточные филаменты, клеточный центр, рибосомы.
Опорный аппарат, или цитоскелет клетки, обеспечивает клетке способность сохранять определенную форму, а также осуществлять направленные движения. Цитоскелет образован белковыми нитями, которые пронизывают всю цитоплазму клетки, заполняя пространство между ядром и цитолеммой.
Микрофиламенты представляют собой также белковые нити толщиной 5-7 нм, расположенные преимущественно в периферических отделах цитоплазмы. В состав микрофиламентов входят сократительные белки- актин, миозин, тропомиозин. Более толстые микрофиламенты, толщиной около 10 нм, получили название промежуточных филаментов, или микрофибрилл. Промежуточные филаменты располагаются пучками, в разных клетках имеют различный состав. В мышечных клетках они построены из белка демина, в эпителиальных клетках - из белков кератинов, в нервных клетках построены из белков, образующих нейрофибриллы.
Микротрубочки представляют собой полые цилиндры диаметром около 24 нм, состоящие из белка тубулина. Они являются основными структурными и функциональными элементами рес
ничек и жгутиков, основой которых являются выросты цитоплазмы. Главной функцией этих органелл является опорная. Микротрубочки обеспечивают подвижность самих клеток, а также движение ресничек и жгутиков, являющихся выростами некоторых клеток (эпителия дыхательных путей и других органов). Микро- трубочки входят в состав клеточного центра.
Клеточный центр (цитоцентр) представляет собой совокупность центриолей и окружающего их плотного вещества - центросферы. Располагается клеточный центр возле ядра клетки. Центриоли имеют форму полых цилиндров диаметром около

