Основные рефлексы спинного мозга таблица. Рефлекторная деятельность спинного мозга. Структурные единицы среднего мозга

Лекция 19. Частная физиология центральной нервной системы

Спинной мозг представляет собой нервный тяж длиной около 45 см у мужчин и около 42 см у женщин. Он имеет сегментарное строение (31 - 33 сегмента) - каждый его участок связан с определенным метамерным сегментом тела. Спинной мозг анатомически делят на пять отделов: шейный грудной поясничный крестцовый и копчиковый.

Общее число нейронов в спинном мозге приближается к 13 млн. Большинство из них (97 %) являются интернейронами, 3 % относят к эфферентным нейронам.

Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются мотонейронами. Различают α- и γ-мотонейроны. α-Мотонейроны иннервируют экстрафузальные (рабочие) мышечные волокна скелетных мышц, имеющих высокую скорость проведения возбуждения по аксонам (70-120 м/с, группа А α).

γ-Мотонейроны рассредоточены среди α-мотонейронов, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора).

Их активность регулируется посылками от вышележащих отделов ЦНС. Оба типа мотонейронов участвуют в механизме α- γ-сопряжения. Суть его в том, что при изменении сократительной деятельности интрафузальных волокон под влиянием γ-мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует α-мото-нейроны «своей» мышцы и тормозит α-мото-нейроны мышцы-антагониста.

В этих рефлексах особо важна роль афферентного звена. Мышечные веретена (мышечные рецепторы) расположены параллельно скелетной мышце своими концами крепятся к соединительнотканной оболочке пучка экстрафузальных мышечных волокон при помощи напоминающих сухожилия полосок. Мышечный рецептор состоит из нескольких поперечнополосатых интрафузальных мышечных волокон, окруженных соединительнотканной капсулой. Вокруг средней части мышечного веретена обвивается несколько раз окончание одного афферентного волокна.

Сухожильные рецепторы (рецепторы Гольджи) заключены в соединительнотканную капсулу и локализуются в сухожилиях скелетных мышц вблизи от сухожильно-мышечного соединения. Рецепторы представляют собой безмиелиновые окончания толстого миелинового афферентного волокна (подойдя к капсуле рецепторов Гольджи, это волокно теряет миелиновую оболочку и делится на несколько окончаний). Сухожильные рецепторы крепятся относительно скелетной мышцы последовательно, что обеспечивает их раздражение при натяжении сухожилия Поэтому сухожильные рецепторы посылают информацию в мозг о том, что мышца сокращена (напряжено и сухожилие), а мышечные рецепторы - что мышца расслаблена и удлинена. Импульсы от сухожильных рецепторов тормозят нейроны своего центра и возбуждают нейроны центра-антагониста (у мышц-сгибателей это возбуждение выражено слабее).



Таким образом регулируются тонус скелетных мышц и двигательные реакции.

Афферентные нейроны соматической нервной системы локализуются в спинномозговых чувствительных узлах. Они имеют т-образные отростки, один конец которых направляется на периферию и образует рецептор в органах, а другой следует в спинной мозг через дорсальный корешок и образует синапс с верхними пластинами серого вещества спинного мозга. Система вставочных нейронов (интернейронов) обеспечивает замыкание рефлекса на сегментарном уровне либо передает импульсы в надсегментарные области ЦНС.

Нейроны симпатической нервной системы являются также вставочными; расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга Они фоново-активны, частота их разрядов 3-5 имп/с. Нейроны парасимпатического отдела вегетативной нервной системы также вставочные, локализуются в сакральном отделе спинного мозга и также фоново-активны.

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетных мышц.

Миотатический и сухожильный рефлексы соматической нервной системы, элементы шагательного рефлекса, управления инспираторными и экспираторными мышцами локализованы здесь.

Спинальные центры симпатического отдела вегетативной нервной системы осуществляют управление зрачковым рефлексом, регулируют деятельности сердца, сосудов, почек, органов пищеварительной системы.

Для спинного мозга характерна проводниковая функция.

Она осуществляется с помощью нисходящих и восходящих путей.

Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляются через передние корешки (закон Белла-Мажанди).

Каждый корешок представляет собой множество нервных волокон. Например, дорсальный корешок кошки включает 12 тыс., а вентральный - 6 тыс. нервных волокон.

Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов:

1) кожных рецепторов - болевых, температурных, рецепторов прикосновения, давления, вибрации;

2) проприорецепторов - мышечных (мышечных веретен), сухожильных (рецепторов Гольджи), надкостницы и оболочек суставов;

3) рецепторов внутренних органов - висцеральных, или интерорецепторов. рефлексов.

В каждом сегменте спинного мозга имеются нейроны, дающие начало восходящим проекциям к вышерасположенным структурам нервной системы. Строение путей Голля, Бурдаха, спиномозжечковый и спиноталамический хорошо освещены в курсе анатомии.

Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность .

Нейроны спинного мозга образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию спинного мозга.

