Полный анализ функции онлайн. Полное исследование функции и построение графика

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

Инструкция

Найдите область определения функции. Например, функция sin(x) определена на всем интервале от -∞ до +∞, а функция 1/x - от -∞ до +∞ за исключением точки x = 0.

Определите области непрерывности и точки разрыва. Обычно функция непрерывна в той же самой области, где она определена. Чтобы обнаружить разрывы, нужно вычислить при приближении аргумента к изолированным точкам внутри области определения. Например, функция 1/x стремится к бесконечности, когда x→0+, и к минус бесконечности, когда x→0-. Это значит, что в точке x = 0 она имеет разрыв второго рода.
Если пределы в точке разрыва конечны, но не равны, то это разрыв первого рода. Если же они равны, то функция считается непрерывной, хотя в изолированной точке она и не определена.

Найдите вертикальные асимптоты, если они есть. Здесь вам помогут вычисления предыдущего шага, поскольку вертикальная асимптота практически всегда находится в точке разрыва второго рода. Однако иногда из области определения исключены не отдельные точки, а целые интервалы точек, и тогда вертикальные асимптоты могут располагаться на краях этих интервалов.

Проверьте, обладает ли функция особыми свойствами: четностью, нечетностью и периодичностью.
Функция будет четной, если для любого x в области определения f(x) = f(-x). Например, cos(x) и x^2 - четные функции.

Периодичность - свойство, говорящее о том, что есть некое число T, называемое периодом, что для любого x f(x) = f(x + T). Например, все основные тригонометрические функции (синус, косинус, тангенс) - периодические.

Найдите точки . Для этого вычислите производную от заданной функции и найдите те значения x, где она обращается в ноль. Например, функция f(x) = x^3 + 9x^2 -15 имеет производную g(x) = 3x^2 + 18x, которая обращается в ноль при x = 0 и x = -6.

Чтобы определить, какие точки экстремума являются максимумами, а какие минимумами, отследите изменение знаков производной в найденных нулях. g(x) меняет знак с плюса в точке x = -6, а в точке x = 0 обратно с минуса на плюс. Следовательно, функция f(x) в первой точке имеет , а во второй - минимум.

Таким образом, вы нашли и области монотонности: f(x) монотонно возрастает на промежутке -∞;-6, монотонно убывает на -6;0 и снова возрастает на 0;+∞.

Найдите вторую производную. Ее корни покажут, где график заданной функции будет выпуклым, а где - вогнутым. Например, второй производной от функции f(x) будет h(x) = 6x + 18. Она обращается в ноль при x = -3, меняя при этом знак с минуса на плюс. Следовательно, график f(x) до этой точки будет выпуклым, после нее - вогнутым, а сама эта точка будет точкой перегиба.

У функции могут быть и другие асимптоты, кроме вертикальных, но только в том случае, если в ее область определения входит . Чтобы их найти, вычислите предел f(x), когда x→∞ или x→-∞. Если он конечен, то вы нашли горизонтальную асимптоту.

Наклонная асимптота - прямая вида kx + b. Чтобы найти k, вычислите предел f(x)/x при x→∞. Чтобы найти b - предел (f(x) – kx) при том же x→∞.

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Общая схема исследования

Для чего нужно это исследование, спросите вы, если есть множество сервисов, которые построят для самых замудренных функций? Для того, чтобы узнать свойства и особенности данной функции: как ведет себя на бесконечности, насколько быстро меняет знак, как плавно или резко возрастает или убывает, куда направлены "горбы" выпуклости, где не определены значения и т.п.

А уже на основании этих "особенностей" и строится макет графика - картинка, которая на самом-то деле вторична (хотя в учебных целях важна и подтверждает правильность вашего решения).

Начнем, конечно же, с плана . Исследование функции - объемная задача (пожалуй, самая объемная из традиционного курса высшей математики, обычно от 2 до 4 страниц с учетом чертежа), поэтому, чтобы не забыть, что в каком порядке делать, следуем пунктам, описанным ниже.

Алгоритм

  1. Найти область определения. Выделить особые точки (точки разрыва).
  2. Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
  3. Найти точки пересечения с осями координат.
  4. Установить, является ли функция чётной или нечётной.
  5. Определить, является ли функция периодической или нет (только для тригонометрических функций).
  6. Найти точки экстремума и интервалы монотонности.
  7. Найти точки перегиба и интервалы выпуклости-вогнутости.
  8. Найти наклонные асимптоты. Исследовать поведение на бесконечности.
  9. Выбрать дополнительные точки и вычислить их координаты.
  10. Построить график и асимптоты.