  1. 25 мкм и длиной до 0,5 мкм. Стенки центриолей построены из микротрубочек, которые образуют 9 триплетов (тройных микротрубочек - 9x3).
Обычно в неделящейся клетке присутствуют две центриоли, которые располагаются под углом одна к другой и образуют диплосому. При подготовке клетки к делению происходит удвоение центриолей, так что в клетке перед делением обнаруживается четыре центриоли. Вокруг центриолей (диплосомы), состоящих из микротрубочек, находится центросфера в виде бесструктурного ободка с радиально ориентированными фибриллами. Центриоли и центросфера в делящихся клетках участвуют в формировании веретена деления и располагаются на его полюсах.
Рибосомы представляют собой гранулы размером 15-35 нм. В их состав входят белки и молекулы РНК примерно в равных весовых отношениях. Располагаются рибосомы в цитоплазме свободно или они фиксированы на мембранах зернистой эндоплазматической сети. Рибосомы участвуют в синтезе молекул белка. Они укладывают аминокислоты в цепи в строгом соответствии с генетической информацией, заключенной в ДНК. Наряду с одиночными рибосомами в клетках имеются группы рибосом, образующие полисомы, полирибосомы.
Включения цитоплазмы являются необязательными компонентами клетки. Они появляются и исчезают в зависимости от функционального состояния клетки. Основным местом расположения включений является цитоплазма. В ней включения накапливаются в виде капель, гранул, кристаллов. Различают включения трофические, секреторные и пигментные. К трофическим включениям относят гранулы гликогена в клетках печени, белковые гранулы в яйцеклетках, капли жира в жировых клетках и т. д. Они служат запасами питательных веществ, которые накапливает клетка. Секреторные включения образуются в клетках железистого эпителия в процессе их жизнедеятельности. Включения содержат биологически активные вещества, накапливаемые в виде секреторных гранул. Пигментные включения
могут быть эндогенного (если они образовались в самом организме - гемоглобин, липофусцин, меланин) или экзогенного (красители и др.) происхождения.
Вопросы для повторения и самоконтроля:
  1. Назовите основные структурные элементы клетки.
  2. Какими свойствами обладает клетка как элементарная единица живого?
  3. Что такое органеллы клетки? Расскажите о классификации орга- нелл.
  4. Какие органеллы участвуют в синтезе и транспорте веществ в клетке?
  5. Расскажите о строении и функциональном значении комплекса Гольджи.
  6. Опишите строение и функции митохондрий.
  7. Назовите немембранные органеллы клетки.
  8. Дайте определение включениям. Приведите примеры.
Клеточное ядро - обязательный элемент клетки. Оно содержит генетическую (наследственную) информацию, регулирует белковый синтез. Генетическая информация находится в молекулах дезоксирибонуклеиновой кислоты (ДНК). При делении клетки эта информация передается в равных количествах дочерним клеткам. В ядре имеется собственный аппарат белкового синтеза, ядро контролирует синтетические процессы в цитоплазме. На молекулах ДНК воспроизводятся различные виды рибонуклеиновой кислоты: информационной, транспортной, рибосомной.
Ядро имеет обычно шаровидную или яйцевидную форму. Для некоторых клеток (лейкоцитов, например) характерно бобовидное, палочковидное или сегментированное ядро. Ядро неделящейся клетки (интерфазное) состоит из оболочки, нуклеоплазмы(карио- плазмы), хроматина и ядрышка.
Ядерная оболочка (кариотека) отделяет содержимое ядра от цитоплазмы клетки и регулирует транспорт веществ между ядром и цитоплазмой. Кариотека состоит из наружной и внутренней мембран, разделенных узким перинуклеарным пространством. Наружная ядерная мембрана непосредственно соприкасается с цитоплазмой клетки, с мембранами цистерн эндоплазматической сети. На поверхности ядерной мембраны, обращенной к цитоплазме, находятся многочисленные рибосомы. Ядерная оболочка имеет ядерные поры, закрытые сложноустроенной диафрагмой, образованной соединенными между собой белковыми гранулами. Через ядерные поры осуществляется обмен веществ
между ядром и цитоплазмой клетки. Из ядра в цитоплазму выходят молекулы рибонуклеиновой кислоты (РНК) и субъединицы рибосом, а в ядро поступают белки, нуклеотиды.
Под ядерной оболочкой находятся гомогенная нуклеоплазма (.кариоплазма) и ядрышко. В нуклеоплазме неделящегося ядра, в его ядерном белковом матриксе, находятся гранулы (глыбки) так называемого гетерохроматина. Участки более разрыхленного хроматина, расположенные между гранулами, называются эухрома- тином. Разрыхленный хроматин называют деконденсированным хроматином, в нем наиболее интенсивно протекают синтетические процессы. Во время деления клетки хроматин уплотняется, конденсируется, образует хромосомы.
Хроматин неделящегося ядра и хромосомы делящегося имеют одинаковый химический состав. И хроматин, и хромосомы состоят из молекул ДНК, связанной с РНК и белками (гистона- ми и негистонами). Каждая молекула ДНК состоит из двух длинных правозакрученных полинуклеотидных цепей (двойной спирали). Каждый нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Причем основание расположено внутри двойной спирали, а сахарофосфатный скелет - снаружи.
Наследственная информация в молекулах ДНК записана в линейной последовательности расположения ее нуклеотидов. Элементарной частицей наследственности является ген. Ген - это участок ДНК, имеющий определенную последовательность расположения нуклеотидов, ответственных за синтез одного определенного специфического белка.
Молекулы ДНК в хромосоме делящегося ядра упакованы компактно. Так, одна молекула ДНК, содержащая 1 млн нуклеотидов при их линейном расположении, имеет длину 0,34 мм. Длина одной хромосомы человека в растянутом виде составляет около 5 см. Молекулы ДНК, связанные с белками-гистонами, образуют нуклеосомы, являющиеся структурными единицами хроматина. Нуклеосомы имеют вид бусинок диаметром 10 нм. Каждая нук- леосома состоит из гистонов, вокруг которых закручен участок ДНК, включающий 146 пар нуклеотидов. Между нуклеосомами располагаются линейные участки ДНК, состоящие из 60 пар нуклеотидов. Хроматин представлен фибриллами, которые образуют петли длиной около 0,4 мкм, содержащие от 20 000 до 300 000 пар нуклеотидов.
В результате уплотнения (конденсации) и закручивания (су- перспирализации) дезоксирибонуклеопротеидов (ДНП) в делящемся ядре хромосомы представляют собой удлиненные палочковидные образования, имеющие два плеча, разделенных так
называемой перетяжкой - центромерой. В зависимости от расположения центромеры и длины плеч (ножек) выделяют три типа хромосом: метацен трические, имеющие примерно одинаковые плечи, субмета центрические, у которых длина плеч (ножек) различная, а также акроцентрические хромосомы, у которых одно плечо длинное, а другое - очень короткое, еле заметное.
Поверхность хромосом покрыта различными молекулами, главным образом рибонуклеопрогеидами (РНП). В соматических клетках имеются по две копии каждой хромосомы. Их называют гомологичными хромосомами, они одинаковые по длине, форме, строению, несут одни и те же гены, которые расположены одинаково. Особенности строения, количество и размеры хромосом называют кариотипом. Нормальный кариотип человека включает 22 пары соматических хромосом (аутосом) и одну пару половых хромосом (XX или XY). Соматические клетки человека (диплоидные) имеют удвоенное число хромосом - 46. Половые клетки содержат гаплоидный (одинарный) набор - 23 хромосомы. Поэтому в половых клетках ДНК в два раза меньше, чем в диплоидных соматических клетках.
Ядрышко, одно или несколько, имеется во всех неделящихся клетках. Оно имеет вид интенсивно окрашивающегося округлого тельца, величина которого пропорциональна интенсивности белкового синтеза. Ядрышко состоит из электронно-плотной нуклео- лонемы (от греч. нема - нить), в которой различают нитчатую (фибриллярную) и гранулярную части. Нитчатая часть состоит из множества переплетающихся нитей РНК толщиной около 5 нм. Гранулярная (зернистая) часть образована зернами диаметром около 15 нм, представляющими собой частицы рибонуклеопроте- идов - предшественников рибосомных субъединиц. В ядрышке образуются рибосомы.