Задние рога содержат нейроны (интернейроны), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором-четвертом сегментах – парасимпатического.

В составе спинного мозга имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны – нейроны собственного аппарата спинного мозга, они устанавливают связи внутри и между сегментами.

Белое вещество спинного мозга образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные – рефлексы с одного внутреннего органа на другой, висцеро-мышечные – рефлексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу. Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела).

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов спинного мозга друг с другом или с вышележащими отделами ЦНС.

2. Физиология заднего и среднего мозга

Структурные образования заднего мозга.

1. V–XII пара черепных нервов.

2. Вестибулярные ядра.

3. Ядра ретикулярной формации.

Основные функции заднего мозга проводниковая и рефлекторная.

Через задний мозг проходят нисходящие пути (кортикоспинальный и экстрапирамидный), восходящие – ретикуло– и вестибулоспинальный, отвечающие за перераспределение мышечного тонуса и поддержание позы тела.

Рефлекторная функция обеспечивает:

1) защитные рефлексы (слезотечение, мигание, кашель, рвоту, чиханье);

3) рефлексы поддержания позы (лабиринтные рефлексы). Статические рефлексы поддерживают тонус мышц для сохранения позы тела, статокинетические перераспределяют тонус мышц для принятия позы, соответствующей моменту прямолинейного или вращательного движения;

4) центры, расположенные в заднем мозге, регулируют деятельность многих систем.

Сосудистый центр осуществляет регуляцию сосудистого тонуса, дыхательный – регуляцию вдоха и выдоха, комплексный пищевой центр – регуляцию секреции желудочных, кишечных желез, поджелудочной железы, секреторных клеток печени, слюнных желез, обеспечивает рефлексы сосания, жевания, глотания.

Повреждение заднего мозга приводит к утрате чувствительности, волевой моторики, терморегуляции, но дыхание, величина артериального давления, рефлекторная активность при этом сохраняются.

Структурные единицы среднего мозга:

1) бугры четверохолмия;

2) красное ядро;

3) черное ядро;

4) ядра III–IV пары черепно-мозговых нервов.

Бугры четверохолмия выполняют афферентную функцию, остальные образования – эфферентную.

Бугры четверохолмия тесным образом взаимодействуют с ядрами III–IV пар черепно-мозговых нервов, красным ядром, со зрительным трактом. За счет этого взаимодействия происходит обеспечение передними буграми ориентировочной рефлекторной реакции на свет, а задними – на звук. Обеспечивают жизненно важные рефлексы: старт-рефлекс – двигательная реакция на резкий необычный раздражитель (повышение тонуса сгибателей), ориентир-рефлекс – двигательная реакция на новый раздражитель (поворот тела, головы).

Передние бугры с ядрами III–IV черепно-мозговых нервов обеспечивают реакцию конвергенции (схождение глазных яблок к срединной линии), движение глазных яблок.

Красное ядро принимает участие в регуляции перераспределения мышечного тонуса, в восстановлении позы тела (повышает тонус сгибателей, понижают тонус разгибателей), поддержании равновесия, подготавливает скелетные мышцы к произвольным и непроизвольным движениям.

Черное вещество мозга координирует акт глотания и жевания, дыхания, уровень кровяного давления (патология черного вещества мозга ведет к повышению кровяного давления).

3. Физиология промежуточного мозга

В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга.

Таламус – парное образование, наиболее крупное скопление серого вещества в промежуточном мозге.

Топографически выделяют передние, средние, задние, медиальные и латеральные группы ядер.

По функции выделяют:

1) специфические:

а) переключающие, релейные. Получают первичную информацию от различных рецепторов. Нервный импульс по таламокортикальному тракту идет в строго ограниченную зону коры головного мозга (первичные проекционные зоны), за счет этого возникают специфические ощущения. Ядра вентрабазального комплекса получают импульс от рецепторов кожи, проприорецепторов сухожилий, связок. Импульс направляется в сенсомоторную зону, происходит регуляция ориентировки тела в пространстве. Латеральные ядра переключают импульс от зрительных рецепторов в затылочную зрительную зону. Медиальные ядра реагируют на строго определенную длину звуковой волны и проводят импульс в височную зону;

б) ассоциативные (внутренние) ядра. Первичный импульс идет от релейных ядер, перерабатывается (осуществляется интегративная функция), передается в ассоциативные зоны коры головного мозга, активность ассоциативных ядер возрастает при действии болевого раздражителя;

2) неспецифические ядра. Это неспецифический путь передачи импульсов в кору головного мозга, изменяется частота биопотенциала (моделирующая функция);

3) моторные ядра, участвующие в регуляции двигательной активности. Импульсы от мозжечка, базальных ядер идут в моторную зону, осуществляют взаимосвязь, согласованность, последовательность движений, пространственную ориентацию тела.

Таламус – коллектор всей афферентной информации, кроме обонятельных рецепторов, важнейший интегративный центр.

