Силикаты — ТехЛиб СПБ УВТ. Знаешь как

Клинопироксеновые базальты, в никелисто-железистых каменных метеоритах-оливины, пироксены, плагиоклазы, и др.

Известны кристаллич. структуры островных силикатов со сдвоенными, конденсированными "двухэтажными" трех-, четырех-и шестизвенными кольцевыми . Напр., в эканите ThK(Ca, Na) 2 Si 8 O 20 реализуется сдвоенный четы-рехзвенный кольцевой . Аналогичный кремнекислородный обнаружен в силикатах с комплексными катионными группировками, напр. тетраметиламмониевыми в соед. 8 Si 8 O 20 . Сдвоенное "двухэтажное" шестизвенное кольцо обнаружено, в родственном бериллу силикате миларите K(Be 2 Al)Ca 2 Si 12 O 30 . В "двухэтажных" циклич. кремнекислородных группировках число мостиковых связей на каждый тетраэдр повышается соотв. до трех. Для мн. сложных по составу островных силикатов характерно сочетание в анионном остове одновременно неск. разл. кремнекислородных группировок, чаще всего орто- и диортогрупп.

Класс полимерных, или конденсированных, силикатов подразделяют на 4 подкласса. 1) Цепочечные силикаты с бесконечными цепочками из одиночных кремнекислородных тетраэдров, каждый из к-рых с соседними имеет по две мостиковые связи. Данный структурный тип метасиликатов охватывает большую группу породообразующих и их синте-тич. аналогов, моноклинных и ромбич. пироксенов и пиро-ксеноидов широкого диапазона составов: энстатит (MgFe) 2 (Si 2 O 6) , , диопсид CaMg(Si 2 O 6) , , сподумен LiAl(Si 2 O 6) , , волластонит b -Са 3 (Si 3 O 9) , , родонит CaMn 4 (Si 5 Oi5) , и мн. др. представители пироксен-пироксеноидных силикатов (рис. 4) с периодом повторяемости из 2, 3, 5 кремнекислородных тетраэдров и более вдоль оси цепочки.



Рис. 3. Простейшие типы островных кремнекислородных анионных группировок: а-SiO 4 , б-Si 2 O 7 , в-Si 3 O 9 , г-Si 4 О 12 , д-Si 6 O 18 .


Рис. 4. Важнейшие типы кремнекислородных цепочечных анионных группировок (по Белову): а-метагерманатная, б - пироксеновая, в - батиситовая, г-вол-ластонитовая, д-власовитовая, е-мелилитовая, ж-родонитовая, з-пирокс-мангитовая, и-метафосфатная, к-фторобериллатная, л - барилитовая.


Рис. 5. пироксеновых кремнекислородных в ленточные двухрядные амфиболовые (а), трехрядные амфиболоподобные (б), слоистые тальковые и близкие им (в).


Рис. 6. Структурно-гомологический ряд кремнекислородных анионных группировок ксонотлита (а) и тоберморита (б); волластонит-см. рис. 4, г.

2) Силикаты с ленточными кремнекислородными из двух-, трех- и n-рядных цепочек, сконденсированных между собой по боковым связям перпендикулярно цепочке (рис. 5). В природе наиб. распространены в данном подклассе в-в амфиболовые и амфиболоподобные асбесты - волокнистые силикаты с двухрядными ленточными , важнейшие представители - тремолит Ca 2 Mg 5 (Si 8 O 22 XOH) 2 и роговые обманки (Na,Ca) 2 (MgAl) 5 (Al,Si) 8 O 22 (OH) 2 . Ленточный ного ксонотлита Ca 6 (Si 6 O 17)(OH) 2 (рис. 6, а)-продукта волластонитовых цепочек (рис. 2,б или 4, г)-состоит из восьмичленных колец, в отличие от шестизвенных гексагон. колец амфиболовых лент (рис. 5, а, 6,7).

3) силикаты с двухмерными слоистыми или листовыми характеризуются широким разнообразием возможных сочленений кремнекислородных тетраэдров в правильные или же в низкосимметричные шести-, четырех- и восьмичленные кольца с тетрагон. и ромбич. слоя, восьми-, шести- и четырехчленные кольца, воедино связанные в слоистом , и т. д. (рис. 5, в, 6, б).


Рис. 7. Важнейшие типы ленточных кремнекислородных группировок (по Белову): а - силлиманитовая, амфиболовая-см. рис. 5, а, ксонотлитовая-см. рис. 6,а; б-эпидидимитовая; в-ортоклазовая; г-нарсарсукитовая; д-фенаки-товая призматическая; е-эвклазовая инкрустированная.

В прир. слоистых силикатах группы (мусковит , биотит , пирофиллит и др.), гли нистых [каолинита Al 4 (Si 4 O 10)(OH) 8 и др.] кремнекислородные сетчатые образованы правильными шестичленными кольцами из тетраэдров SiO 4 . Эти сетки являются продуктом пироксеновых или же амфиболовых лент (рис. 5). Строение слоистых силикатов предопределяет их отчетливую спайность по базальной плоскости (параллельно слоям), наиб. отчетливо проявляющуюся в (рис. 8). При в плоскости волластонитовых цепочек (Si 3 О 9) , (рис. 2,б или 4, г) или же ксонотлитовых лент (Si 6 O 17) , (рис. 6, а) образуются тетрагон, тоберморитовые сетки Ca 5 (Si 6 O 16)(OH) 2 ·4H 2 0 (рис. 6, б).