Химический состав клетки. Все клетки организма человека сходны по химическому составу, в них входят как неорганические, так и органические вещества.
Неорганические вещества. В составе клетки обнаруживают более 80 химических элементов. При этом на долю шести из них - углерода, водорода, азота, кислорода, фосфора и серы приходится около 99 % общей массы клетки. Химические элементы находятся в клетке в виде различных соединений.
Первое место среди веществ клетки занимает вода. Она составляет около 70 % массы клетки. Большинство реакций, протекающих в клетке, может идти только в водной среде. Многие вещества поступают в клетку в водном растворе. Продукты обмена веществ выводятся из клетки также в водном растворе. Благодаря
наличию воды клетка сохраняет свои объем и упругость. К неорганическим веществам клетки, кроме воды, относятся соли. Для процессов жизнедеятельности клетки наиболее важны катионы К+, Na+, Mg2+, Са2+, а также анионы - Н2РО~, С1 , НСО“ Концентрация катионов и анионов внутри клетки и вне ее различная. Так, внутри клетки всегда довольно высокая концентрация ионов калия и низкая ионов натрия. Напротив, в окружающей клетку среде, в тканевой жидкости, меньше ионов калия и больше ионов натрия. У живой клетки эти различия в концентрациях ионов калия и натрия между внутриклеточной и внеклеточной средами сохраняют постоянство.
Органические вещества. Почти все молекулы клетки относятся к соединениям углерода. Благодаря наличию на внешней оболочке четырех электронов атом углерода может образовывать четыре прочные ковалентные связи с другими атомами, создавая большие и сложные молекулы. Другими атомами, которые широко представлены в клетке и с которыми легко соединяются атомы углерода, являются атомы водорода, азота и кислорода. Они, как и углерод, имеют небольшие размеры и способны образовывать очень прочные ковалентные связи.
Большинство органических соединений образует молекулы больших размеров, получивших название макромолекул (греч. makros - большой). Такие молекулы состоят из повторяющихся сходных по структуре и связанных между собой соединений - мономеров (греч. monos - один). Образованная мономерами макромолекула называется полимером (греч. poly - много).
Основную массу цитоплазмы и ядра клетки составляют белки. В состав всех белков входят атомы водорода, кислорода и азота. Во многие белки входят, кроме того, атомы серы, фосфора. Каждая молекула белка состоит из тысяч атомов. Существует огромное количество различных белков, построенных из аминокислот.
В клетках и тканях животных и растительных организмов встречается свыше 170 аминокислот. Каждая аминокислота имеет карбоксильную группу (СООН), имеющую кислотные свойства, и аминогруппу (-NH2), имеющую основные свойства. Участки молекул, не занятые карбокси- и аминогруппами, называют радикалами (R). В простейшем случае радикал состоит из одного атома водорода, а у более сложных аминокислот он может быть сложной структурой, состоящей из многих атомов углерода.
К числу важнейших аминокислот относятся аланин, глутаминовая и аспарагиновая кислоты, пролин, лейцин, цистеин. Соединения аминокислот друг с другом называют пептидными связями. Образовавшиеся соединения аминокислот называют пептидами. Пептид из двух аминокислот называется дипептидом,
из трех аминокислот - трипептидом, из многих аминокислот - полипептидом. В состав большинства белков входит 300-500 аминокислот. Имеются и более крупные молекулы белка, состоящие из 1500 и более аминокислот. Белки различаются составом, числом и порядком чередования аминокислот в полипептидной цепи. Именно последовательность чередования аминокислот имеет первостепенное значение в существующем разнообразии белков. Многие молекулы белков имеют большую длину и большую молекулярную массу. Так, молекулярная масса инсулина составляет 5700, гемоглобина - 65 000, а молекулярная масса воды равна всего 18.
Поли пептидные цепи белков не всегда вытянуты в длину. Напротив, они могут скручиваться, изгибаться или свертываться самым различным образом. Разнообразие физических и химических свойств белков обеспечивают особенности выполняемых ими функций: строительной, двигательной, транспортной, защитной, энергетической.
Входящие в состав клеток углеводы также являются органическими веществами. В состав углеводов входят атомы углерода, кислорода и водорода. Различают простые и сложные углеводы. Простые углеводы называются моносахаридами. Сложные углеводы представляют собой полимеры, в которых моносахариды играют роль мономеров. Из двух мономеров образуется дисахарид, из трех - трисахарид, из многих - полисахарид. Все моносахариды - бесцветные вещества, хорошо растворимые в воде. Самые распространенные моносахариды в животной клетке - глюкоза, рибоза, дезоксирибоза.
Глюкоза является первичным источником энергии для клетки. При расщеплении она превращается в оксид углерода и воду (С02 + + Н20). В ходе этой реакции освобождается энергия (при расщеплении 1 г глюкозы освобождается 17,6 кДж энергии). Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.
Липиды состоят из тех же химических элементов, что и углеводы, - углерода, водорода и кислорода. Липиды не растворяются в воде. Самые распространенные и известные липиды - эго жиры, являющиеся источником энергии. При расщеплении жиров выделяется в два раза больше энергии, чем при расщеплении углеводов. Липиды гидрофобны и поэтому входят в состав клеточных мембран.
В состав клеток входят нуклеиновые кислоты - ДНК и РНК. Название «нуклеиновые кислоты» происходит от латинского слова «нуклеус», те. ядро, где они были впервые обнаружены. Нуклеиновые кислоты представляют собой последовательно соединенные друг с другом нуклеотиды. Нуклеотид - это химическое
соединение, состоящее из одной молекулы сахара и одной молекулы органического основания. Органические основания при взаимодействии с кислотами могут образовывать соли.
Каждая молекула ДНК представляет собой две цепи, спирально закрученные одна вокруг другой. Каждая цепь является полимером, мономерами которого служат нуклеотиды. Каждый нуклеотид содержит одно из четырех оснований - аденин, цитозин, гуанин или тимин. При образовании двойной спирали азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи. В расположении соединяющихся нуклеотидов имеется важная закономерность, а именно: против аденина (А) одной цепи всегда оказывается тимин (Т) другой цепи, а против гуанина (Г) одной цепи - цитозин (Ц). В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке обозначает «комплемент». Поэтому принято говорить, что гуанин является комплементарным цитозину, а тимин комплементарен аденину. Таким образом, если известен порядок следования нуклеотидов в одной цепи, то по принципу комплементарное™ сразу же выясняется порядок нуклеотидов в другой цепи.
В полинуклеотидных цепях ДНК каждые три следующих друг за другом нуклеотида составляют триплет (совокупность из трех компонентов). Каждый триплет - это не просто случайная группа из трех нуклеотидов, а кодаген (по-гречески кодаген - участок, образующий кодон). Каждый кодон кодирует (шифрует) только одну аминокислоту. В последовательности кодагенов заключена (записана) первичная информация о последовательности аминокислот в белках. ДНК обладает уникальным свойством - способностью к удвоению, которым не обладает ни одна другая из известных молекул.
Молекула РНК также является полимером. Мономерами ее являются нуклеотиды. РНК представляет собой молекулу, образованную одной цепочкой. Эта молекула построена таким же образом, как и одна из цепей ДНК. В рибонуклеиновой кислоте, так же как и в ДНК, присутствуют триплеты - комбинации из трех нуклеотидов, или информационные единицы. Каждый триплет управляет включением в белок совершенно определенной аминокислоты. Порядок чередования строящихся аминокислот определяется последовательностью триплетов РНК. Информация, содержащаяся в РНК, - это информация, полученная от ДНК. В основе передачи информации лежит уже известный принцип комплементарности.

