Потенциал действия возбуждение может передаваться. Перфузия нервных волокон. Места возникновения нервных импульсов

Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.

Фазы ПД:

Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации.

Спайк (пиковый потенциал) - состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризациия)

Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны.

Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине.

Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (рис. 3.5.).

Второй период - фаза деполяризации. Эта часть потенциала действия характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс.

Третий период потенциала действия - фаза реполяризации, ее продолжительность составляет 0.5-0.8 мс. В течение этого времени мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов -следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазе потенциала действия. Следовая деполяризация является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию, представляющую собой временное увеличение мембранного потенциала выше исходного уровня. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na + резко повышается за счет активации (открывания) натриевых каналов (рис. 3.6.). При этом ионы Na + по концентрационному.

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя,приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации)

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается (рис. 3.7.).


В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na + ,К + - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

Закон «всё или ничего» - правило, согласно которому на подпороговое раздражение возбудимая клетка не дает ответа, а на пороговое раздражение дает сразу максимальный ответ, причем при дальнейшем повышении силы раздражения величина ответа не изменяется.

№100. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.

Потенциа́л де́йствия - волна возбуждении, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

А – спокойное состояние; В –мембрана на которой возник потенциал действия

В основе любого потенциала действия лежат следующие явления:

1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Третье явление является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

2. Пиковый потенциал, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).



№101.Потенциал-зависимые ионные каналы: строение, свойства, функционирование

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого - только ионы натрия и т. д.

Ионные потенциал-зависимые каналы - это каналы, которые открываются и закрываются в ответ на изменение мембранного потенциала, например, натриевые каналы, ответственные за потенциал действия Если мембранный потенциал поддерживать на уровне потенциала покоя, натриевый ток практически отсутствует, что означает, что натриевые каналы закрыты. Если теперь сдвинуть мембранный потенциал в положительную сторону и удерживать его на постоянном уровне, то потенциал-зависимые натриевые каналы откроются и ионы натрия начнут передвигаться в клетку по градиенту концентрации. Этот натриевый ток достигнет максимума и Через несколько миллисекунд ток падает почти до нуля. Закрывшись, каналы переходят в инактивированное состояние, отличающееся от первоначального закрытого состояния, при котором они были способны открыться в ответ на деполяризацию мембраны. Каналы остаются инактивированными до тех пор, пока мембранный потенциал не вернется к исходному отрицательному значению и не закончится восстановительный период длительностью в несколько миллисекунд.

При регистрации токов в очень малых участках мембраны было обнаружено, что канал открывается по принципу "все или ничего". Открытые каналы обладают одинаковой проводимостью, но открываются и закрываются независимо друг от друга, поэтому суммарный ток через мембрану всей клетки с ее многочисленными каналами определяется не степенью открытости каналов, а вероятностью быть открытым для каждого отдельного канала.

_______________________________________________________________________________________

№102. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.

Скорость проведения в нервных волокнах колеблется от 0,25 м/сек в очень тонких немиелинизированных волокнах

Распространение потенциала действия вдоль нервного волокна(аксона) обусловлено возникновением локальных токов, образующихся между возбужденным и невозбужденным участками клетки. В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя отрицательный. В момент возбуждения полярность мембраны меняется на противоположную. В результате этого между возбужденным и невозбужденным участками мембраны возникает разность потенциалов, это и приводит к появлению между этими участками локальных токов. На поверхности клеток локальный ток течет от невозбужденного участка к возбужденному, внутри клетки – в обратном направлении. Локальный ток раздражает соседние невозбужденные участки и вызывает увеличение проницаемости мембран. Это приводит к возникновению потенциалов действия в соседних участках. В то же время, в ранее возбужденном участке происходят восстановительные процессы реполяризации Вновь возбужденный участок в свою очередь становиться элекроотрицательным и возникающий локальный ток раздражает следующий за ним участок. Этот процесс повторяется многократно и обусловливает распространение импульсов возбуждения по всей длинне клетки в обоих направлениях. В нервной системе импульсы проходят лишь в определенном направлении из-за наличия синапсов, обладающих односторонней проводимостью.

Удельное сопротивление биомембран велико, но вследствии их малой толщины сопротивление изоляции в сотни тысяч раз меньше, чем у технического кабеля.По этому однородное нервное волокно не может проводить электрический сигнал на далекие расстояния.

λ=корень из (dR/4р)

d- диаметр волокна, R - поверхностное сопротивление мембраны в Ом * м 2 и р-удельное сопротивление аксоплазмы в Ом*м.

С увеличением λ (постоянная длины) степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса. Увеличения постоянной длинны λ можно добиться путем увеличения диаметра d аксона.

_______________________________________________________________________________________

№103. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.

У высокоорганизованных животных затухание сигнала предотвращается с помощью миелиновой оболочки вокруг аксона. Примерно через каждые 1-3 мм вдоль миелиновой оболочки имеется перехват Ранвье.

Центральной его частью является аксон, по мембране которого проводится потенциал действия. Аксон заполнен аксоплазмой - вязкой внутриклеточной жидкостью.

С увеличением λ степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса.