4) К силикатам каркасного строения относятся многочисл. группы (в меньшей степени - боросиликаты), вязаный каркас к-рых образован четырьмя мостиковыми связями и имеет общую ф-лу (Al m Si n _ m O 2n) m- . Избыточный отрицат. заряд анионного остова из (Аl,Si)-теграэдров электростатически компенсируется щелочными и щел.-зсм. , располагающимися в полостях каркасной структуры. Среди каркасных более всего в природе распространены щелочные полевошпатовые силикаты: твердые р-ры альбита NaAlSi 3 O 8 и ортоклаза KAlSi 3 O 8 , а также альбита и анортита CaAl 2 Si 2 O 8 , известные под назв. плагиоклазов. Каркасные силикаты характеризуются большими внутр. полостями и входными окнами, в к-рых могут абсорбироваться крупные диаметром 0,3-0,5 нм и более (рис. 9).

Рис. 8. Фрагмент (элементарный пакет) слоистой кристаллич. структуры мусковита KAl 2 (AlSi 3 O 10 XOH) 2 , иллюстрирующий переслаивание алюмокремне-кислородных сеток с полиэдрич. слоями крупных Аl и К.


Рис. 9. Проекция фрагмента пористой кристаллич. структуры фошазита (фожазита) с широкими входными каналами эллиптич. сечения.

Силикаты-драгоценные и поделочные камни. Природные силикаты и многие их искусств. аналоги применяют в ювелирном деле. Наиб. дорогими ювелирными камнями являются сложные по составу и строению силикаты и среди них

И др.).

Химический состав и структура. В основе кристаллической структуры силикатов природных — солей кремниевой кислоты — лежат одиночные изолированные тетраэдрические радикалы SiО 4 4- ; солей изо- и гетерополикремниевых кислот — полимерные радикалы, в которых мостиковые атомы О связывают 2 атома Si смежных SiО 4 -тетраэдров (в изополикремниевых радикалах) или атомы Т (Т — Si, Al, В, Be, Fe 3+ и др.) в TО 4 -тетраэдрах (в гетерополикремниевых радикалах). В зависимости от атома Т последние получили название алюмо-, боро-, берилло-, ферри- и т.д. силикатов.

Роль катионов в силикатов природных играют преимущественно элементы 2-го, 3-го и 4-го периодов периодической системы Менделеева , среди которых Na, Mg, Al, Fe, К, Ca, Mn наиболее распространены в земной коре и составляют вместе с О и Si до 99% её объёма. Достаточно обычны также силикаты природные Ti, Zn, TR. Менее распространены силикаты V, Ni, Nb, Th, U, Sr, Cs, Ba. Особое место занимают немногочисленные силикаты природные, в которых катионами выступают халькофильные элементы: Cu, Zn, Sn, Pb, As, Sb и Bi.

Большая часть силикатов природных — основные, значительно меньшее их число — кислые и кисло-основные соли; среди силикатов много кристаллогидратов; некоторые силикаты природные (например, слюды) содержат ионы Н3О + . Известны также смешанные соли, содержащие наряду с силикатными радикалами анионы более сильных кислот (СО 3 2- , PО 4 3 SО 4 2- , Cl - , F- и др.).

Важнейшая кристаллоструктурная характеристика силикатов природных — строение их анионов, исходя из которого различаются силикаты с островными, цепочечными, ленточными, сеточными и каркасными радикалами. Главнейшие островные кремнекислородные радикалы имеют следующее строение; единичный SiО 4 -тетраэдр — ортогруппа (например, форстерит); группа из 2 связанных общей вершиной тетраэдров Si 2 О 7 6- — диортогруппа (гемиморфит); триортогруппа Si 3 О 10 8- (розенханит); тройное кольцо Si 3 О 9 6- (рис. 1, а; бенитоит); четверное кольцо Si 4 О 12 8- (рис. 1, б; баотит); шестерное кольцо Si 6 О 18 12- (рис. 1, в; диоптаз); сдвоенное четверное кольцо Si 8 О 20 8- (эканит); сдвоенное шестерное кольцо Si 12 О 3 0 12- (рис. 1, г; согдианит).

Важнейшие типы цепочечных радикалов в силикатах природных сводятся к следующим: пироксеновая цепочка из параллельно ориентированных диортогрупп с периодом повторяемости в 2 SiО 4 4- -тетраэдра (рис. 2, а); волластонитовая цепочка из чередующихся диортогрупп и одиночных SiО 4 4- -тетраэдров, повёрнутых в другую сторону, с периодом повторяемости в 3 SiО 4 4- -тетраэдра (рис. 2, б); родонитовая цепочка, в которой через 5 SiО 4 4- -тетраэдров происходит сдвиг в сторону (рис. 2, в); стокезитовая цепочка из разноориентированных диортогрупп, связанных SiО 4 4- -тетраэдрами иной ориентации (рис. 2, г); батиситовая зигзагообразная цепочка из вертикальных диортогрупп, поочерёдно смещённых относительно друг друга, с периодом повторяемости в 4 SiО 4 4- -тетраэдра (рис. 2, д); астрофиллитовая зигзагообразная цепочка из горизонтальных диортогрупп (рис. 2, е).

Важнейшие ленточные радикалы: лента силлиманитового типа (рис. 3, а); амфиболовая лента из сдвоенных пироксеновых цепочек (рис. 3, б); джимтомпсонитовая лента из 3 пироксеновых цепочек (рис. 3, в); власовитовая ступенчатая лента из четверных "налезающих" колец SiО 4 4- -тетраэдров (рис. 3, г); ксонотлитовая лента из сдвоенных волластонитоподобных цепочек (рис. 3, д); нарсарсукитовая трубчатая лента из вертикальных диортогрупп с квадратным поперечным сечением (рис. 3, е).

Цепочки и ленты SiО 4 4- -тетраэдров поликонденсируются в сетки (слои), которые могут быть полярными (рис. 4, а), или двусторонними (рис. 4, б-д).

Предельной степенью поликонденсации является соединение TО 4 4- -тетраэдров всеми своими вершинами друг с другом, при котором возникает каркасная структура.