Гипоталамус находится на дне и по бокам III желудочка мозга. Структуры: серый бугор, воронка, сосцевидные тела. Зоны: гипофизотропная (преоптические и передние ядра), медиальная (средние ядра), латеральная (наружные, задние ядра).

Физиологическая роль – высший подкорковый интегративный центр вегетативной нервной системы, который оказывает действие на:

1) терморегуляцию. Передние ядра – это центр теплоотдачи, где происходит регуляция процесса потоотделения, частоты дыхания и тонуса сосудов в ответ на повышение температуры окружающей среды. Задние ядра – центр теплопродукции и обеспечения сохранности тепла при понижении температуры;

2) гипофиз. Либерины способствуют секреции гормонов передней доли гипофиза, статины тормозят ее;

3) жировой обмен. Раздражение латеральных (центра питания) ядер и вентромедиальных (центра насыщения) ядер ведет к ожирению, торможение – к кахексии;

4) углеводный обмен. Раздражение передних ядер ведет к гипогликемии, задних – к гипергликемии;

5) сердечно-сосудистую систему. Раздражение передних ядер оказывает тормозное влияние, задних – активирующее;

6) моторную и секреторную функции ЖКТ. Раздражение передних ядер повышает моторику и секреторную функцию ЖКТ, задних – тормозит половую функцию. Разрушение ядер ведет к нарушению овуляции, сперматогенеза, снижению половой функции;

7) поведенческие реакции. Раздражение стартовой эмоциональной зоны (передних ядер) вызывает чувство радости, удовлетворения, эротические чувства, стопорной зоны (задних ядер) вызывает страх, чувство гнева, ярости.

4. Физиология ретикулярной формации и лимбической системы

Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.

Физиологическая особенность нейронов ретикулярной формации:

1) самопроизвольная биоэлектрическая активность. Ее причины – гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);

2) достаточно высокая возбудимость нейронов;

3) высокая чувствительность к биологически активным веществам.

Ретикулярная формация имеет широкие двусторонние связи со всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:

1) растральный (восходящий) отдел – ретикулярная формация промежуточного мозга;

2) каудальный (нисходящий) – ретикулярная формация заднего, среднего мозга, моста.

Физиологическая роль ретикулярной формации – активация и торможение структур мозга.

Лимбическая система – совокупность ядер и нервных трактов.

Структурные единицы лимбической системы:

1) обонятельная луковица;

2) обонятельный бугорок;

3) прозрачная перегородка;

4) гиппокамп;

5) парагиппокамповая извилина;

6) миндалевидные ядра;

7) грушевидная извилина;

8) зубчатая фасция;

9) поясная извилина.

Основные функции лимбической системы:

1) участие в формировании пищевого, полового, оборонительного инстинктов;

2) регуляция вегетативно-висцеральных функций;

3) формирование социального поведения;

4) участие в формировании механизмов долговременной и кратковременной памяти;

5) выполнение обонятельной функции;

6) торможение условных рефлексов, усиление безусловных;

7) участие в формировании цикла «бодрствование – сон».

Значимыми образованиями лимбической системы являются:

1) гиппокамп. Его повреждение ведет к нарушению процесса запоминания, обработки информации, снижению эмоциональной активности, инициативности, замедлению скорости нервных процессов, раздражение – к повышению агрессии, оборонительных реакций, двигательной функции. Нейроны гиппокампа отличаются высокой фоновой активностью. В ответ на сенсорное раздражение реагируют до 60 % нейронов, генерация возбуждения выражается в длительной реакции на однократный короткий импульс;

2) миндалевидные ядра. Их повреждение ведет к исчезновению страха, неспособности к агрессии, гиперсексуальности, реакций ухода за потомством, раздражение – к парасимпатическому эффекту на дыхательную и сердечно-сосудистую, пищеварительную системы. Нейроны миндалевидных ядер имеют выраженную спонтанную активность, которая тормозится или усиливается сенсорными раздражителями;

3) обонятельная луковица, обонятельный бугорок.

Лимбическая система оказывает регулирующее влияние на кору головного мозга.

5. Физиология коры больших полушарий

Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см 2 .

Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, моторными (клетками Бетца), интернейронами (тормозными и возбуждающими нейронами).

Кора полушарий построена по колончатому принципу. Колонки – функциональные единицы коры, делятся на микромодули, которые имеют однородные нейроны.

По определению И. П. Павлова, кора больших полушарий – главный распорядитель и распределитель функций организма.

Основные функции коры больших полушарий:

1) интеграция (мышление, сознание, речь);

2) обеспечение связи организма с внешней средой, приспособление его к ее изменениям;

3) уточнение взаимодействия между организмом и системами внутри организма;

4) координация движений (возможность осуществлять произвольные движения, делать непроизвольные движения более точными, осуществлять двигательные задачи).

Эти функции обеспечиваются корригирующими, запускающими, интегративными механизмами.