Удельное сопротивление миелина значительно выше удельного сопротивления других биологических мембран.кроме того толщина миелиновой оболочки во много раз больше толщины обычной мембраны, что приводит к возрастанию диаметра волокна и соответственно величины постоянной длины. λ

В связи с большим сопротивлением миелиновой оболочки по поверзности аксона токи протекать не могут. При возбуждении одного узла возникают токи между ним и другими узлами. Ток подошедший к другому узлу, возбуждает его, вызывает появление в этом месте потенциала действия, и так процесс распространяется по всему волокну. Затраты энергии на распространение сигнала по волокну, покрытому миелином значительно меньше чем по немиелинизированному.

_______________________________________________________________________________________

№104. Назначение и определение рецепции. Схема движения информации при рецепции.

Рецепция – это восприятие организмом энергии раздражителя, несущего информацию и преобразующим её в электрические сигналы нервного возбуждения.

Рецепция необходима для:

1. Оптимизации поведения живой системы в зависимости от ситуации во внешнем мире

2. Непрерывные регуляции характеристик состояния внутренних органов, сред и тканей организма

Простейшая блок схема (квадратики 1-9, 5 и 8 -над линией):

1. Источник информации

2. Стимул, воспринимаемый организмом

3. Устройство подготовки и сбора сигнала для рецепции

4. Непосредственно рецептор (устройство воспринимающее сигнал и преобразующее его в электронные импульсы)

5. Нервные пучки, проводящие импульсы в корковый центр

6. Корковый центр, воспринимающий и осуществляющий анализ первичной информации

7. ЦНС – окончательная обработка и оценка информации

8. Эфферентные нервные пути передающие информацию от ЦНС к органу или системе то есть эффектору.

9. Исполнитель

№105. Определение рецептора. Органы чувств и анализаторы. Примеры использования рецепции в жизнедеятельности организма.

Рецептор – это устройство воспринимающее сигнал и преобразующее его в электронные импульсы

Биологические анализаторы – это биологические системы, предназначенные для восприятия, а иногда и обработки информации из внешней и внутренней среды

Порог ступени : ни одна сенсорная система не способна воспринимать сигнал сколь угодно малой интенсивности. Она воспринимает только те сигналы которые больше I порога ступени.

Порок интенсивности – минимальная единица, которая вызывает чувствительность

Kc = I ад.ст./ I неад. ст.

Частотная характеристика – стимулы, имеющие колебательную природу.

При постоянной I стимула (I ст = const), но изменении его частоты происходит адекватное отражение картины, но при определенном диапазоне частот – картина искажается, на еще большем отдалении сигнал перестает восприниматься.

Амплитудная характеристика связывает I ощущения с I стимула.

Предел разрешения: тип различия между параметрами сигнала (либо по амплитуде, либо по частоте), которые при данных условиях еще вызывают ощущения изменения.

Орган чувств - сложившаяся в процессе эволюции специализированная периферическая анатомо-физиологическая система, обеспечивающая благодаря своим рецепторам получение и первичный анализ информации из окружающего мира и от других органов самого организма, то есть из внешней и внутренней среды организма.

Дистантные органы чувств воспринимают раздражения на расстоянии (например, органы зрения, слуха, обоняния); другие органы (вкусовые и осязания) - лишь при непосредственном контакте. Одни органы чувств могут в определенной степени дополнять другие. Например, развитое обоняние или осязание может в некоторой степени компенсировать слабо развитое зрение.

Примеры использования рецепции в жизнедеятельности организма.??

№106. Классификация рецепторов.

1. По методу получения информации:

Экстерорецепторы (из внешней среды)

Интерорецепторы (изнутри)

2. По природе воспринимаемых раздражителей:

Механорецепторы (рецепторы расширения легких)

Хеморецепторы (рецепторы кожных реакций, слуха, обоняния, вкуса)

Терморецепторы (тепловые, холодовые)

Электрорецепторы (боковые линии у рыб)

Магниторецепторы (навигация при перемещении у птиц)

3. По степени универсальности:

Мономодальные – фиксирующие раздражение только одного раздражителя

Полимодальные - фиксирующие раздражение нескольких раздражителей

№107. Строение рецепторов.

СНО (свободные нервные окончания). Аксон разделяется на нервные окончания, потерявшие способность к возбуждению, являются полимодальными образованиями.

ИНО (инкапсулированные чувствительные окончания)

Они были сконструированы, как чувствительные специализированные клетки мономодальные. Являются видоизменёнными аксонами нейронов, иногда это эпителиальные клетки.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств.

Наиболее примитивными рецепторами считаются механические, реагирующие на прикосновение и давление. Разница между этими двумя ощущениями количественная; прикосновение обычно регистрируется тончайшими окончаниями нейронов, расположенными близко к поверхности кожи, в основаниях волосков или усиков. Есть и специализированные органы – тельца Мейснера. На давление же реагируют тельца Пачини, состоящие из единственного нервного окончания, окружённого соединительной тканью. Импульсы возбуждаются за счёт изменения проницаемости мембраны, возникающей благодаря её растяжению.

№108. Общие механизмы рецепции. Рецепторные потенциалы.

1 этап: Когда приходит адекватный для данного рецептора стимул. Взаимодействует с рецептирующим субстратом, который обычно находятся в мембране клетки.