С каждым триплетом ДНК соединяется комплементарный триплет РНК. Триплет РНК называют кодоном. В последовательности кодонов заключена информация о последовательности аминокислот в белках. Эта информация скопирована с информации, записанной в последовательности кодогенов в молекуле ДНК.
В отличие от ДНК, содержание которой в клетках конкретных организмов относительно постоянно, содержание РНК колеблется и зависит от синтетических процессов в клетке.
По выполняемым функциям выделяют несколько видов рибонуклеиновой кислоты. Транспортная РНК (тРНК) в основном содержится в цитоплазме клетки. Рибосомная РНК (рРНК) составляет существенную часть структуры рибосом. Информационная РНК (иРНК), или матричная (мРНК), содержится в ядре и цитоплазме клетки и переносит информацию о структуре белка от ДНК к месту синтеза белка в рибосомах. Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.
Аденозинтрифосфорная кислота (АТФ) содержится в каждой клетке. По химической структуре АТФ относится к нуклеотидам. В ней и в каждом нуклеотиде содержатся одна молекула органического основания (аденина), одна молекула углевода (рибоза) и три молекулы фосфорной кислоты. АТФ существенно отличается от обычных нуклеотидов наличием не одной, а трех молекул фосфорной кислоты.
Аденозинмонофосфорная кислота (АМФ) входит в состав всех РНК. При присоединении еще двух молекул фосфорной кислоты (Н3Р04) она превращается в АТФ и становится источником энергии. Именно связь между второй и треть

