Сложение и вычитание степеней формулы. Сложение, вычитание, умножение, и деление степеней

Степень с отрицательным показателем. Деление степеней с одинаковым основанием. 4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю. Основание и аргумент первого логарифма - точные степени. Данное свойство распространяется на степень произведения трех и большего количества множителей. Следовательно, am−an>0 и am>an, что и требовалось доказать. Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями.

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке. То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным. Вычисление значения степени называют действием возведения в степень. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

После того как определена степень числа, логично поговорить про свойства степени. В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров. Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами.

Приведем пример, подтверждающий основное свойство степени. Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Основное свойство дроби позволяет записать равенство am−n·an=a(m−n)+n=am.

Переход к новому основанию

То есть, свойство натуральной степени n произведения k множителей записывается как (a1·a2·…·ak)n=a1n·a2n·…·akn. Для наглядности покажем это свойство на примере. Доказательство можно провести, используя предыдущее свойство. Например, для любых натуральных чисел p, q, r и s справедливо равенство. Для большей ясности приведем пример с конкретными числами: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.

Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. Достаточно очевидно, что для любого натурального n при a=0 степень an есть нуль. Действительно, 0n=0·0·…·0=0. К примеру, 03=0 и 0762=0. Переходим к отрицательным основаниям степени. Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m, где m — натуральное.

Переходим к доказательству этого свойства. Докажем, что при m>n и 0По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно. При этом условию p>q будет соответствовать условие m1>m2, что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями.

Операции с корнями. Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем;нодействиясостепенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения. Если мы хотим, чтобы формула a m: a n=a m — nбыла справедлива при m = n,нам необходимо определение нулевой степени. Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать.

Вынесение показателя степени из логарифма

Если основания разные, эти правила не работают! Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств. Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами. Часто в процессе решения требуется представить число как логарифм по заданному основанию.

Свойства степеней, формулировки, доказательства, примеры.

Число n может быть абсолютно любым, ведь это просто значение логарифма. Она так и называется: основное логарифмическое тождество. Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением. В заключение приведу два тождества, которые сложно назвать свойствами - скорее, это следствия из определения логарифма.

Примеры решения примеров с дробями, содержащими числа со степенями

Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице. 1 = 0 - это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица - логарифм равен нулю! Потому что a0 = 1 - это прямое следствие из определения. Вот и все свойства. Скачайте шпаргалку в начале урока, распечатайте ее - и решайте задачи.

Логарифмическая единица и логарифмический ноль

2.a-4 есть a-2 первый числитель. В этом случае советуем поступать следующим образом. Это действие третьей ступени. Например, основное свойство дроби am·an=am+n при упрощении выражений часто применяется в виде am+n=am·an. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0n=0, а при знакомстве с делением мы условились, что на нуль делить нельзя. Из полученного равенства am−n·an=am и из связи умножения с делением следует, что am−n является частным степеней am и an. Этим доказано свойство частного степеней с одинаковыми основаниями.

Аналогично, если q=0, то (ap)0=1 и ap·0=a0=1, откуда (ap)0=ap·0. В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. Эти неравенства по свойствам корней можно переписать соответственно как и. А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно.

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

В прошлом видеоуроке мы узнали, что степенью некоего основания называется такое выражение, которое представляет собой произведение основания на самого себя, взятого в количестве, равном показателю степени. Изучим теперь некоторые важнейшие свойства и операции степеней.

Например, умножим две разные степени с одинаковым основанием:

Представим это произведение в полном виде:

(2) 3 * (2) 2 = (2)*(2)*(2)*(2)*(2) = 32

Вычислив значение этого выражения, мы получим число 32. С другой стороны, как видно из этого же примера, 32 можно представить в виде произведения одного и того же основания (двойки), взятого в количестве 5 раз. И действительно, если пересчитать, то:

Таким образом, можно с уверенностью прийти к выводу, что:

(2) 3 * (2) 2 = (2) 5

Подобное правило успешно работает для любых показателей и любых оснований. Это свойство умножения степени вытекает из правила сохранности значения выражений при преобразованиях в произведении. При любом основании а произведение двух выражений (а)х и (а)у равно а(х + у). Иначе говоря, при произведении любых выражений с одинаковым основанием, итоговый одночлен имеет суммарную степень, образующуюся сложением степени первого и второго выражений.