2 этап: В R: происходит локальное изменение мембранной разности потенциалов. Сам рецептор не является возбудимой клеткой, так как там нет потенциал зависимых каналов! Изменение – рецепторный потенциал (РП), не подвергается закону «все или ничего», зависит от длительности действия стимула и от его интенсивности.

3 этап: Генерации потенциала приводит в R: к возобновлению потенциала действия (ПД).

Деполяризация называется рецепторным потенциалом (или генераторным потенциалом). Рецепторный потенциал обусловлен повышением Na+ - проводимости мембраны дендритов, в результате чего вход ионов натрия создает деполяризующий рецепторный потенциал, который электротонически распространяется к соме. Эта первичная трансформация стимула в рецепторный потенциал называется преобразованием, а рецептор, таким образом, является преобразователем.

Исключение составляют рецепторные потенциалы первичных зрительных клеток сетчатки, являющиеся гиперполяризующими.

Стимул не служит источником энергии для рецепторного потенциала, он только контролирует путем взаимодействия с мембранными процессами вход ионов через мембрану, основанный на трансмембранной разности их концентраций.

Рецепторный потенциал электротонически распространяется от дендритов по соме, деполяризует основание аксона и если деполяризация превысит порог для возбуждения, в аксоне возникает серия потенциалов действия, частота которой зависит от амплитуды рецепторного потенциала. Потенциалы действия проводятся в ЦНС и несут в форме частотного кода всю информацию о величине и длительности стимулов.

Потенциа́л де́йствия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого, наружная поверхность этого участка становится отрицательно заряженной, по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

№109. Кодирование информации в органах чувств.

Цели биологической системы:

1. самосохранение

2. продолжение рода

Любая информация, приходящая в рецепторные системы переносится определенным физическим носителем (длительные анализатор – электро-магнитные). Стимулы преобразуется в рецепторный потенциал, а затем в потенциала действия.

v(ню) = k log I(ст) – частота следующих пачек ПД пропорциональна интенсивности стимула.

В сенсорных системах широко применяется кодирование силы раздражителя:
1) путём изменения частоты импульсов в волокнах;
2) количеством задействованных нервных элементов;
3) также широко применяется кодирование качества раздражителя особой структурой ответа рецептора и волокна, так называемым паттерном (рисунком) ответа.

Согласно теории структуры ответа качества раздражителя кодируются рисунком (паттерном) пачки ПД, т.е. количеством, частотой и характерным распределением потенциалов действия внутри каждой пачки импульсов, а также количеством, продолжительностью, частотой самих пачек, периодичностью их следования, продолжительностью межимпульсных интервалов и т.д.

№110. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.

Психофизический закон Вебера-Фехнера. Если увеличение раздражения в геометрической прогрессии, то ощущение этого раздражения увеличивает в арифметической прогрессии.

Если I (интенсивность звука) принимает ряд последовательных значений аI 0 ; a 2 I 0 ; a 3 I 0 , то соответствующим ощущением – E 0 ; 2E 0 ; 3E 0 … a – коэффициент, а больше 1.

Другими словами, громкость звука пропорциональна логарифму интенсивности звука. При действии 2-х звуковых раздражителей I0 и I (I0 – порок слышимости)

E=k*lg(I/ I); k - коэффициент пропорциональности.

Рецепция Звука:

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Продольные акустические давление в определенном диапазоне частот.

Абсолютный порог слышимости – I тип звука, который улавливается ухом.

I0=10-12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10-10.

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Рецепция света:

Рецепция света – фоторецепторы

1.Колбочки – реализация цветового зрения. Принцип действия такой жжет как и у палочек.

2. Палочки – реализация сумеречного зрения. Сетчатка – многослойное образование, толстое, есть сосудистая оболочка и т.д. Рецепторы находятся на дне в пигментном эпителии.

Квант света попадает в мембране диска. Этим зрительным рецепции и отличается, т.к. в других случаях стимул в самих рецепторах, а в зрительном рецепторе в мембрану органеллы. У палочек рецепторный пигмент – родоксин, у колбочек – йодоксин. Родоксин состоит из ретиноля и оксина, свойство – имеет возможность конформационно перестраиваться.

Нормальное состояние – цис-состояние, отличающееся закругленностью. Поймав квант света происходит перестройка в транс-состояние, при это выделяется некоторое количество энергии. Процесс называется фотоизомерезация.

Происходит изменение свойств мембраны дисков. Рождается внутриклеточный посредник, он передает г/з ц/п воздействия на цитомембрану – происходит воздействие на неё (гиперполяризация) – палочки/колбочки.

Рецепторный потенциал - биопотенциал, возникающий при деполяризации поверхностной мембраны рецептора, обусловленной действием на него раздражителя. Он распределяется по мембране колбочки/палочки и добирается до синапса. Сигнал, прошедший синапс, возбуждает мембрану аксона. Далее он распределяется дальше и идет в зрительный нерв. Гиперполяризация возникает благодаря тому, что прошедший внутренний посредник способствует закрытию натриевых каналов и называется они фотозависимые Na каналы.