И. П. Павлов, создавая учение об анализаторах, выделял три отдела: периферический (рецепторный), проводниковый (трех-нейронный путь передачи импульса с рецепторов), мозговой (определенные области коры больших полушарий, где происходит переработка нервного импульса, который приобретает новое качество). Мозговой отдел состоит из ядер анализатора и рассеянных элементов.

Согласно современным представлениям о локализации функций при прохождении импульса в коре головного мозга возникают три типа поля.

1. Первичная проекционная зона лежит в области центрального отдела ядер-анализаторов, где впервые появился электрический ответ (вызванный потенциал), нарушения в области центральных ядер ведут к нарушению ощущений.

2. Вторичная зона лежит в окружении ядра, не связана с рецепторами, по вставочным нейронам импульс идет из первичной проекционной зоны. Здесь устанавливается взаимосвязь между явлениями и их качествами, нарушения ведут к нарушению восприятий (обобщенных отражений).

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия. При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Совместная работа больших полушарий и их асимметрия.

Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким образом осуществляется содружественная работа полушарий и реципрокная иннервация при совместной работе.

Функциональная асимметрия. В левом полушарии доминируют речевые, двигательные, зрительные и слуховые функции. Мыслительный тип нервной системы является левополушарным, а художественный – правополушарным.

Торможение - активный процесс задержки деятельности органа. В ЦНС всегда 2 процесса - торможение(координационное значение, ограничительное(регуляция потока чувствительной информации), охранительное(оно предупреждает нейроны от перевозбуждения)) и возбуждение. Открытие торможение связано с работой Сеченова. Он наложил в область таламуса NaCl (заторможено)

Гольц При погружении лапки в кислоту и сдавлении передней лапки- отдергивание.

Шеррингтон - рецепторное торможение.

Классификация торможения-

  1. Первичное торможение -специализированное тормозные нейроны со специальными медиаторами(ГАМК, глицин) а- постсинаптическое б-пресинаптическое
  2. Вторичное торможение - в возбуждающих синапсах в определенном состоянии а)пессимальное б)после возбуждения

Тормозные нейроны не отличаются от других. Аксоны их образуют тормозной синапс и по окончанию аксона содержат специфические медиаторы - ГАМК и глицин. Аксоны тормозных нейронов заканчиваются на аксоне возбуждающего-аксо-аксональный синапс(пресинаптическое торможение)

ГАМК(рецептор А-Cl, B-К, С-Сl) сетчатка, гиппокамп, новая кора

При возбуждении тормозного нейрона будет выделятся ГАМК, если она взаимодействует с А рецептором мембрана гиперполяризуется

Мышечное сокращение

Одиночный импульс - 1) латентный период 2)фаза укорочения 3)фаза расслабление(уменьшение кальция и отсоединение головки миозина от актиновых филаментов). Суммация - полная(гладкий тетанус), неполная(зубчатый тетанус).

Та максимальная частота, которая вызывает наилучший гладкий тетанус - оптимум.

Изотонический режим(напряжение постоянно, длина меняется)

Изометрический режим(напряжение изменяется, длина не меняется)

Постсинаптическое торможение - специальные тормозные нейроны-специальные тормозные синапсы.

Гиперполяризация уменьшит чувствительность мембраны. Где выделяется глицин, там есть Cl-каналы. Cl вызывает гиперполяризацию. Нейроны вызывают торможение. Лекарственные препараты усиливают действие торможения(бензодиазепины). Процесс гиперполяризации будет более длительным. Таким действием обладают барбитураты и алкоголь.

Пресинаптическое торможение. Тормозной нейрон образует минапс с аксоном тормозного нейрона. Аксоаксональный синапс. Если выделится ГАМК то рецепторы типа И увеличивают проницаемость К. К гиперполярмзует мембрану, уменьшает проницаемость для ионов Ca. Пресинаптическое торможение блокирует действие к возбуждающему синапсу. И гипер и де поляризация блокирует Ca каналы.

Вторичное торможение - пессимальное, в след за возбуждением.

Пессимальное при увеличении потока возбуждающих импульсов выделяется большое количество медиатора например ацетилхолина, который холинэстераза не успевает разрушать. Это приводит к стойкой деполяризации и к понижению чувствительности. Торможение в след за возбуждением в том случае, если формируется длит «+» следовой потенциал. Связан с усиление выхода ионов К после возбуждения К выходит и усиливает + заряд на мембране - гиперполяризация.

Координация рефлексов

Согласованное взаимодействие нервных центров и нервных процессов, которое обеспечивает более значимых рефлексов в данный рецепторный момент торможения блокируется либо сгибатель, либо разгибатель. Конвергенция, иррадиация, механизм обратной связи, явление доминанты.

Конвергенция - слияние возбуждений и сосредоточение на группе нейронов(принцип суммации)

Сенсорная конвергенция - конвергенция возбуждается от различных рецепторов. Мультибиологическая конвергенция - один и тот же рецептор воспринимает сигналы разных раздражителей.