Координационные числа (КЧ) катионов в силикатов природных с ионной связью меняются от 4 (Be, Al, Li, Fe 3+ , Cr 3+ , Mg) до 9-12 (К, Rb, Sr, Ca, Ba). Ковалентной связью характеризуется меньшее число катионов (Cu, Zn, Pb, As, Sb, Bi и др.), для них КЧ определяется типом гибридизации. В структурах силикатов, содержащих катионы с КЧ-6, выделяются различные мотивы катионных полиэдров от островных октаэдрических групп через цепочки, ленты до стенок (рис. 5, а-г).

Соответствие силы определённой кремниевой кислоты силе катиона заключается в соразмерности величины катиона расстояниям между концевыми атомами О 2 - в Тт,On-радикале. Поэтому небольшие катионные тетраэдры, образуемые ионами Be, Al, соединяясь с SiО 4 4- -тетраэдрами, образуют с последними единый структурный мотив берилло- и алюмосиликатов . Небольшие октаэдрического полиэдры (типичные для Mg, Fe 2+ и т.п. катионов) сопрягаются с концевыми атомами О 2 - одиночных SiО 4 4- -тетраэдров (рис. 6, а), полимерных кремнекислородных (рис. 6, б), алюмо-кремнекислородных и т.п. радикалов.

Увеличение размера катионных октаэдров вызывает необходимость поликонденсации SiО 4 4- -тетраэдров в цепочки (рис. 6, в, г) и более сложные кремнекислородные радикалы — ленты, сетки (слои), каркасы. Полимерные кольцевые, цепочечные, ленточные и сеточные радикалы имеют дополнительные возможности приспособления к различным катионным полиэдрам за счёт изменения угла сопряжения SiО 4 4- тетраэдров между собой.

Систематика. В зависимости от силовых характеристик (CX) катионов (In/ropбn+ или In/ri, где In — n-й потенциал ионизации; ropбn+ — орбитальный радиус иона с валентностью n; ri — эффективный ионный радиус катиона в ионном кристалле) класс силикатов природных в химико-структурной систематике делится на 3 подкласса: I — силикаты, содержащие катионы с низкими CX (К, Na, Li, Mg, Fe 2+ , Fe 3+ и др.); II — со средними CX (Ti, Zn и др.) — титано- и цирконосиликаты; III — силикаты халькофильных элементов .

По типу гетерополианионного радикала в каждом из подклассов выделяют сектора (бериллосиликаты, алюмосиликаты, боросиликаты, собственно силикаты).

В зависимости от степени поликонденсации TО 4 -тетраэдров в анионных радикалах различают 9 надотделов: тетрасиликаты (ортосиликаты) с радикалом SiО 4 4- (например, оливины); тетратрисиликаты (ортодиортосиликаты), содержащие одновременно, например, SiО 4 4- - и Si 2 О 7 6- -радикалы (); трисиликаты (диортосиликаты) с радикалом Si 2 О 7 6- (тортвейтит); тридисиликаты (например, розенханит); дисиликаты (метасиликаты) с радикалами SiО 3 N 2 n- (); димоносиликаты с радикалами типа Si 4 О 11 6- , AlSi 3 О 11 7- и др. (например, ); моносиликаты с радикалами Si 2 О 5 N 2 n- (каолинит); мононульсиликаты (родезит); нульалюмосиликаты с радикалами типа Tn 3+ Si 1-n О 2 n- (альбит). Принадлежность силикатов к средним, основным, кислым солям или кристаллогидратам позволяет выделять отделы. Более дробная систематика основывается на структурных признаках с учётом геометрии анионного мотива (отряды островных, цепочечных, сеточных или слоистых, каркасных силикатов природных) анионного и катионного субмотива (подотряды субкаркасных, субцепочечных и т.д. силикатов).

Свойства. Большинство силикатов природных из-за сложности состава имеют низкую симметрию. Около 45% из них относится к моноклинной, 20% — к ромбической, 9% — к триклинной (к низшим сингониям относятся прежде всего многие цепочечные, слоистые силикаты и каркасные алюмосиликаты), 7% — к тетрагональной, 10% — к тригональной и гексагональной (силикаты с кольцевыми треугольными и гексагональными радикалами) и 9% — к кубической (тетрасиликаты с изолированными SiО 4 4- -тетраэдрами; ряд каркасных нульалюмосиликатов) сингонии.

Большая часть силикатов бесцветные или белые; силикаты Fe, Mn, Ni, UО 2 2+ , Ti, Zr, V, Cu, TR и некоторых других элементов (а также содержащие их в виде изоморфных примесей) часто окрашены в различные цвета. Блеск стеклянный до алмазного. В тонких шлифах прозрачны. Многие силикатов природные обладают совершенной спайностью в трёх направлениях, для цепочечных и ленточных силикатов характерна спайность в двух направлениях, для слоистых — весьма совершенная спайность в одном направлении. Большинство силикатов (минералы с лёгкими катионами De, Mg, Al, каркасной и слоистой структурой) имеют низкую плотность (2000-3000 кг/м 3), которая возрастает до 3500 и даже 4000 кг/м 3 у тетрасиликатов с островными SiО 4 -тетраэдрами и до 6500 кг/м 3 у силикатов тяжёлых элементов (например, свинца). Твердость максимальная (до 6-8) у некоторых каркасных алюмосиликатов и силикатов с островной и цепочечной структурой снижается до 4-5 у большинства силикатов халькофильных элементов и до 1-2 у слоистых минералов. Показатели преломления силикатов в целом пропорциональны их плотности и колеблются в широких пределах.