Проблемы Цветного зрения:

Дальтонизм (частичная цветовая слепота) наследственное нарушение цветового зрения у людей, заключающееся в неспособности различать некоторые цвета (большей частью красный и зеленый). Объясняется отсутствием в сетчатке глаза колбочек одного или нескольких типов.

№111. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.

Звук – это механические колебания в упругой среде. Имеет объектив характеристики, т.е. не зависит от нашего восприятия.

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Интенсивность – это громкость звука.

Характеристики слухового анализатора:

Продольное акустическое давление - в определенном диапазоне частот.

Абсолютный порог слышимости – тип звука, который улавливается ухом.

I 0 =10 -12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10 -10 .

Слуховая рецепция. Назначение, строение и работа звуковоспринимающих систем.

1. Наружное ухо (подготовка звуковых колебаний к реакции)

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Есть слуховые косточки, связки, мышцы (среднее ухо), улитка, баз. мембрана.

По базальной мембране проходят прямая и отраженная волны. Пучность возникает при интерференции этих волн.

В месте залегания волосков – деполяризация доходит до колебания

Раздражение слухового нерва в нижней части БМ и через синапс.

№112. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.

Зрительный анализатор обладает оптической системой, которая преломляет и фокусирует приходящие световые лучи и в результате этого строится изображение на сетчатке.

Световые лучи – поток этих волн. Их можно рассматривать как волны и как аналоги некоторых частиц = кванты света.

Строение зрительного анализатора.

Адекватный раздражитель это волны определенного диапазона частот. Чувствительность зрительного анализатора – порог светочувствительности 10 -18 Вт

Глаз способен воспринимать световые кванты начиная с 10 кв, при прозрачной атмосфере можно увидеть свечу на расстоянии от 1-3 км. Коэффициент избирательности высокий 10 -14 .

Частотная характеристика.(400 – 750 Нм). Амплитудная характеристика - Эта логарифмическая зависимость выполняется в пределах 100 кратного измерения стимула.

№113. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.

Экология – это условия окружающей среды, в которых находится биосистема.

Физические экологические факторы (по происхождению):

Геофизические →метеорологические→Земные

Космические: солнечные, космические

Антропогенные

Физические экологические факторы (по физ.сущности):

· магнитные поля (силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.)

· гравитационные поля (физическое поле, через которое осуществляется гравитационное взаимодействие (Гравитация -универсальное фундаментальное взаимодействие между всеми материальными телами)

· электрические поля →ЭМ: радиоизлучение, телевизионный диапазон, локаторы, УФ облучение (на ДНК кожное облучение)

2. вибрация (механическиеколебания.)

3. радиация

· инфразвук (упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16-25 Гц)

· ультразвук (упругие звуковые колебания высокой частоты)

4. звуковые факторы

5. шумовые факторы

________________________________________________________________________________________________________

№114. Составляющие величины естественного фона. Примеры антропогенного изменения фоновых значений физических факторов.

Фон – усредненная величина, характеризующая количественное значение экологического фактора в данном регионе.

Фон = E ф.(естественный фон) + a×с (антропогенное состояние)

Р ф.= E ф. (излучение земных пород, космическое излучение радона) +a×с (возникает благодаря испытаниям яд. оружия)

М ф. = Е ф. (геомагнитное поле, космическое составляющее магнитного поля от естественных влияний) + a×с (электротранспорт, бытовая техника, мед. исследования)

Дополнительно. Изменения леса. Каждый участок леса подвергался раньше или подвергается сейчас определенным видам антропогенного воздействия - даже в том случае, если такое воздействие не может быть прямо обнаружено и измерено. Характерными примерами таких повсеместно распространенных видов антропогенных воздействий являются глобальное загрязнение атмосферы, изменения численности видов охотничье-промысловых животных или изменения частоты лесных пожаров в результате изменения плотности и образа жизни населения в лесных регионах.

_______________________________________________________________________________________

№115. Значение радиационного фона для здоровья человека.

Радиационное излучение – один из наиболее изученных и сильных по воздействию на живые системы биофизических факторов. За этим термином прячется спектр разнообразных по природе и по эффекту излучений.

Одна из опасностей радиоактивного излучения связана с тем, что у человека нет к нему рецепторов. Человеческий организм очень чувствителен к радиоактивным поражениям. Радиоактивное излучение в результате воздействий на клеточном и субклеточном уровне вызывает появление большого количества свободных радикалов (они вредоносны).

Возникает поражение системы крови, общее название – лучевая болезнь.

Радиопротекторы в какой-то степени понижают эффекты радиационного излучения.

Проникающая способность:

От мм для α

До см для β

Для нейротропного излучения до полного проникновения

_______________________________________________________________________________________

№116. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.

Магнитное поле Земли (геомагнитное поле) - магнитное поле, генерируемое внутриземными источниками.

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами. Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс.

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Напряжённость магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Магнитные поля в свободном состоянии – 0,4 Э (Эрстед)

Напряжённость поля на поверхности Земли сильно зависит от географического положения. Напряжённость магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца.

Магнитные поля в обычной жизни имеют небольшую интенсивность. Они обладают высокой проникающей способностью. В результате проведения исследований магнитного поля – выявился биотропный фактор.