Клетка

С точки зрения концепции живых систем по А. Ленинджеру.

    Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

    В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

    Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

    Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о. клетка – элементарная живая открытая система, способная к самостоятельному существованию, воспроизведению и развитию. Она является элементарной структурно-функциональной единицей всех живых организмов.

Химический состав клеток.

Из 110 элементов периодической системы Менделеева в организме человека обнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальной жизнедеятельности, причем 18 из них необходимы абсолютно, а 7 - полезны. В соответствии с процентным содержанием в клетке химические элементы делят на три группы:

    Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

    Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

    Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк - сахарный диабет, иод - эндемический зоб, железо - злокачественная анемия и т.д.).

Современной медицине известны факты отрицательного взаимодействия витаминов и минералов:

    Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).

    Кальций и железо снижают усвоение марганца;

    Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительное взаимовлияние:

    Витамин Е и селен, а также кальций и витамин К действуют синергично;

    Для усвоения кальция необходим витамин Д;

    Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки.

Вода – важнейшая составная часть клетки, универсальная дисперсионная среда живой материи. Активные клетки наземных организмов состоят на 60 – 95% из воды. В покоящихся клетках и тканях (семена, споры) воды 10 - 20%. Вода в клетке находится в двух формах – свободной и связанной с клеточными коллоидами. Свободная вода является растворителем и дисперсионной средой коллоидной системы протоплазмы. Ее 95%. Связанная вода (4 – 5 %) всей воды клетки образует непрочные водородные и гидроксильные связи с белками.

Свойства воды:

    Вода – естественный растворитель для минеральных ионов и других веществ.

    Вода – дисперсионная фаза коллоидной системы протоплазмы.

    Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

    Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

    Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

    Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

    Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

    Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

    Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

    Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

    Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.