Образование. Силикаты природные — полигенные минералы. В магматических породах нормального ряда от ультраосновных до кислых подавляющая роль принадлежит силикатам и алюмосиликатам катионов с низкими CX, тогда как силикаты с катионами, имеющими средние CX, известны в них в виде акцессорных минералов (циркон, титанит). В агпаитовых щелочных породах содержится большое число каркасных алюмосиликатов (полевые шпаты, фельдшпатиды), находящихся в тесной ассоциации с натриевыми пироксенами (эгирин, эгирин-авгит) и различными сложными силикатами Ti и Zr. Для пегматитов характерны силикаты катионов Na, К, Li, Cs, Be. Гидротермальным путём, а также при повышенном содержании в магме H 2 О образуются фельдшпатиды и цеолиты . Силикаты халькофильных элементов (хризоколла, виллемит, гемиморфит , и др.) типичны для зон окисления

Силикаты - это сложные вещества, которые широко распространены в пределах нашей планеты. Больше всего они представлены в земной коре, в которой по разным подсчетам составляют от 75 до 90% объема. В природе они существуют в виде минералов, но человек нашел способ получать их искусственным путем. Что такое силикаты? Где они применяются и чем отличаются от других веществ? Обо всем этом вы узнаете из нашей статьи.

Суть и значение слова «силикат»

Силикаты представляют собой разнообразные по внешнему виду и свойствам минералы, которые образованы соединениями кремнезема. На нашей планете они присутствуют преимущественно в земной коре, а также в верхней и нижней частях мантии. Термин silikat, значение которого с латинского языка переводится как «кремень», возник по аналогии с названием химического элемента Silicium (кремний), который обязательно присутствует в каждом силикате.

В мире существует больше 800 видов этих веществ. Они образуются под действием сложных магматических процессов, метаморфизма или же в результате выветривания и первичных изменений пород.

Силикаты - это самая обширная группа минералов. Многие из них формируют горные породы и являются важными полезными ископаемыми. Ряд силикатов присутствует в составе никелевых, бериллиевых, литиевых, циркониевых, цинковых и других металлических руд. Там они часто образуют пустую породу, которая обычно не находит практического применения. Большинство силикатов, наоборот, являются довольно полезными и используются в промышленности, строительстве, дизайне и ювелирном деле.

Структура и разновидности

Силикаты - это, как правило, твердые и тугоплавкие вещества. Чтобы расплавить, их нужно нагреть до температур от 1000 до 2000 градусов Цельсия. Они не разлагаются под действием кислот и обычно не растворяются в воде. Многие из них склонны к полиморфизму и образуют две или больше аллотропные модификации.

Природные силикаты - минералы, такие как глина, асбест, слюда, роговая обманка, титанит, турмалин, гранат. Наиболее распространенными являются кварц и группа полевых шпатов. Стекло, цемент, керамика, плавленые флюсы, кирпичи тоже являются силикатами, но характеризуются искусственным происхождением. Их изготавливают на основе глины, кварцевого песка, известняка, соды и других веществ, подвергая их различным способам обработки.

Природные силикаты обладают сложным строением, в основе которого лежат разнообразные вариации связей кремния и кислорода, к которым присоединяются и другие элементы, например, Mg, Ca, Al, Fe 2+, Mn, K, Na, Li, B, Zr, F, H. Их кристаллические решетки состоят из тетраэдров, где на один атом Si приходится четыре атома O, в зависимости от того, как они комбинируются между собой, выделяют такие виды силикатов:

  • островные;
  • поясные;
  • цепочные;
  • каркасные;
  • листовые.

Островные

Островные силикаты - это наиболее многочисленные представители класса. Их решетки представляют собой изолированные тетраэдры или группы тетраэдров, в которых атомы кислорода не пересекаются или практически не пересекаются. Связь между двумя разными тетраэдрами (или двумя группами) происходит через катионы, а атомы кислорода у них не могут быть общими.

Как правило, это светлые или бесцветные минералы, с плотной структурой, благодаря чему они обладают большим удельным весом. Их состав нередко включает катионы железа, магния, тория, алюминия, ниобия, марганца и других металлов.

Минералы гранат, аквамарин, турмалин, топаз, изумруд, везувиан, хризолит - полудрагоценные и драгоценные камни. Их собирают в музейные и выставочное коллекции, используют в украшениях и декоративных поделках. Из распространенного недрагоценного минерала форстерита делают огнеупорные кирпичи. Циркон применяется как в ювелирном деле, так и для производства огнеупоров. Он также является источником циркония, гафния и урана.

Поясные

Атомы поясных силикатов выстроены в длинные двойные ленты из обособленных тетраэдров. Благодаря такой структуре их также называют «ленточными». Они обладают меньшей плотностью, чем островные, но характеризуются более четкой спайностью.

Одним из распространенных представителей группы является роговая обманка, состоящая из магния, железа и алюмосиликата кальция. Сюда относятся различные амфиболовые минералы, например, антофиллит, куммингтонит, грюнерит, тремолит.

Цепочечные

К этому виду относятся представители большой группы пироксенов, такие как жадеит, энстатит, авгит, эгрин. Цепочечные имеют много общего с группой ленточных силикатов. Они тоже обладают средней плотностью и хорошо заметной спайностью. Их кристаллическая структура имеет вид тетраэдров, соединенных друг с другом в длинные непрерывные цепочки. Однако, в отличие от поясных силикатов, их цепочки не двойные.

Листовые

Структура листовых силикатов представляет собой сетки тетраэдров из кремния и кислорода, которые чередуются с плоскими сетками катионов, образуя слои. Их цвет определяется наличием окрашивающих элементов, без которых они являются белыми или бесцветными. С двухвалентным железом в составе они приобретают различные зеленые оттенки, с одновалентным - становятся коричневыми, бурыми, зеленовато-черными. Марганец делает их розовыми или сиреневыми, алюминий - оранжевыми или рыжеватыми.

Слоистая структура характерна для талька, асбеста, каолинита, мурманита, серпентина, для различных слюд, таких как мусковит, биотит, лепидолит, флогопит. Они входят в состав глин, гнейсов, мергелей, пегматитов, сланцев, гранитов. Многие из них находятся в составе осадочных пород и магматических пород коры выветривания. Слоистые силикаты используются как диэлектрики в промышленности, а также в строительстве в виде смазочных, отделочных и огнеупорных строительных материалов.