Магнитотерапия – воздействие в качестве магнитного фактора.

Магнитная буря оказывает негативное воздействие.

_______________________________________________________________________________________

№117. Возможные механизмы влияния геомагнитного поля на организм.

1) Если сильно заряженные частицы есть в веществе – происходит изменение траектории движения зарядов

2) Эффект Зимана: Под действием Магнитного Поля электронные уровни атома расщепляются на подуровни; слабые Магнитные Поля вызывают этот эффект у тех ионов, которые участвуют в метаболизме.

_______________________________________________________________________________________

Биопотенциалы.

    Понятие и виды биопотенциалов. Природа биопотенциалов.

    Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

    Условия возникновения и фазы потенциала действия.

    Механизм генерации потенциала действия.

    Методы регистрации и экспериментального исследования биопотенциалов.

Понятия и виды биопотенциалов. Природа биопотенциалов.

Биопотенциалы – любые разности потенциалов в живых системах: разность потенциалов между клеткой и окружающей средой; между возбуждённым и невозбуждённым участками клетки; между участками одного организма, находящимися в разных физиологических состояниях.

Разность потенциалов -электрический градиент – характерная черта всего живого.

Виды биопотенциалов:

    Потенциал покоя (ПП) – постоянно существующая в живых системах разность потенциалов, характерная для стационарного состояния системы. Он поддерживается постоянно протекающими звеньями обмена веществ.

    Потенциал действия (ПД) – быстро возникающая и вновь исчезающая разность потенциалов, характерная для переходных процессов.

Биопотенциалы тесно связаны с метаболическими процессами, следовательно, являются показателями физиологического состояния системы.

Величина и характер биопотенциалов являются показателями изменений в клетке в норме и патологии.

Существует большая группа электрофизиологических методов диагностики , основанных на регистрации биопотенциалов (ЭКГ, ЭМГ и т.д.).

В основе возникновения биопотенциалов лежит несимметричное относительно мембраны распределение ионов, т.е. различные концентрации ионов по разные стороны мембраны. Непосредственная причина – различная скорость диффузии ионов по их градиентам, определяющаяся селективностью мембраны.

Биопотенциалы – ионные потенциалы, преимущественно мембранной природы – это основное положениеМембранной теории биопотенциалов (Бернштейн, Ходжкин, Катц).

Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

Натриевый насос – создаёт и поддерживает градиент концентрации иона натрия, иона калия, регулируя их поступление в клетку и выведение из неё.

В состоянии покоя клетка проницаема главным образом для ионов калия. Они диффундируют по градиенту концентрации через клеточную мембрану из клетки в окружающую жидкость. Крупные органические анионы, содержащиеся в клетке не могут преодолеть мембрану. Таким образом внешняя поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

Изменение зарядов и разности потенциалов на мембране продолжается пока силы, обуславливающие градиент концентрации калия не уравновесятся силами возникающего электрического поля, следовательно, не будет достигнуто стационарное состояние системы.

Разность потенциалов через мембрану в этом случае и есть – потенциал покоя.

Вторая причина возникновения потенциала покоя – электрогенность калий-натриевого насоса.

Теоретическое определение потенциала покоя:

При учёте лишь калиевой проницаемости мембраны в состоянии покоя потенциал покоя можно вычислить по уравнению Нернста:

R – универсальная газовая постоянная

T – абсолютная температура

F – число Фарадея

С iK – концентрация калия внутри клетки

C eK – концентрация калия снаружи клетки

На самом деле, помимо ионов калия, клеточная мембрана проницаема также и для ионов натрия и хлора, однако в меньшей степени. Если градиент натрия поступает внутрь клетки, то мембранный потенциал уменьшается. Если градиент хлора поступает внутрь клетки, то мембранный потенциал увеличивается.

, где

P – проницаемость мембраны для данного иона.

Условия возникновения и фазы потенциала действия.

Раздражители – внешние или внутренние факторы, действующие на клетку.

При действии раздражителей на клетку меняется электрическое состояние клеточной мембраны.

Потенциал действия возникает лишь при действии раздражителя достаточной силы и длительности.

Пороговая сила – минимальная сила раздражителя, необходимая для инициации потенциала действия. Раздражители большей силы –надпороговые ; меньшей силы –подпороговые . Пороговая сила раздражителя находится в обратной зависимости от его длительности в определённых пределах.

Если у раздражителя надпороговой или пороговой силы на участке раздражения возникает электрический импульс характерной формы, распространяющийся вдоль всей мембраны, то возникнет потенциал действия .

Фазы потенциала действия:

    Восходящая – деполяризация

    Нисходящая – реполяризация

    Гиперполяризация (возможна, но не обязательна)

- потенциал цитоплазмы

- действие раздражителя ((над)пороговой силы)

д – деполяризация

р – реполяризация

г – гиперполяризация

Фаза деполяризации – быстрая перезарядка мембраны: внутри положительный заряд, снаружи – отрицательный.

Фаза реполяризации – возвращение заряда и потенциала мембраны к исходному уровню.

Фаза гиперполяризации – временное превышение уровня покоя, предшествующее восстановлению потенциала покоя.