Процесс иррадиации - захват большого числа нервных центров

Рецепторное торможение - один центр возбуждается, другой затормаживается (сгибатели/разгибатели)

Механизм обратной связи - возникает с исполнительных органов, движение контролируется импульсами.

Доминанта - понятие ввел Ухтомский(доминанта одного центра над др.) Акт глотания, фантомные боли

Физиология спинного мозга

Распологается в позвоночном канале, окружен спинномозговой жидкостью. Верхняя граница чуть выше большого затылочного отверстия, где спинной мозг граничит с продолговатым. Нижняя граница соответствует 12 грудному или 1ому поясничному позвонку. Спинной мозг -31-33 сегмента. 8шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1-3 копчиковых. От каждого сегмента спинного мозга отходят 2 пары спинальных нервов, которые образуют 2 пары корешков. 2 утолщения - шейное(С4-Т2) , поясничное 10-12T. Ниже расположен конский хвост. Спинномозговые нервы связаны с определенными сегментами тела. Есть зоны перекрытия иннервации. Из-за этого только при повреждении 3х сегментов потеря иннервации. Серое вещество - бабочка.

См.тетрадь. Спинному мозгу присуща рефлекторная функция и проводниковая.

Рефлексы - двигательные(тонические), локомоторные(перемещение тела в пространстве), вегетативные. Работа сегментов спинного мозга контролируется надсегментарными центрами.

Структура нервно - мышечного волокна - волокна с ядерной сумкой и с ядерной цепочкой(области не способные к сокращению).

Рефлекс на растяжение - миотатический рефлекс.

Мышечные веретена информируют нас о степени сокращения мышцы, о скорости. Волокна с ядерной сумкой - быстрое изменение длины, яд. Цепочкой - медленное.

Альфа эфферентные волокна в выполнении точных движений, моторные - тонус мышц.

Сухожильные рефлексы-

Торможение в спинном мозге

Для осуществления спинальных эффектов очень важен процесс торможения. Это координация спин. Рефлексов, регуляция уровня возбудимости моторных нейронов. Прямое - интернейронное -обеспечивает согласованную работу центров антогонистов(сгибатели-разгибатели), предотвращает растяжение. Непрямое - возникает в альфа нейронах. Образует коллатерали с клетками реншоу. Клетка Реншоу образует тормозной синапс на альфа нейронах. Процесс саморегуляции альфа моторных нейронов. Пресинаптическое торможение с помощью аксо-аксональных синапсов.

Проводниковая функция -

Восходящие пути -

  1. Тонкий пучок Голля - от нижней части тела - проприорецепторы сухожилий и мышц, часть тактильных рецепторов кожи, висцерорецепторы
  2. Клиновидный пучок Бурдаха - от кожи верхней части тела
  3. Латеральный спиноталамический тракт - болевая и температурная чуствительность
  4. Вентральный спино-таламический - тактильная чуствительность
  5. Дорсальный спино-мозжечковый тракт Флексинга- дважды перекрещенный - проприорецепторы
  6. Вентральный спино-мозжечковый тракт Товерса- проприорецепторы

Нисходящие пути -

  1. Латеральный кортико-спинальный пирамидный тракт - перекрест в продолговатом мозге, мотонейроны передних рогов спинного мозга, двигательные команды. Спинальный паралич
  2. Прямой передний кортикоспинальный пирамидный тракт -перекрест на уровне сегментов, команды как у латерал. Тракта. Переферический паралич
  3. Руброспинальный тракт Моакова - красные ядра, перекрест Фореля в среднем мозге, интернейроны спинного мозга, повышает тонус мышц сгибателей и угнетает тонус мышц разгибателей
  4. Вестибулоспинальный тракт - вестибулярные ядра Дейтерса, перекрест, мотонейроны спинного мозга, повышает тонус мышц разгибателей и угнетает тонус сгибателей
  5. Ретикулоспинальный тракт - ядра ретикулярной формации, интернейроны спинного мозга, регуляция тонуса мышц
  6. Тектоспинальный тракт - ядра покрышки среднего мозга, интернейроны спинного мозга, регуляция тонуса мышц.

В области задней латеральной и передней латеральной борозд от спинного мозга отходят передние и задние корешки спинномозговых нервов. На заднем корешке имеется утолщение, представляющее собой спинномозговой узел. Передний и задний корешки соответствующей борозды соединяются между собой в области межпозвоночного отверстия и образуют спинномозговой нерв.

Закон Белла-Мажанди

Закономерность распределения нервных волокон в корешках спинного мозга получила название Закон Белла-Мажанди (по имени шотландского анатома и физиолога Ч. Белла и французского физиолога Ф. Мажанди): чувствительные волокна вступают в спинной мозг в составе задних корешков, а двигательные выходят в составе передних.

Сегмент спинного мозга

– участок спинного мозга, соответствующий четырём корешкам спинномозговых нервов или паре спинномозговых нервов, расположенных на одном уровне (Рис.45).