Каркасные

Атомы каркасных силикатов выстраиваются в непрерывные трехмерные группы, в которых каждый атом кислорода принадлежит одновременно к двум тетраэдрам. В их структуре атомы кремния нередко заменяют алюминием, что привлекает в состав катионы других веществ. Этим обеспечивается их разнообразие.

К каркасным силикатам относят две большие группы минералов: кварцы и полевые шпаты. К первым причисляют агат, кошачий глаз, соколиный глаз, авантюрин, розовый кварц, халцедон, горный хрусталь, аметист, оникс. К полевым шпатам относятся лунный камень, ортоклаз, альбит, лабрадор, битовнит, анортит.

Многие из них являются полудрагоценными камнями, из которых делают украшения и сувениры. В промышленности их используют для изготовления оптически приборов, различных стекол и керамики. Шпаты применяют при сварке, а также добавляют в зубные пасты в качестве абразивов.

Минералы этого класса насчитывают около 800 минеральных видов, т. е. более 33% всех известных в природе минералов, и составляют 75% от массы земной коры. Большинство силикатов имеет эндогенное происхождение. Для силикатов характерно явление изоморфизма - замена атомов и групп атомов на другие атомы и группы атомов. Эти атомы пишутся в формулах через запятую. Многие силикаты являются важнейшими породообразующими минералами и полезными ископаемыми.

Классификация силикатов даётся по кристаллохимическим признакам, точнее по структурным мотивам пространственной решётки. Основной структурной единицей всех силикатов является кремнекислородный тетраэдр 4- . Он состоит из четырёх больших ионов кислорода (ионный радиус 1,36Å), расположенных по вершинам тетраэдра и одного иона кремния в центре. Тетраэдр имеет четыре свободных валентных связи, которые связывают его с другими элементами через вершину в кристаллическую решётку.

Кремнекислородные тетраэдры в кристаллических решётках силикатов могут находиться либо в виде изолированных друг от друга структурных единиц 4- , либо сочленяться друг с другом разными способами, образуя сложные комплексные анионные радикалы.

Сочленение происходит через вершины тетраэдров. Когда кремнекислородные тетраэдры изолированы друг от друга и удерживаются в решётке с помощью катионов других металлов, возникают островные силикаты (оливин имеет островной тип кристаллической структуры).

Дальнейшее усложнение строения силикатов получается путём сдвоения кремнекислородных тетраэдров или путём сцепления их в более сложные комплексы. Возникают кольцевые (берилл – кольцевой мотив) и цепочные (авгит – цепочный мотив) силикаты.

Последующее усложнение цепочного типа путём присоединения цепочек приводит к образованию бесконечных лент – ленточных силикатов (амфиболы). Присоединение лент в одном слое даёт слоистые силикаты (тальк, слюда - слоистый мотив). Пространственное сцепление через все четыре вершины создаёт каркас с группами 4- . Возникают каркасные силикаты (ортоклаз – каркасный мотив).

7.1 Островные силикаты (радикал 4-)

Островными эти силикаты называются потому, что ион кремния находится в центре, «на острове», окруженный четырьмя кислородами, а четыре свободных валентности замещаются различными катионами металлов Са, Mg, К, Na, А1 и другими. Однако они могут иметь и другие радикалы, когда объединяются между собой через кислород несколько тетраэдров. Островные силикаты: оливин (Mg,Fe) 2 SiO 4 , дистен Al 2 O, топаз Al 2 (OН,F) 2 , гранаты – большая группа изоморфных минералов с формулой A 3 B 2 3 , где A=Mg 2+ , Fe 2+ , Mn 2+ , Ca 2+ ; B=Al 3+ , Fe 3+ , Cr 3+ , Mn 3+ . Наиболее распространённые разновидности: альмандрин Fe 3 Al 2 3 , пироп Mg 3 Al 2 3 , спессартин Mn 3 Al 2 3 , глоссуляр Ca 3 Al 2 3 , андрадит Ca 3 Fe 2 3 , уваровит Ca 3 Cr 2 3 , эпидот Ca 2 (Al,Fe) 3 (OH)O .

Оливин (Mg, Fe) 2 . Название происходит от оливково-зеленого цвета минерала. Синоним - перидот. Встречается в виде зернистых масс и в виде отдельных кристаллов, включенных в породу. Является самым распространенным островным силикатом. Цвет может изменяться в зависимости от состава от светло-желтого до темно-зеленого и черного; блеск стеклянный или жирный; твердость 6,5…7, хрупок; плотность 3,3…3,6. Происхождение эндогенное. В зоне окисления неустойчив и разлагается с образованием различных минералов: серпентина, асбеста, талька, окислов железа, гидрослюд, магнезита и др. Оливин является одним из главных минералов ультраосновных магматических горных пород (дуниты, перидотиты). Встречается также в основных магматических породах (габбро, диабазах и базальтах). Маложелезистые оливиновые породы используются как огнеупорное сырье.

Гранаты. Название происходит от латинского слова «гранум» - зерно, а также по сходству с зернышками плода граната. Под этим названием объединено значительное количество минералов, представляющих собой изоморфные смеси. Происхождение гранатов в основном метаморфическое, а также эндогенное. При выветривании гранаты, как химически стойкие минералы, переходят в россыпи. Особенно характерны гранаты для метаморфических пород - кристаллических сланцев и гнейсов. Встречаются в гранитах и в пегматитовых жилах. Применяется как абразивный (истирающий) материал. Прозрачные кристаллы используются в ювелирном деле как полудрагоценные камни. Наиболее распространенными гранатами являются альмандин и гроссуляр. Блеск гранатов на изломе жирный, на гранях кристаллов стеклянный; спайность отсутствует; излом неровный, раковистый; твёрдость 6,5…7,5; плотность 3,5…4,2. Химически устойчивы.