Амплитуда потенциала действия заметно превышает амплитуду потенциала покоя – «овершут » (перелёт).

Механизм генерации потенциала действия.

Потенциал действия – результат изменения ионной проницаемости мембраны.

Проницаемость мембраны для ионов натрия – непосредственная функция мембранного потенциала. Если мембранный потенциал понижается, то натриевая проницаемость возрастает.

Действие порогового раздражителя : уменьшение мембранного потенциала до критической величины (критическая деполяризация мембраны) → резкое повышение натриевой проницаемости → усиленный приток натрия в клетку по градиенту → дальнейшая деполяризация мембраны → процесс зацикливается → включается механизм положительной обратной связи. Усиленный приток натрия в клетку вызывает перезарядку мембраны и окончание фазы деполяризации. Положительный заряд на внутренней поверхности мембраны становится достаточным для уравновешивания градиента концентрации ионов натрия. Усиленное поступление натрия в клетку заканчивается, следовательно, заканчивается фаза деполяризации.

P K:P Na:P Cl в состоянии покоя 1: 0,54: 0,045,

на высоте фазы деполяризации: 1: 20: 0,045.

В процессе фазы деполяризации проницаемость мембраны для ионов калия и хлора не меняется, а для ионов натрия – возрастает в 500 раз.

Фаза реполяризации : увеличивается проницаемость мембраны для ионов калия → усиленный выход ионов калия из клетки по градиенту концентрации → Уменьшение положительного заряда на внутренней поверхности мембраны, обратное изменение мембранного потенциала → уменьшение натриевой проницаемости → обратная перезарядка мембраны → уменьшение калиевой проницаемости, замедление оттока калия из клетки.

К концу фазы реполяризации происходит восстановление потенциала покоя. Мембранный потенциал и проницаемость мембраны для ионов калия и натрия возвращается к уровню покоя.

Фаза гиперполяризации : возникает, если проницаемость мембраны для ионов калия ещё повышена, а для ионов натрия уже вернулась к уровню покоя.

Резюме:

Потенциал действия формируется двумя потоками ионов через мембрану. Поток ионов натрия внутрь клетки → перезарядка мембраны. Поток ионов калия наружу → восстановление потенциала покоя. Потоки почти одинаковы по величине, но сдвинуты по времени.

Диффузия ионов через клеточную мембрану в процессе генерации потенциала действия осуществляется по каналам, которые являются высокоселективными, т.е. они обладают большей проницаемостью для данного иона (открытие для него дополнительных каналов).

При генерации потенциала действия клетка приобретает определённое количество натрия и теряет определённое количество калия. Выравнивание концентраций этих ионов между клеткой и средой не происходит благодаря калий-натриевому насосу.

Методы регистрации и экспериментального исследования биопотенциалов .

1. Внутриклеточное отведение.

Один электрод погружают в межклеточную жидкость, другой (микроэлектрод) - вводится в цитоплазму. Между ними – измерительный прибор.

Микроэлектрод представляет собой полую трубку, кончик которой оттянут до диаметра в доли микрона, а пипетка наполнена хлоридом калия. При введении микроэлектрода мембрана плотно охватывает кончик, и повреждения клетки почти не происходит.

Для создания потенциала действия в эксперименте клетка стимулируется надпороговыми токами, т.е. ещё одна пара электродов связана с источником тока. На микроэлектрод подаётся положительный заряд.

С их помощью можно регистрировать биопотенциалы как крупных, так и мелких клеток, а также биопотенциалы ядер. Но наиболее удобным, классическим объектом исследований, являются биопотенциалы крупных клеток. Например,

Nitella ПП 120 мВ (120 * 10 3 В)

Гигантский аксон кальмара ПП 60мВ

Клетки миокарда человека ПП 90 мВ

2. Фиксация напряжения на мембране.

В определённый момент развитие потенциала действия искусственно прерывается с помощью специальных электронных схем.

При этом фиксируется значение мембранного потенциала и величины ионных потоков через мембрану в данный момент, следовательно, есть возможность их измерения.

3. Перфузия нервных волокон.

Перфузия – замена оксоплазмы искусственными растворами различного ионного состава. Таким образом, можно определить роль конкретного иона в генерации биопотенциалов.

Проведение возбуждения по нервным волокнам.

    Роль потенциала действия в жизнедеятельности.

    Об аксонах.

    Кабельная теория проведения.

    Направление и скорость проведения.

    Непрерывное и сальтаторное проведение.

Роль потенциала действия в жизнедеятельности .

Раздражимость – способность живых клеток под влиянием раздражителей (определённых факторов внешней или внутренней среды) переходить из состояния покоя в состояние активности. При этом всегда меняется электрическое состояние мембраны.

Возбудимость – способность специализированных возбудимых клеток в ответ на действие раздражителя генерировать особую форму колебания мембранного потенциала –потенциал действия .

В принципе возможно несколько видов ответов возбудимых клеток на раздражение, в частности – локальный ответ и потенциал действия.

Потенциал действия возникает, если действует пороговый или надпороговый раздражитель. Он вызывает уменьшение мембранного потенциала до критического уровня. Тогда происходит открытие дополнительных натриевых каналов, резкое увеличение натриевой проницаемости и развитие процесса по механизму положительной обратной связи.