В разных источниках (учебниках, методичках, лекциях вашего преподавателя) список может иметь отличный от данного вид: некоторые пункты меняются местами, объединяются с другими, сокращаются или убираются. Учитывайте требования/предпочтения вашего учителя при оформлении решения.

Схема исследования в формате pdf: скачать .

Полный пример решения онлайн

Провести полное исследование и построить график функции $$ y(x)=\frac{x^2+8}{1-x}. $$

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя. $$1-x=0, \quad \Rightarrow \quad x=1.$$ Исключаем единственную точку $x=1$ из области определения функции и получаем: $$ D(y)=(-\infty; 1) \cup (1;+\infty). $$

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка $x=1$ является разрывом второго рода, прямая $x=1$ - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат $Oy$, для чего приравниваем $x=0$:

Таким образом, точка пересечения с осью $Oy$ имеет координаты $(0;8)$.

Найдем точки пересечения с осью абсцисс $Ox$, для чего положим $y=0$:

Уравнение не имеет корней, поэтому точек пересечения с осью $Ox$ нет.

Заметим, что $x^2+8>0$ для любых $x$. Поэтому при $x \in (-\infty; 1)$ функция $y>0$ (принимает положительные значения, график находится выше оси абсцисс), при $x \in (1; +\infty)$ функция $y\lt 0$ (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых $y"=0$):

Получили три критические точки: $x=-2, x=1, x=4$. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При $x \in (-\infty; -2), (4;+\infty)$ производная $y" \lt 0$, поэтому функция убывает на данных промежутках.

При $x \in (-2; 1), (1;4)$ производная $y" >0$, функция возрастает на данных промежутках.

При этом $x=-2$ - точка локального минимума (функция убывает, а потом возрастает), $x=4$ - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума $(-2;4)$, точка максимума $(4;-8)$.

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:



Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда $x \in (-\infty; 1)$ выполняется $y"" \gt 0$, то есть функция вогнутая, когда $x \in (1;+\infty)$ выполняется $y"" \lt 0$, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида $y=kx+b$. Вычисляем значения $k, b$ по известным формулам:


Получили, у что функции есть одна наклонная асимптота $y=-x-1$.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

$$ y(-5)=5.5; \quad y(2)=-12; \quad y(7)=-9.5. $$

10) По полученным данным построим график, дополним его асимптотами $x=1$ (синий), $y=-x-1$ (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Примеры решений по исследованию функции

Разные функции (многочлены, логарифмы, дроби) имеют свои особенности при исследовании (разрывы, асимптоты, количество экстремумов, ограниченная область определения), поэтому здесь мы пострались собрать примеры из контрольных на исследование функций наиболее часто встречающихся типов. Удачи в изучении!

Задача 1. Исследовать функцию методами дифференциального исчисления и построить график.

$$y=\frac{e^x}{x}.$$

Задача 2. Исследовать функцию и построить ее график.

$$y=-\frac{1}{4}(x^3-3x^2+4).$$

Задача 3. Исследовать функцию с помощью производной и построить график.

$$y=\ln \frac{x+1}{x+2}.$$

Задача 4. Провести полное исследование функции и построить график.

$$y=\frac{x}{\sqrt{x^2+x}}.$$

Задача 5. Исследовать функцию методом дифференциального исчисления и построить график.

$$y=\frac{x^3-1}{4x^2}.$$

Задача 6. Исследовать функцию на экстремумы, монотонность, выпуклость и построить график.

$$y=\frac{x^3}{x^2-1}.$$

Задача 7. Проведите исследование функции с построением графика.

$$y=\frac{x^3}{2(x+5)^2}.$$

Как построить график онлайн?

Даже если преподаватель требует вас сдавать задание, написанное от руки , с чертежом на листке в клеточку, вам будет крайне полезно во время решения построить график в специальной программе (или сервисе), чтобы проверить ход решения, сравнить его вид с тем, что получается вручную, возможно, найти ошибки в своих расчетах (когда графики явно ведут себя непохоже).

Ниже вы найдете несколько ссылок на сайты, которые позволяют построить удобно, быстро, красиво и, конечно, бесплатно графики практически любых функций. На самом деле таких сервисов гораздо больше, но стоит ли искать, если выбраны лучшие?