Альмандин Fе 3 А1 2 3 . Название произошло от искаженного названия места его гранения - Алабанда. Обычно встречается в хорошо выраженных кристаллах, образует также оплошные зернистые массы. Цвет красный, коричневый, фиолетовый, чёрный;

Гроссуляр Са 3 А1 2 3 . Гроссуляр - ботаническое название крыжовника, так как кристаллы формой и цветом (медово-жёлтый, светло-зеленый и зеленовато-бурый) напоминают ягоду крыжовника.

Топаз Al 2 (OH,F) 2 . Название минерала происходит от названия острова Топазос в Красном море. Кристаллы призматические, различной величины, встречаются микрозернистые массы. Цвет желтый, дымчатый, голубой, розовый, часто бесцветен; блеск стеклянный; прозрачный; твердость 8; спайность совершенная (в отличие от кварца, не имеющего спайности). Происхождение эндогенное. Породообразующего значения не имеет. Используется как полудрагоценный камень.

Сфен (титанит) CaTi О. По-гречески «сфен» - клин, так как кристаллы имеют клинообразную форму. Цвет коричневый, бурый, золотистый; блеск алмазный; твердость 5,5. Происхождение эндогенное и метаморфическое. Породообразующего значения не имеет. Используется как руда на титан.

7.2 Цепочечные силикаты (радикал 4-)

Эти минералы называются пироксенами и составляют важную группу породообразующих минералов. Цепочечные силикаты – авгит Ca(Mg,Fe,Al)[(Si,Al) 2 O 6 ], родонит (орлец) (Mn,Ca) - широко распространённая группа минералов моноклинной и ромбической сингонии, среди которых очень развит изоморфизм.

Авгит Ca (Mg, Fe, А1) [(Si, Al) 2 O 6 ]. Название происходит от греческого слова «авге» - блеск. Образует бочкообразные призматические кристаллы, вросшие в породу, таблитчатые агрегаты, сплошные зернистые массы. Цвет черный, зеленовато и буровато-черный; черта серая или серовато-зеленая; блеск стеклянный; твердость 5…6,5; плотность 3,1…3,6; спайность средняя по двум направления, пересекающимся под углом 88 о. Происхождение эндогенное. Является важным породообразующим минералом для основных и ультраосновных магматических горных пород. В зоне выветривания неустойчив. Продуктами разложения являются тальк, каолин, лимонит.

7.3 Ленточные силикаты (радикал 6-)

Ленточные силикаты называются амфиболами. К ним относится большая группа породообразующих минералов. Состав и строение их еще более сложное, чем у пироксенов. Важнейшими из них являются роговая обманка, тремолит, актинолит. Вместе с цепочечными силикатами (пироксенами) они составляют 15% от массы земной коры.

Роговая обманка Са 2 Na(Mg, Fe 2+) 4 ,(Al, Fe 3+) [(Si, А1) 4 O 11 ] 2 [ОН] 2 . Кристаллы призматические, удлиненные; иногда агрегаты волокнистого или игольчатого строения. Цвет зеленый разных оттенков, от буро-зеленого до черного; черта белая с зеленоватым оттенком; блеск стеклянный; твердость 5,5…6; плотность 3,1…3,3; спайность наблюдается по двум направлениям под углом 124 о. Происхождение эндогенное и метаморфическое. Входит в большинство магматических горных пород и во многие метаморфические (сланцы, гнейсы, амфиболиты). В зоне выветривания неустойчива. Разлагается, превращаясь в карбонаты, лимонит, опал.

7.4 Листовые (слоевые) силикаты (радикал 4-)

Минералы этой группы широко распространены и имеют большое значение в почвообразовании. Их кристаллическое строение обуславливает и их основные физические свойства: низкую твердость (от 1 до 3), способность легко расщепляться на тончайшие листочки, чешуйки, рыхлость, землистость строения. В состав листовых силикатов входят Si, O, Mg, Al, K, Na, а также вода в виде группы (ОН). В зависимости от химического состава, происхождения и строения они делятся на группы: тальк-серпентин, слюды, гидрослюды и глинные минералы.

Тальк-серпентин, тальк (жировик) Mg 3 (ОН) 2 . Название происходит от арабского слова «тальг» - жировик. Чаще всего образует сплошные плотные массы. Цвет зеленый, белый, желтоватый, голубоватый; твердость 1; плотность 2,6; блеск жирный, на плоскостях спайности перламутровый; цвет черты – белый; жирный на ощупь; спайность весьма совершенная в одном направлении. Происхождение метаморфическое. Применяется в куске как огнеупорный материал, а в молотом виде используется в бумажной, текстильной, резиновой, кожевенной и других отраслях промышленности.

Серпентин (змеевик) Mg 6 (ОН) 8 . Часть магния может быть замещена железом. Серпенс» в переводе с латинского – змея. Название «змеевик» дано по цвету, «Встречается в плотных скрытокристаллических агрегатах. Цвет желто-зеленый, темно-зеленый до буро-черного с желтыми пятнами, напоминающий цвет змеиной кожи. Блеск жирный, шелковистый, восковой; твердость 3…4; плотность 2,5…2,7; излом раковистый в сплошных массах и занозистый в волокнистых разновидностях. Очень вязкий, огнестоек. Горная порода, состоящая из серпентина, называется серпентинит. Происхождение метаморфическое. Образуется из оливина в результате воздействия гидротермальных растворов на ультраосновные и карбонатные горные породы (процесс серпентинизации). В зоне выветривания серпентин неустойчив, разлагается с образованием карбонатов и опала. Серпентизированные дуниты (оливиновые породы) используются для изготовления огнеупорного кирпича. Массивные серпентины употребляются как поделочный и облицовочный камень. Выветрелые рыхлые серпентины используются как агрономическая руда (магнезиальное удобрение).