Всего 31-33 сегмента: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1-3 копчиковых. Каждый участок связан с определённой частью тела.

Дерматом – часть кожи, иннервируемая одним сегментом.

Миотом – часть поперечно-полосатой мускулатуры, иннервируемая одним сегментом.

Спланхнотом – часть внутренних органов, иннервируемая одним сегментом.

На поперечном сечении спинного мозга невооруженным глазом видно, что спинной мозг состоит из серого вещества и окружающего его белого вещества. Серое вещество имеет вид буквы Н или бабочки и состоит из тел нервных клеток (ядер). Серое вещество мозга образует передние, боковые и задние рога.

Белое вещество, образовано нервными волокнами. Нервные волокна, являющиеся элементами проводящих путей, образуют передние, боковые и задние канатики.

Нейроны спинного мозга :- вставочные нейроны или интернейроны (97%) передают информацию на вставочные нейроны на 3-4 выше- и нижележащих сегментов.

мотонейроны (3%) – мультиполярные нейроны собственных ядер передних рогов. Альфа-мотонейроны иннервируют поперечно-полосатую мышечную ткань (экстрафузальные мышечные волокна), гамма-мотонейроны (иннервируют интрафузальные мышечные волокна).

нейроны вегетативных нервных центров – симпатические (промежуточно-латеральные ядра боковых рогов спинного мозга C VIII -L II — III), парасимпатические (промежуточно-латеральные ядра S II — IV)

Проводящие системы спинного мозга

  1. восходящие пути (экстеро-, проприо-, интероцептивная чувствительность)
  2. нисходящие пути (эффекторные, двигательные)
  3. собственные (проприоспинальные) пути (ассоциативные и комиссуральные волокна)

Проводниковая функция спинного мозга:

  1. Восходящие
    • Тонкий пучок Голля и клиновидный пучок Бурдаха в задних канатиках спинного мозга (образованы аксонами псевдоуниполярных клеток, осуществляют передачу импульсов сознательной проприоцептивной чувствительности)
    • Латеральный спиноталамический в боковых канатиках (боль, температура) и вентральный спиноталамический тракты в передних канатиках (тактильная чувствительность) — аксоны собственных ядер заднего рога)
    • Задний спинно-мозжечковый путь Флексига без перекреста, аксоны клеток грудного ядра и передний спинно-мозжечковый Говерса аксоны клеток медиального промежуточного ядра частично своей стороны, частично противоположной (бессознательная проприоцептивная чувствительность)
    • Спинно-ретикулярный путь (передние канатики)
  2. Нисходящие
  • Латеральный корково-спинномозговой (пирамидный) путь (лат.)– 70-80% от всего пирамидного пути) и передний корково-спинномозговой (пирамидный) путь (передние канатики)
  • Руброспинальный путь Монакова (латеральные канатики)
  • Вестибуло-спинномозговой путь и оливо-спинномозговой путь (латеральные канатики) (поддержание тонуса мышц разгибателей)
  • Ретикуло-спинномозговой путь (пер.) (РФ моста — поддержание тонуса мышц-разгибателей, РФ продолговатого мозга — сгибателей)
  • Текто-спинномозговой путь (пер.) – перекрест в среднем мозге. (ориентировочные сторожевые рефлексы в ответ на внезапные зрительные и слуховые, обонятельные и тактильные раздражители)
  • Медиальный продольный пучок – аксоны клеток ядер Кахаля и Даркшевича среднего мозга – обеспечение сочетанного поворота головы и глаз

Тоническая функция спинного мозга:

Даже во сне мышцы не расслабляются полностью и сохраняют напряжение. Это минимальное напряжение, которое сохраняется в состоянии расслабленности и покоя, и называют мышечным тонусом . Мышечный тонус имеет рефлекторную природу. Степень сокращения мышц в состоянии покоя и сокращения регулируется благодаря проприорецепторам — мышечным веретёнам Интрафузальное мышечное волокно с ядрами, расположенными цепочкой.

  1. Интрафузальное мышечное волокно с ядрами, расположенными в ядерной сумке.
  2. Афферентные нервные волокна.
  3. Эфферентные α-нервные волокна
  4. Соединительнотканная капсула мышечного веретена.

Мышечные веретёна (мышечные рецепторы) расположены параллельно скелетной мышце – своими концами крепятся к соединительнотканной оболочке пучка экстрафузальных мышечных волокон. Мышечный рецептор состоит из нескольких поперечнополосатых интрафузальных мышечных волокон , окружённых соединительнотканной капсулой (длина 4-7 мм, толщина 15-30 мкм). Существует два морфологических типа мышечных веретён: с ядерной сумкой и с ядерной цепочкой.