Графический калькулятор Desmos

Вторая ссылка практическая, для тех, кто хочет научиться строить красивые графики в Desmos.com (см. выше описание): Полная инструкция по работе с Desmos . Эта инструкция довольно старая, с тех пор интерфейс сайта поменялся в лучшую сторону, но основы остались неизменными и помогут быстро разобраться с важными функциями сервиса.

Официальные инструкции, примеры и видео-инструкции на английском можно найти тут: Learn Desmos .

Решебник

Срочно нужна готовая задача? Более сотни разных функций с полным исследованием уже ждут вас. Подробное решение, быстрая оплата по SMS и низкая цена - около 50 рублей . Может, и ваша задача уже готова? Проверьте!

Полезные видео-ролики

Вебинар по работе с Desmos.com. Это уже полноценный обзор функций сайта, на целых 36 минут. К сожалению, он на английском языке, но базовых знаний языка и внимательности достаточно, чтобы понять большую часть.

Классный старый научно-популярный фильм "Математика. Функции и графики". Объяснения на пальцах в прямом смысле слова самых основ.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одной из важнейших задач дифференциального исчисления является разработка общих примеров исследования поведения функций.

Если функция y=f(x) непрерывна на отрезке , а ее производная положительна или равна 0 на интервале (a,b), то y=f(x) возрастает на (f"(x)0). Если функция y=f(x) непрерывна на отрезке , а ее производная отрицательна или равна 0 на интервале (a,b), то y=f(x) убывает на (f"(x)0)

Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции. Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.

Теорема 1 (1-ое достаточное условие существования экстремума).

Пусть функция y=f(x) определена в точке х 0 и пусть существует окрестность δ>0 такое, что функция непрерывна на отрезке , дифференцируема на интервале (x 0 -δ,x 0)u(x 0 , x 0 +δ), причем ее производная сохраняет постоянный знак на каждом из этих интервалов. Тогда если на x 0 -δ,x 0) и (x 0 , x 0 +δ) знаки производной различны, то х 0 - точка экстремума, а если совпадают, то х 0 - не является точкой экстремума. При этом если при переходе через точку х0, производная меняет знак с плюса на минус (слева от х 0 выполняется f"(x)>0, то х 0 - точка максимума; если же производная меняет знак с минуса на плюс (справа от х 0 выполняется f"(x)<0, то х 0 - точка минимума.

Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.

Теорема 2 (необходимый признак локального экстремума).

Если функция y=f(x) имеет в токе x=x 0 экстремум, то либо f’(x 0)=0, либо f’(x 0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 18. Исследовать на экстремум функцию у=х 3 -9х 2 +24х

Решение.
1) y"=3x 2 -18x+24=3(x-2)(x-4).
2) Приравняв производную нулю, находим x 1 =2, x 2 =4. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет.
3) Знак производной y"=3(x-2)(x-4) изменяется в зависимости от промежутка так, как показано на рисунке 1. При переходе через точку x=2, производная меняет знак с плюса на минус, а при переходе через точку x=4 - с минуса на плюс.
4) В точке x=2 функция имеет максимум y max =20, а в точке x=4 - минимум y min =16.

Теорема 3. (2-ое достаточное условие существование экстремума).

Пусть f"(x 0) и в точке х 0 существует f""(x 0). Тогда если f""(x 0)>0, то х 0 – точка минимума, а если f""(x 0)<0, то х 0 – точка максимума функции y=f(x).

На отрезке функция y=f(x) может достигать наименьшего (у наим) или наибольшего (у наиб) значения либо в критических точках функции, лежащих в интервале (а;b), либо на концах отрезка .

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y=f(x) на отрезке :

1) Найти f"(x).
2) Найти точки, в которых f"(x)=0 или f"(x) - не существует, и отобрать из них те, которые лежат внутри отрезка .
3) Вычислите значение функции y=f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у наиб) и наименьшим (у наим) значениями функции на отрезке .

Пример 19. Найти наибольшее значение непрерывной функции y=x 3 -3x 2 -45+225 на отрезке .