Асбесты. Тонковолокнистый серпентин с шелковистым блеском называется асбестом (горный лен). «Асбест» по-гречески - негорючий. Встречается в виде прожилков, в которых волокна асбеста ориентированы строго перпендикулярно стенкам. Цвет желтовато-зелёный; блеск шелковистый; твёрдость 2…3. Огнестойкий, плохо проводит тепло, звук, электричество. Происхождение гидротермально-метаморфическое. Используется для изготовления теплоизоляционных материалов, тканей, шифера, фильтров.

7.5 Каркасные силикаты (радикал m -)

Каркасные силикаты являются алюмосиликатами, так как алюминий входит в радикал. Исключение составляет кварц, который по химическому составу относится к окислам, а по кристаллическому строению - к каркасным силикатам. Каркасные силикаты являются самыми распространенными минералами в земной коре, составляя 50% от ее массы. Отличительной особенностью этих минералов является высокая твердость (6…6,5), спайность в двух направлениях под прямым углом и близким к нему и стеклянный блеск. Среди каркасных силикатов выделяют две группы: 1)полевые шпаты; 2) фельдшпатиды, которые по химическому составу представляют собой калиево-натриевые полевые шпаты, обедненные кремнекислотой.

Полевые шпаты - самая распространённая группа минералов в земной коре, составляет около 55% от её массы (по А.Г. Бетехтину). В магматических горных породах их содержится около 60%, в метаморфических - 30%, остальные в осадочных. По химическому составу их разделяют на калиевые полевые шпаты (ортоклаз K и микроклин К) и натриево-кальциевые – плагиоклазы. Выделяют подкласс минералов, которые называют заместителями полевых шпатов, так как они сходны с ними по химическому составу, но обеднены кремнекислотой (фельдшпатиды – нефелин Na и лейцит K), а также подкласс цеолитов – алюмосиликаты кальция и натрия, реже калия и бария. Они содержат цеолитную воду, выделяемую без разрушения кристаллической решётки.

Плотная упаковка ионов в кристаллической решётке каркасового типа препятствует механическому раздроблению минералов, вследствие чего благодаря устойчивости кристаллов полевые шпаты в виде зёрен часто встречаются в россыпях и почвах.

Ортоклаз К. «Ортоклаз» по-гречески - прямоколющийся, так как имеет две плоскости спайности под прямым углом. Форма кристаллов призматическая, таблитчатая. Цвет розовый, красный, кремовый, голубовато-серый, белый; черта белая; блеск стеклянный, полупрозрачный; твердость 6…6,5; плотность 2,6; спайность совершенная по двум направлениям под углом 90 о. Происхождение эндогенное. При выветривании подвергается процессу каолинизации. Важный породообразующий минерал гранитов, сиенитов и других магматических пород. Входит в состав метаморфических пород – гнейсов и осадочных пород (аркозовые пески и песчаники).

Микроклин K. «Микроклин» в переводе с греческого - незначительно отклоненный, так как угол между плоскостями спайности отличается от прямого на 20 о. Твердость 6…6,5; плотность 2,5…2,6. Окраска как у ортоклаза, но иногда появляется зелёная (амазонский камень). По физическим свойствам неотличим от ортоклаза. Ортоклаз и микроклин, главным образом из пегматитовых жил, служат сырьем для керамической и стекольной промышленности.

Плагиоклазы составляют до 50% от массы всей земной коры. Их кристаллохимическая структура представляют собой изоморфные смеси натриевой – альбит Na и кальциевой – анортит Ca молекул, образующие соединения в любой пропорции этих компонентов, и обозначаются символами Ab, An. Например, олигоклаз имеет символ Ab 80 An 20 , что указывает на содержание в этом минерале 80 % альбита и 20 % анортита.

Плагиоклазы обозначаются номерами (по Е.С. Фёдорову), характеризующими весовое содержание в

них кальциевого компонента – анортита (Ан). Чистый анортит по этой номенклатуре называют плагиоклазом №100, чистый альбит (Аб) – плагиоклазом №0. По относительному содержанию альбита и анортита условно выделяют следующие разновидности плагиоклазов (табл. 6).

Плагиоклазы, богатые кремнезёмом (SiO 2 – 68%), имеют номера 0…30 (альбит, олигоклаз) и называются кислыми; под номерами 30…60 – средними (SiO 2 – 53…43%), 60…100 – основными (SiO 2 – 43%).

Таблица 6 - Разновидности плагиоклазов

Плагиоклазы наиболее распространены в кислых магматических породах и широко встречаются в почвах. В общем составе земной коры их около 40%. Кислые плагиоклазы являются основой гранитного слоя континентальной коры, а основные входят в состав пород базальтово-габброидного слоя астеносферы.

Самыми распространенными являются кислые плагиоклазы. Цвет плагиоклазов белый, зеленоватый, серый до чёрного, иногда с различными оттенками; блеск стеклянный; спайность совершенная; твердость 6…6,5. По внешним признакам удается распознать альбит, лабрадор и олигоклаз, а остальные - с помощью химического анализа и микроскопически. Плагиоклазы являются наиболее распространенными минералами магматических горных пород (от кислых до основных) и широко встречаются в почвах. Происхождение эндогенное и метаморфическое.

Альбит Nа[А1Si 3 O 8 ] (натриевый плагиоклаз). Название происходит от латинского слова «альбус», что означает белый. Образует пластинчатые, листоватые агрегаты и сахаровидные зернистые массы. Цвет белый, буровато-жёлтый; твёрдость 6; плотность 2,6; блеск стеклянный; излом неровный; спайность совершенная по двум направлениям под косым углом. Разновидности альбита – лунный камень (кислый плагиоклаз с нежно-синеватым отливом), авантюрин, или солнечный камень (кристалл с искристо-золотистым отливом). Происхождение магматическое, метаморфическое. Встречается в гранитах, кварцевых порфирах, пегматитах. Используется как облицовочный и поделочный камень.