Локальный ответ возникает, если действует подпороговый раздражитель, составляющий 50-70% от порогового. Деполяризация мембраны при этом меньше критической, наступает лишь кратковременное, небольшое увеличение натриевой проницаемости, механизм положительной обратной связи не включается, и потенциал быстро возвращается к исходному состоянию.

В процессе развития потенциала действия возбудимость меняется.

Снижение возбудимости – относительная рефрактерность .

Полная утрата возбудимости – абсолютная рефрактерность .

По мере приближения к уровню критической деполяризации возбудимость повышается, так как для достижения этого уровня и развития потенциала действия становится достаточно и небольшого изменения мембранного потенциала. Именно так меняется возбудимость в начале фазы деполяризации, а также при локальном ответе клетки на раздражение.

При удалении мембранного потенциала от критической точки возбудимость снижается. На пике фазы деполяризации, когда клетка уже не может реагировать на раздражение открытием дополнительных натриевых каналов, наступает состояние абсолютной рефрактерности.

По мере реполяризации абсолютная рефрактерность сменяется относительной; к концу фазы реполяризации возбудимость снова увеличена (состояние «супернормальности»).

Во время фазы гиперполяризации возбудимость снова снижена.

Возбуждение – ответ специализированных клеток на действие пороговых и надпороговых раздражителей – это сложный комплекс физико-химических и физиологических изменений, в основе которого лежит потенциал действия.

Результат возбуждения зависит от того, в какой ткани оно развивалось (где возник потенциал действия).

К специализированным возбудимым тканям относятся :

    • мышечная

      железистая

Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных и секреции железистых клеток.

Потенциал действия, возникающий в нервном волокне – нервный импульс.

Об аксонах.

Аксоны (нервные волокна) – длинные отростки нервных клеток (нейронов).

Афферентные пути – от органов чувств к ЦНС

Эфферентные пути – от ЦНС к мышцам.

Протяжённость – метры.

Диаметр в среднем от 1 до 100 мкм (у гигантского аксона кальмара – до 1 мм).

По наличию или отсутствию миелиновой оболочки различают аксоны:

      миелинизированные (миелиновые, мякотные) – есть миелиновая оболочка

      немиелинизированные (амиелиновые, безмякотные) – не имеют миелиновые оболочки

Миелиновая оболочка – окружающая аксон дополнительная многослойная (до 250 слоёв) мембрана, образующаяся при внедрении аксона в шванновскую клетку (леммоцит, олигодендроцит), и многократном наматывании мембраны этой клетки на аксон.

Миелин – очень хороший изолятор.

Через каждые 1-2 мм миелиновая оболочка прерывается перехватами Ранвье , протяжённостью около 1 мкм каждый.

Только в области перехватов возбудимая мембрана контактирует с внешней средой.

Кабельная теория проведения.

Аксон по ряду свойств подобен кабелю: это полая трубка, внутренне содержимое – аксоплазма – проводник (как и межклеточная жидкость), стенка – мембрана – изолятор.

Механизм проведения возбуждения (распространения нервного импульса) включает 2 ступени:

    Возникновение локальных токов и распространение волны деполяризации вдоль волокна.

    Формирование потенциалов действия на новых участках волокна.

Локальные токи циркулируют между возбужденным и невозбуждённым участками нервного волокна ввиду разной полярности мембраны на этих участках.

Внутри клетки они текут от возбуждённого участка к невозбуждённому. Снаружи – наоборот.

Локальный ток вызывает сдвиг мембранного потенциала соседнего участка, и начинается распространение волны деполяризации по волокну, как тока по кабелю.

Когда деполяризация очередного участка достигает критической величины, происходит открытие дополнительных натриевых, потом калиевых каналов, возникновение потенциала действия.

В разных участках волокна потенциал действия формируется независимыми ионными потоками, перпендикулярными к направлению распространения.

При этом на каждом участке происходит энергетическая подпитка процесса , так как градиенты ионов, идущих по каналам, создаются насосами, работа которых обеспечивается энергией гидролиза АТФ.

Роль локальных токов – лишь инициация процесса путём деполяризации всё новых участков мембраны до критического уровня.

Благодаря энергетической подпитке нервный импульс распространяется вдоль волокна без затухания (с неизменной амплитудой).

Направление и скорость проведения.

Одностороннее проведение нервного импульса обеспечивают:

      наличие в нервной системе синапсов с односторонним проведением

      свойство рефрактерности нервного волокна, что делает невозможным обратный ход возбуждения

Скорость проведения тем выше, чем более выражены кабельные свойства волокна. Для их оценки применяютконстанту длины нервного волокна :

, где

D – диаметр волокна

b m – толщина мембраны

- удельное сопротивление мембраны

- удельное сопротивление аксоплазмы

Физический смысл константы : она численно равна расстоянию, на котором подпороговый потенциал уменьшился бы вe раз. С увеличением константы длины нервного волокна увеличивается и скорость проведения.

И потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

Распространение потенциала действия по немиелинизированным волокнам

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкиным и Хаксли.