1) Имеем y"=3x 2 -6x-45 на отрезке
2) Производная y" существует при всех х. Найдем точки, в которых y"=0; получим:
3x 2 -6x-45=0
x 2 -2x-15=0
x 1 =-3; x 2 =5
3) Вычислим значение функции в точках x=0 y=225, x=5 y=50, x=6 y=63
Отрезку принадлежит лишь точка x=5. Наибольшим из найденных значений функции является 225, а наименьшим – число 50. Итак, у наиб =225, у наим =50.

Исследование функции на выпуклости

На рисунке изображены графики двух функций. Первый из них обращен выпуклостью вверх, второй – выпуклостью вниз.

Функция y=f(x) непрерывна на отрезке и дифференцируема в интервале (а;b), называется выпуклой вверх (вниз) на этом отрезке, если при axb ее график лежит не выше (не ниже) касательной, проведенной в любой точке M 0 (x 0 ;f(x 0)), где axb.

Теорема 4. Пусть функция y=f(x) имеет вторую производную в любой внутренней точке х отрезка и непрерывна на концах этого отрезка. Тогда если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вниз на отрезке ; если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вверх на .

Теорема 5. Если функция y=f(x) имеет вторую производную на интервале (а;b) и если она меняет знак при переходе через точку x 0 , тогда M(x 0 ;f(x 0)) есть точка перегиба.

Правило нахождения точек перегиба:

1) Найти точки, в которых f""(x) не существует или обращается в нуль.
2) Исследовать знак f""(x) слева и справа от каждой найденной на первом шаге точки.
3) На основании теоремы 4 сделать вывод.

Пример 20. Найти точки экстремума и точки перегиба графика функции y=3x 4 -8x 3 +6x 2 +12.

Имеем f"(x)=12x 3 -24x 2 +12x=12x(x-1) 2 . Очевидно, что f"(x)=0 при x 1 =0, x 2 =1. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума (у min =12), а в точке x=1 экстремума нет. Далее, находим . Вторая производная обращается в нуль в точках x 1 =1, x 2 =1/3. Знаки второй производной изменяются следующим образом: На луче (-∞;) имеем f""(x)>0, на интервале (;1) имеем f""(x)<0, на луче (1;+∞) имеем f""(x)>0. Следовательно, x= - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x=1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если x=, то y= ; если, то x=1, y=13.

Алгоритм отыскания асимптоты графика

I. Если y=f(x) при x → a , то x=a - есть вертикальная асимптота.
II. Если y=f(x) при x → ∞ или x → -∞ , тогда у=А - горизонтальная асимптота.
III. Для нахождения наклонной асимптоты используем следующий алгоритм:
1) Вычислить . Если предел существует и равен b, то y=b - горизонтальная асимптота; если , то перейти ко второму шагу.
2) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен k, то перейти к третьему шагу.
3) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен b, то перейти к четвертому шагу.
4) Записать уравнение наклонной асимптоты y=kx+b.

Пример 21: Найти асимптоту для функции

1)
2)
3)
4) Уравнение наклонной асимптоты имеет вид

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 22: Построить по изложенной выше схеме график функции

Решение.
I. Областью определения функции является множество всех вещественных чисел, кроме x=1.
II. Так уравнение x 2 +1=0 не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
III. Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как y → ∞ при х → -∞, у → +∞ при х → 1+, то прямая x=1 является вертикальной асимптотой графика функции.
Если х → +∞(x → -∞), то у → +∞(y → -∞); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

Решая уравнение x 2 -2x-1=0 получаем две точки возможного экстремума:
x 1 =1-√2 и x 2 =1+√2

V. Для нахождения критических точек вычислим вторую производную:

Так как f""(x) в нуль не обращается, то критических точек нет.
VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: x 1 =1-√2 и x 2 =1+√2, разделяют область существования функции на интервалы (-∞;1-√2),(1-√2;1+√2) и (1+√2;+∞).

В каждом из этих интервалов производная сохраняет знак: в первом – плюс, во втором – минус, в третьем – плюс. Последовательность знаков первой производной запишется так: +,-,+.
Получаем, что функция на (-∞;1-√2) возрастает, на (1-√2;1+√2) убывает, а на (1+√2;+∞) снова возрастает. Точки экстремума: максимум при x=1-√2, причем f(1-√2)=2-2√2 минимум при x=1+√2, причем f(1+√2)=2+2√2. На (-∞;1) график направлен выпуклостью вверх, а на (1;+∞) - вниз.
VII Составим таблицу полученных значений

VIII По полученным данным строим эскиз графика функции