Анортит Са[Аl 2 Si 2 O 8 ] (кациевый плагиоклаз). «Анортос» - по-гречески - косой, т.е. кристаллизация в триклинной сингонии. Цвет белый, сероватый, красноватый; твёрдость 6…6,5; плотность 2,7…2,76; блеск стеклянный; спайность совершенная в двух направлениях; черта бесцветная. Микроскопически анортит сходен с альбитом и отличается в шлифах под микроскопом. Породообразующий минерал основных пород (габбро).

Лабрадор (кальциево-натриевый плпгиоклаз). Назван по полуострову Лабрадор в Северной Америке, где встречаются породы, почти целиком состоящие из лабрадора - лабрадориты. В породах образует мелкие и крупные таблитчатые кристаллы. Цвет серый различных оттенков до зеленовато-чёрного, с характерной иризацией (характерны синие отливы на плоскостях спайности); твёрдость 6; плотность 2,7; блеск стеклянный, перламутровый; спайность совершенная в двух направлениях. Является породообразующим минералом основных магматических горных пород. Применяется как облицовочный материал.

Фельдшпатиды. Фельдшпатиды являются заменителями полевых шпатов в бедных кремнеземом щелочных магматических горных породах. К ним относятся нефелин и лейцит.

Нефелин Na. Название происходит от греческого слова «нефели» - облако, так как при разложении в крепких кислотах образует рыхлую массу аморфного кремнезема. Встречается в виде вкрапленников, а также сплошных масс с жирным блеском - элеолит, или масляный камень. Цвет серовато-белый, серый, красноватый, зеленоватый; блеск жирный на изломе, на гранях стеклянный; твердость 5,5…6, хрупок; плотность 2,6; спайность несовершенная; излом неровный. Происхождение эндогенное. Встречается в породах, бедных кремнекислотой и богатых натрием (в нефелиновых сиенитах и щелочных пегматитах). Не встречается в парагенезисе с кварцем. В зоне выветривания неустойчив. Применяется как агрономическая руда - калийное удобрение, так как нефелин содержит обычно в виде примесей до 20% К 2 О. Является сырьем для керамической и стекольной промышленности. Важная руда на алюминий.

Лейцит K. «Лейкос» по-гречески - светлый. Цвет белый с сероватым и желтоватым оттенком, пепельно-серый или бесцветный; блеск стеклянный, иногда жирный на изломе; твердость 5,5…6; плотность 2,5; спайность отсутствует; излом раковистый. Характерны белые, округлой формы кристаллы на темном фоне основной магматической горной породы. Происхождение эндогенное. Образуется в эффузивных породах, богатых калием и бедных кремнекислотой, поэтому вместе с кварцем не встречается. При значительном содержании лейцита в породе последняя может служить сырьем для получения алюминия и калийных удобрений.

В природе не существует более распространенных химических соединений. На силикаты приходится больше 3/4 массы всей земной коры. К ним относится около 500 минералов, в том числе важнейшие, породообразующие: полевые шпаты, слюды, пироксены и др. Силикаты - это и песок, и глина, и кирпич, и стекло, и цемент, и эмаль, и тальк, и асбест, и изумруд, и топаз.

Силикаты - солеобразные вещества, содержащие соединения кремния с кислородом общего состава Si x O y . Их название происходит от латинского слова «силекс» - «кремень». Основу молекул силикатов составляют кремнекислородные атомные радикалы типа 4 - , имеющие форму тетраэдров. Число атомов Si и О в радикале, а следовательно, и его валентность могут изменяться, кроме того, в состав радикала могут входить и другие элементы: Аl, В, Be, Ti, Zr, V. Силикаты, в состав анионного комплекса которых входит алюминий, называются алюмосиликатами. Тетраэдры способны соединяться друг с другом - полимеризоваться (см. Полимеризация) через общий атом кислорода, образуя непрерывные цепочки и сетки. Способ соединения тетраэдров, а значит, и химическое строение силиката зависят от их состава. По типу сочетаний кремнекислородных тетраэдров строится классификация силикатов. Они могут быть островными, кольцевыми, цепочечными, слоистыми и каркасными. В структурах силикатов установлено значительное число различных типов цепочек, лент, сеток и каркасов из тетраэдров.

Человек в своей созидательной деятельности очень часто применяет силикаты. Трудно найти отрасль хозяйства, где бы они широко не использовались. Многие силикаты входят в состав металлических руд: никелевых, литиевых, бериллиевых, алюминиевых и др. А среди нерудных полезных ископаемых силикаты преобладают. Это уже упоминавшиеся полевые шпаты, слюды, граниты, гнейсы, асбест, тальк, цеолиты, бентонитовые и огнеупорные глины. Здесь и важнейшие строительные материалы, и составляющие литейных формовочных смесей, и огнеупоры, и теплоизоляторы, и сырье для производства керамики. К силикатам относятся и некоторые драгоценные и поделочные камни: изумруд, аквамарин, топаз, гранат, хризолит, турмалин и др.

В последние десятилетия большое значение приобрели искусственные, или синтетические, силикаты. В отличие от природных они могут быть однородны по составу и строению, свободны от посторонних примесей, поэтому их практическая значимость для техники и науки часто намного выше. Почти все природные силикаты можно синтезировать и, кроме того, при помощи химического синтеза получить многие новые силикаты. Сфера применения синтетических силикатов почти так же широка, как и природных. Вот некоторые из наиболее употребительных синтетических силикатов:

силикаты кальция: ЗСаО SiO2, 2CaO SiO2 - основные компоненты портландцемента;

силикаты натрия и калия в виде так называемого жидкого стекла используются для получения клея, красок, замазок и мыла;

силикаты лития и магния - основа для производства термостойких керамических материалов.