Когда мышца расслабляется (удлиняется), растягивается и мышечный рецептор, а именно его центральная часть. Здесь повышается проницаемость мембраны для натрия, натрий входит внутрь клетки, генерируется рецепторный потенциал. Интрафузальные мышечные волокна имеют двойную иннервацию :

  1. От центральной части начинается афферентное волокно, по которому возбуждение передаётся в спинной мозг, где происходит переключение на альфа-мотонейрон, что ведёт к сокращению мышцы.
  2. К периферическим частям подходят эфферентные волокна от гамма-мотонейронов. Гамма-мотонейроны находятся под постоянным нисходящим (тормозным или возбуждающим) влиянием от моторных центров ствола мозга (ретикулярная формация, красные ядра среднего мозга, вестибулярные ядра моста).

РЕФЛЕКТОРНАЯ функция спинного мозга заключается в выполнении

всех рефлексов, дуги которых (полностью или частично) располагаются в спинном мозге.

Рефлексы спинного мозга классифицируются по следующим критериям: а) по расположению рецептора, б) по виду рецептора, в) по расположению нервного центра рефлекторной дуги, в) по степени сложности нервного центра, г) по виду эффектора, д.) по соотношению в расположении рецептора и эффектора, с) по состоянию организма, ж) по использованию в медицине.

Рефлексы спинного мозга

Соматические по 1 и 5 отделу рефлекторной дуги делятся на:

  1. проприомоторные
  2. висцеромоторные
  3. кутаномоторные

По анатомическим областям делятся на:

  1. Рефлексы конечностей

    • Сгибательные (фазные: локтевой C V — VI , ахиллов S I — II – проприомоторные подошвенный S I — II — кутаномоторный – защитные, тонические – поддержание позы)

    • Разгибательные (фазные – коленный L II — IV , тонические, рефлексы растяжения (миотатические – поддержание позы)

    • Позные — проприомоторные (шейнотонические при обязательном участии вышележащих отделов ЦНС)

    • Ритмические – многократное повторное сгибание-разгибание конечностей (потирание, чесательный, шагательный)

  2. Брюшные рефлексы – кутаномоторные (верхний Th VIII — IX , средний Th IX — X , нижний Th XI — XII)

  3. Рефлексы органов малого таза (кремастерный L I — II , анальный S II — V)

Вегетативные по 1 и 5 отделу рефлекторной дуги делятся на:

  1. проприо- висцеральные
  2. висцеро- висцеральные
  3. кутано-висцеральные

Функции спинного мозга:

  1. Проводниковая
  2. Тоническая
  3. Рефлекторная

Ретикулярная формация.

РФ – это комплекс анатомически и функционально связанных нейронов шейного отдела спинного мозга и ствола (продолговатый мозг, мост, средний мозг) головного мозга, нейроны которых характеризуются обилием коллатералей и синапсов. За счет этого вся информация, поступающая в ретикулярную формацию, теряет свою специфичность, а количество нервных импульсов возрастает. Поэтому ретикулярную формацию называют еще «энергетической станцией» центральной нервной системы.

Ретикулярная формация оказывает следующие влияния: а) нисходящее и восходящее, б) активирующее и тормозящее, в) фазическое и тоническое. Она, также, имеет непосредственное отношение к работе биосинхронизирующих систем организма.

Нейроны РФ имеют длинные маловетвящиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т-образное разветвление: одна ветвь восходящая, другая нисходящая.

Функциональные особенности нейронов РФ:

  1. Полисенсорная конвергенция: получают информацию от нескольких сенсорных путей, идущих от разных рецепторов.
  2. У нейронов РФ длительный латентный период ответа на периферическую импульсацию (полисинаптический путь)
  3. Нейроны ретикулярной формации имеют тоническую активность в покое 5-10 импульсов в секунду
  4. Высокая чувствительность к химическим раздражителям (адреналин, углекислый газ, барбитураты, аминазин)

Функции РФ:

  1. Соматическая функция: влияние на мотонейроны ядер ЧМН, мотонейроны спинного мозга и активность мышечных рецепторов.
  2. Восходящее возбуждающее и тормозное действие на кору большого мозга (регуляция цикла сон/бодрствование, образует неспецифический проводниковый путь многих анализаторов)
  3. РФ входит в состав жизненно важных центров: сердечно-сосудистого и дыхательного, центров глотания, сосания, жевания

Спинальный шок

Спинальным шоком называют резкие изменения в функции центров спинного мозга, наступающие в результате полной или частичной перерезки (или повреждения) спинного мозга не выше С III — IV . Нарушения, наступающие при этом, тем резче и продолжительнее, чем выше на эволюционной ступени развития находится животное. Шок лягушки кратковременен - продолжается только несколько минут. Собаки и кошки восстанавливаются через 2-3 дня, причем восстановления так называемых произвольных движений (условных двигательных рефлексов) не происходит. При развитии спинального шока различают две фазы: 1 и 2-я.

В 1-ю фазу можно выделить следующие симптомы: атония, анестезия, арефлексия, отсутствие произвольных движений и вегетативные расстройства ниже места повреждения.