Проводимость для калия G K на единицу площади

Проводимость для натрия G Na на единицу площади

рассчитывается сложнее, поскольку, как уже было сказано, у потенциал-зависимых Na+ каналов, помимо закрытого/открытого состояний, переход между которыми описывается параметром , есть ещё инактивированное/не-инактивированное состояния, переход между которыми описывается через параметр

, ,
где: где:
- коэффициент трансфера из закрытого в открытое состояние для Na+ каналов ; - коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
- коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ; - коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
- фракция Na+ каналов в открытом состоянии; - фракция Na+ каналов в не-инактивированном состоянии;
- фракция Na+ каналов в закрытом состоянии - фракция Na+ каналов в инактивированном состоянии.

См. также

Литература


Wikimedia Foundation . 2010 .

При пороговой силе раздражения в клетке возникает ПД, существенно отличающийся по форме от ЛО (рис.4,Б,1 V).

Он обладает следующими свойствами:

1) подчиняется закону «всё или ничего», т.е. при достижении КУД клетка отвечает максимальным ответом;

2) способен распространяться на большие расстояниям

3) При его возникновении возбудимость клетки снижается;

4) является ауторегенеративным (самоподдерживающимся) процессом.

Рис.5. А. фаза потенциала действия: 1- деполяризация, 2- реполяризация, 3- следовая реполяризация, 4- следовая гиперполяризация, 5 - овершут, Б - ионные механизмы развития потенциала действия.

Методика регистрации ПД показана на рис.4,А: при этом один микроэлектрод является раздражающим (1), а второй (2) - отводящим ПД.

ПД имеет достаточно сложную структуру; в нём различают следующие

фазы (рис.5,А):

1) фаза деполяризации (ЛО не показан);

2) фаза реполяризации;

3) следовой деполяризационный потенциал;

4) следовой гиперполяризационный потенциал;

5) фаза овершута.

Происхождение этих фаз:

1- во время фазы деполяризации открываются Na + -каналы и ионы натрий лавинообразно входят в клетку (рис.5,Б)

2- во время фазы реполяризации Na + - каналы закрываются, по открываются К + - каналы и он выходит из клетки наружу;

3- во время фазы следовой реполяризации выход К + несколько замедляется;

4- во время следовой гиперполяризации часть К + - каналов открыта и при достижении величины МП калий еще продолжает входить в клетку;

5- фаза овершута (перевёртывания) – в эту фазу цитоплазма клетки заряжена положительно из-за наличия в ней большого количества ионов Na + .

ПД больше не получается, чем МП: его амплитуда получается при алгебраическом сложении амплитуд овершута и МП; на рис.6,А амплитуда ПД составляет 100 мВ, длительность 1 мс.

Физиологическая роль ПД: возбуждение клеток и возникновение в них соответствующих процессов, передача возбуждения в ЦНС, к периферическим структурам.

Изменения возбудимости клетки во время развития ПД.

Периоды рефрактерности, механизмы их происхождения,

Физиологическое значение

В исходном состоянии, когда мембранный потенциал не изменён (рис.6,1;а) возбудимость клетки называется исходной (рис.6,II;а) и составляет 100 %. При возникновении локального ответа (рис.6,I;б), возбудимость клетки повышена (рис.6,II;б). Это связано с уменьшением КУД. При развитии быстрых компонентов ПД (фазы деполяризации и реполяризации - рис.6,I,в) клетка проходит через стадию абсолютной и относительной рефрактерности (рис.6,II,в).

В фазу абсолютной рефрактерности клетка не отвечает на любые, даже сверхсильные раздражения - возбудимость ткани равна нулю. Время этого состояния соответствует длительности фазы овершута (рис.6,I).

В фазу относительной рефрактерности ткань можно возбудить, но более сильными, чем обычно, раздражениями.

Рис.6. Сопоставление фаз потенциала действия (I) с фазами возбудимости (II). а- исходная возбудимость; б- повышенная возбудимость; в- относительная и абсолютная (О) рефрактерность; г - супернормальная возбудимость; д- субнормальиая возбудимость.

Абсолютная рефрактерность связана с инактивацией - каналов и повышением проводи мости для К + - ионов. Фазу относительной рефрактерности: первая - связана с постепенной инактивацией Na + - проводимости, вторая - с повышением К + -проводимости.

В фазу следового деполяризационного потенциала (рис.7, I.г)

возбудимость снова превышает нормальную - т.н. «супернормальная возбудимость» (рис.6,II,г); связана с уменьшением критического уровня деполяризации.

В фазу следовой гиперполяризации (рнс.6,1;д) возбудимость ткани несколько снижена - фаза субнормальной возбудимости (рис.7, II;д). Она снижена из-за повышения КУД.

После восстановления мембранного потенциала (рис.6,1 ;а) нормализуется и возбудимость(рис.7,11 ;а).

Физиологическое значение изменений возбудимости:

1) полностью или почти полностью ограждает возбудимую ткань во время возбуждения от посторонних помех (абсолютная и относительная рефрактерность);

2) повышение возбудимости в фазу ЛО способствует процессам интеграции нейронов в ЦНС;

3) субнормальная возбудимость в фазу следовой гиперполяризации способствует «отдыху» ткани и восстановлению ионных градиентов клеток.