Представляемое правило прекрасно работает и при умножении нескольких выражений. Главное условие - что бы основания у всех были одинаковыми. Например:

(2) 1 * (2) 3 * (2) 4 = (2) 8

Нельзя складывать степени, да и вообще проводить какие-либо степенные совместные действия с двумя элементами выражения, если основания у них являются разными.
Как показывает наше видео, в силу схожести процессов умножения и деления правила сложения степеней при произведении прекрасно передаются и на процедуру деления. Рассмотрим такой пример:

Произведем почленное преобразование выражения в полный вид и сократим одинаковые элементы в делимом и делителе:

(2)*(2)*(2)*(2)*(2)*(2) / (2)*(2)*(2)*(2) = (2)(2) = (2) 2 = 4

Конечный результат этого примера не так интересен, ведь уже в ходе его решения ясно, что значение выражения равно квадрату двойки. И именно двойка получается при вычитании степени второго выражения из степени первого.

Чтобы определить степень частного необходимо из степени делимого вычесть степень делителя. Правило работает при одинаковом основании для всех его значений и для всех натуральных степеней. В виде абстракции имеем:

(а) х / (а) у = (а) х - у

Из правила деления одинаковых оснований со степенями вытекает определение для нулевой степени. Очевидно, что следующее выражение имеет вид:

(а) х / (а) х = (а) (х - х) = (а) 0

С другой стороны, если мы произведем деление более наглядным способом, то получим:

(а) 2 / (а) 2 = (а) (а) / (а) (а) = 1

При сокращении всех видимых элементов дроби всегда получается выражение 1/1, то есть, единица. Поэтому принято считать, что любое основание, возведенное в нулевую степень, равно единице:

Вне зависимости от значения а.

Однако будет абсурдно, если 0 (при любых перемножениях дающий все равно 0) будет каким-то образом равен единице, поэтому выражение вида (0) 0 (ноль в нулевой степени) просто не имеет смысла, а к формуле (а) 0 = 1 добавляют условие: «если а не равно 0».

Решим упражнение. Найдем значение выражения:

(34) 7 * (34) 4 / (34) 11

Так как основание везде одинаково и равно 34, то итоговое значение будет иметь такое же основание со степенью (согласно вышеуказанных правил):

Иначе говоря:

(34) 7 * (34) 4 / (34) 11 = (34) 0 = 1

Ответ: выражение равно единице.

Каждая арифметическая операция порою становится слишком громоздкой для записи и её стараются упростить. Когда-то так было и с операцией сложения. Людям было необходимо проводить многократное однотипное сложение, например, посчитать стоимость ста персидских ковров, стоимость которого составляет 3 золотые монеты за каждый. 3+3+3+…+3 = 300. Из-за громоздкости было придумано сократить запись до 3 * 100 = 300. Фактически, запись «три умножить на сто» означает, что нужно взять сто троек и сложить между собой. Умножение прижилось, обрело общую популярность. Но мир не стоит на месте, и в средних веках возникла необходимость проводить многократное однотипное умножение. Вспоминается старая индийская загадка о мудреце, попросившем в награду за выполненную работу пшеничные зёрна в следующем количестве: за первую клетку шахматной доски он просил одно зерно, за вторую – два, третью – четыре, пятую – восемь и так далее. Так появилось первое умножение степеней, ведь количество зёрен было равно двойке в степени номера клетки. К примеру, на последней клетке было бы 2*2*2*…*2 = 2^63 зёрен, что равно числу длиной в 18 знаков, в чём, собственно, и кроется смысл загадки.