Вегетативные нарушения: При шоке наступает расширение сосудов, падение кровяного давления, нарушение теплообразования, увеличение теплоотдачи, происходит задержка мочи вследствие спазма сфинктера мочевого пузыря, сфинктер прямой кишки расслабляется, вследствие чего опорожнение прямой кишки происходит по мере поступления в нее кала.

1-я фаза шока возникает в результате пассивной гипрполяризации мотонейронов, в отсутствие возбуждающих влияний, поступающих из вышележащих отделов нервной системы в спинной мозг.

2-я фаза : Сохраняется анестезия, отсутствие произвольных движений, развивается гипертония и гиперрефлексия. Вегетативные рефлексы у человека восстанавливаются через несколько месяцев, но произвольное опорожнение мочевого пузыря и произвольная дефекация при перерыве связей с корой полушарий не восстанавливаются.

2-фаза возникает из-за исходной частичной деполяризации мотонейронов передних рогов спинного мозга и отсутствия тормозных влияний от надсегментарного аппарата.

Спинной мозг выполняет проводниковую и рефлекторную функции.

Проводниковая функция осуществляется за счет восходящих и нисходящих путей, проходящих в белом веществе спинного мозга. Они связывают отдельные сегменты спинного мозга друг с другом, а также с головным мозгом.

Рефлекторная функция осуществляется посредством безусловных рефлексов, замыкающихся на уровне определенных сегментов спинного мозга и отвечающих за простейшие приспособительные реакции. Шейные сегменты спинного мозга (СЗ – С5) иннервируют движения диафрагмы, грудные (Т1 – Т12) – наружных и внутренних межреберных мышц; шейные (С5 – С8) и грудные (Т1 – Т2) являются центрами движения верхних конечностей, поясничные (L2 – L4) и крестцовые (S1 – S2) – центрами движения нижних конечностей.

Кроме этого, спинной мозг участвует в осуществлении вегетативных рефлексов – ответной реакции внутренних органов на раздражение висцеральных и соматических рецепторов. Вегетативные центры спинного мозга, расположенные в боковых рогах, участвуют в регуляции кровяного давления, деятельности сердца, секреции и моторики пищеварительного тракта и функции мочеполовой системы.

В пояснично-крестцовом отделе спинного мозга находится центр дефекации, из которого по парасимпатическим волокнам в составе тазового нерва поступают импульсы, усиливающие моторику прямой кишки и обеспечивающие управляемый акт дефекации. Произвольный акт дефекации совершается за счет нисходящих влияний головного мозга на спинальный центр. Во II-IV крестцовых сегментах спинного мозга находится рефлекторный центр мочеиспускания, обеспечивающий управляемое отделение мочи. Головной мозг осуществляет контроль за мочеиспусканием и обеспечивает сто произвольность. У новорожденного ребенка мочеиспускание и дефекация являются непроизвольными актами, и лишь по мере созревания регулирующей функции коры головного мозга становятся произвольно управляемыми (обычно это происходит в первые 2–3 года жизни ребенка).

Головной мозг – важнейший отдел ЦНС – окружен мозговыми оболочками и расположен в полости черепа. Он состоит из ствола мозга : продолговатого мозга, моста, мозжечка, среднего мозга, промежуточного мозга, и так называемого конечного мозга, состоящего из подкорковых, или базальных, ганглиев и больших полушарий (рис. 11.4). Верхняя поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа, нижняя поверхность (основание головного мозга) имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа.

Рис. 11.4.

Мозг интенсивно формируется на протяжении эмбриогенеза, его основные части выделяются уже к 3-му месяцу внутриутробного развития, а к 5-му месяцу хорошо заметны основные борозды больших полушарий. У новорожденного масса головного мозга составляет около 400 г, его соотношение с массой тела значительно отличается от взрослого – он составляет 1/8 массы тела, тогда как у взрослого – 1/40. Наиболее интенсивный период роста и развития головного мозга человека приходится на период раннего детства, затем темпы его роста несколько снижаются, но продолжают оставаться высокими до 6-7 лет, к этому времени масса мозга достигает уже 4/5 массы мозга взрослого. Окончательное созревание головного мозга заканчивается только к 17–20 годам, его масса увеличивается по сравнению с новорожденными в 4–5 раз и составляет в среднем у мужчин 1400 г, а у женщин – 1260 г (масса мозга взрослого человека колеблется от 1100 до 2000 г). Длина головного мозга у взрослого человека составляет 160–180 мм, а поперечник – до 140 мм. В дальнейшем масса и объем головного мозга остаются максимальными и постоянными для каждого человека. Интересно, что масса мозга не корреллирует прямым образом с умственными способностями человека, однако при снижении массы мозга ниже 1000 г закономерным является снижение интеллекта.

Изменения размеров, формы и массы мозга в процессе развития сопровождается изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становятся четко разграниченными белое и серое вещество, формируются различные проводящие пути головного мозга.

Развитие мозга, как и других систем, идет гетерохронно (неравномерно). Раньше других созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают вначале стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы по своему развитию приближаются к мозгу взрослого человека уже к 2-4 годам.