Операция возведения в степень прижилась довольно быстро, также быстро возникла необходимость проводить сложение, вычитание, деление и умножение степеней. Последнее и стоит рассмотреть более подробно. Формулы для сложения степеней просты и легко запоминаются. К тому же, очень легко понять, откуда они берутся, если операцию степени заменить умножением. Но сначала следует разобраться в элементарной терминологии. Выражение a^b (читается «а в степени b») означает, что число a следует умножить само на себя b раз, причём «a» называется основанием степени, а «b» - степенным показателем. Если основания степеней одинаковые, то формулы выводятся совсем просто. Конкретный пример: найти значение выражения 2^3 * 2^4. Чтобы знать, что должно получиться, следует перед началом решения узнать ответ на компьютере. Забив данное выражение в любой онлайн-калькулятор, поисковик, набрав "умножение степеней с разными основаниямии одинаковыми" или математический пакет, на выходе получится 128. Теперь распишем данное выражение: 2^3 = 2*2*2, а 2^4 = 2*2*2*2. Получается, что 2^3 * 2^4 = 2*2*2*2*2*2*2 = 2^7 = 2^(3+4) . Выходит, что произведение степеней с одинаковым основанием равно основанию, возведённому в степень, равную сумме двух предыдущих степеней.

Можно подумать, что это случайность, но нет: любой другой пример сможет лишь подтвердить данное правило. Таким образом, в общем виде формула выглядит следующим образом: a^n * a^m = a^(n+m) . Также существует правило, что любое число в нулевой степени равно единице. Здесь следует вспомнить правило отрицательных степеней: a^(-n) = 1 / a^n. То есть, если 2^3 = 8, то 2^(-3) = 1/8. Используя это правило можно доказать справедливость равенства a^0 = 1: a^0 = a^(n-n) = a^n * a^(-n) = a^(n) * 1/a^(n) , a^(n) можно сократить и остаётся единица. Отсюда выводится и то правило, что частное степеней с одинаковыми основаниями равно этому основанию в степени, равной частному показателя делимого и делителя: a^n: a^m = a^(n-m) . Пример: упростить выражение 2^3 * 2^5 * 2^(-7) *2^0: 2^(-2) . Умножение является коммутативной операцией, следовательно сначала следует произвести сложение показателей умножения: 2^3 * 2^5 * 2^(-7) *2^0 = 2^(3+5-7+0) = 2^1 =2. Далее следует разобраться с делением на отрицательную степень. Необходимо вычесть показатель делителя из показателя делимого: 2^1: 2^(-2) = 2^(1-(-2)) = 2^(1+2) = 2^3 = 8. Оказывается, операция деления на отрицательную степень тождественна операции умножения на аналогичный положительный показатель. Таким образом, окончательный ответ равен 8.

Существуют примеры, где имеет место не каноническое умножение степеней. Перемножить степени с разными основаниями очень часто бывает гораздо сложнее, а порой и вообще невозможно. Следует привести несколько примеров различных возможных приёмов. Пример: упростить выражение 3^7 * 9^(-2) * 81^3 * 243^(-2) * 729. Очевидно, имеет место умножение степеней с разными основаниями. Но, следует отметить, что все основания являются различными степенями тройки. 9 = 3^2,1 = 3^4,3 = 3^5,9 = 3^6. Используя правило (a^n) ^m = a^(n*m) , следует переписать выражение в более удобном виде: 3^7 * (3^2) ^(-2) * (3^4) ^3 * (3^5) ^(-2) * 3^6 = 3^7 * 3^(-4) * 3^(12) * 3^(-10) * 3^6 = 3^(7-4+12-10+6) = 3^(11) . Ответ: 3^11. В случаях, когда различные основания, на равные показатели работает правило a^n * b^n = (a*b) ^n. Например, 3^3 * 7^3 = 21^3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.