Микроскопические методы исследования виды микроскопии назначение. Настройка освещения н фокусировка микроскопа. Методы световой микроскопии

В зависимости от свойств объекта свет изменяет свои физические свойства - цвет (длину волны), яркость (амплитуду волны), фазу, используются в современных микроскопах для создания контраста.

Рис. 1. Микроскоп МБИ-3: 1 - ножка, или башмак; 2 - барашки грубого движения тубуса; 3 - тубусодержатель; 4 - окуляры; 5 - бинокулярная насадка; 6 - головка для крепления револьвера с посадочным гнездом для смены тубусов; 7 - винт крепления бинокулярной насадки; 8 - револьвер на салазках; 9 - объективы; 10 - предметный столик; 11 - барашек продольного движения препаратодержателя; 12 - барашек поперечного движения препаратодержателя; 13 - апланатический конденсор прямого и косого освещения; 14 - центрировочные винты столика; 15 - головка винта, фиксирующего верхнюю часть предметного столика; 16 - кронштейн конденсора; 17 - барашек микромеханизма; 18 - зеркало; 19 - коробка с микромеханизмом.

Наиболее легко поддаются окрашиванию фиксированные, убитые препараты. Такие неподвижные препараты могут быть с высокой точностью рассмотрены и сфотографированы через микроскоп, но они не дают возможности оценить различные формы жизнедеятельности микроскопируемого объекта (движение, слияние, фагоцитоз и пр.). Известны красители, которые связываются с живыми клетками, не нарушая их жизнедеятельности.

Витальная (прижизненная) микроскопия показывает, что многие структуры живой клетки сравнительно мало изменяются при умелой фиксации и последующем окрашивании. Этим подтверждается высокая научная ценность информации, получаемой при помощи микроскопии окрашенных объектов. Витальная микроскопия возможна и без окрашивания, если в обычный микроскоп ввести так называемый темнопольный конденсор. Он освещает объект так, что в глаз наблюдателя попадают только те лучи, которые рассеялись на частицах объекта и тем самым изменили направление своего распространения. Лучи, прошедшие через фон без рассеяния, в глаз не попадают. Поэтому частицы объекта светятся и ярко выделяются на темном фоне (темном поле). Частицы объекта хорошо видны, даже если их размеры меньше разрешаемого расстояния.

Темнопольная микроскопия обеспечивает наибольший возможный контраст изображения, но четкость его и полезное увеличение заметно ниже, чем при обычной микроскопии. Темнопольная микроскопия успешно применялась для изучения спирохет, лептоспир и других слабо окрашиваемых микроорганизмов. При работе с гистологическими препаратами она неприменима.

Технически самостоятельным вариантом темнопольной микроскопии является ультрамикроскопия , при которой мельчайшие изучаемые частицы освещаются мощным боковым пучком света и видны точками на черном фоне. Ультрамикроскопия позволяет подсчитывать частицы, оценивать их размеры и другие свойства. Применяется для изучения коллоидных растворов, аэрозолей, суспензий.

В последние годы темнопольная микроскопия применяется все реже, так как появились два новых типа контрастирующих приборов со значительно лучшими характеристиками - фазово-контрастный (рис. 2, а и б) и амплитудно-контрастный микроскопы. Технически они сходны, но в них используют различные изменения светового луча в объекте. Луч, прошедший через фон образца, в идеальном случае не претерпевает никаких изменений. Он проходит через точно определенные участки объектива. Луч, прошедший через объект, подвергается дифракции, т. е. распадается на пучки убывающей интенсивности, которые выходят из объекта под разными углами. Другие свойства луча (амплитуда, длина волны, фаза) изменяются в различных степенях в зависимости от особенностей объекта.


Рис. 2. Микроскоп МБИ-3 (а) с фазово-контрастным устройством КФ-1 (б): 1 - конденсор револьверной системы; г - набор объективов и кольцевых диафрагм; 3 - вспомогательный микроскоп.

Почти все живые микроскопические объекты выглядят в обычном микроскопе едва заметными, прозрачными, потому что они почти не изменяют ни амплитуды, ни цвета прошедшего через них луча.

Они изменяют только фазу его волны, но это изменение не улавливается ни глазом, ни фотопластинкой. Пучок лучей, дифрагированных объектом и сдвинутых им по фазе, проходит через те участки объектива, где не могут пройти прямые, недифрагированные лучи фона. Практически нетрудно определить, где именно пройдут эти лучи. Если накрыть этот участок одной из линз объектива полупрозрачной пластинкой, способной изменить фазу, интенсивность, цвет или все эти три свойства вместе, то изображение фона изменит свою фазу, уменьшится его яркость или преобразится цвет. Лучи, прошедшие через объект и отклоненные (дифрагированные) им, обойдут вложенную в объектив пластинку и, следовательно, не приобретут тех свойств, которые приобрели, пройдя через пластинку, лучи фона. В результате разница между лучами фона и объекта возрастет. Если разница фаз между лучами фона и объекта достигает 1/4 длины волны, то в конечном изображении возникает заметный для глаза и фотопластинки контраст: темный объект на светлом фоне или, наоборот, в зависимости от структуры пластинки, которую в этом случае называют «фазовой». Если же пластинка изменяет главным образом яркость и цвет фона, то такой микроскоп следует назвать амплитудно-контрастным (большое распространение получило более короткое, хотя и не совсем правильное название «аноптральный»). Таким образом, разница между фазово-контрастным и амплитудно-контрастным микроскопом определяется свойствами пластинки в объективе, изменяющей свойства недифрагированных лучей фона. Изображения, построенные этими микроскопами, значительно ярче и богаче деталями (рис. 3 и 4), чем темнопольные картины.

Рис. 3. Культура многоклеточной бактерии Caryophanon latum Peshkoff. Амплитудно-контрастная микроскопия.
Рис. 4. Микроколонии Вас. megatherium, зараженной фагом. Амплитудно-контрастная микроскопия.

С появлением фазово- и амплитудно-контрастных микроскопов витальная микроскопия получила прекрасную технико-методическую базу, возможности которой близки к предельным для световой оптики. Никакой фиксации или окраски объекта эти приборы не требуют. Современная витальная микроскопия чрезвычайно расширила наши знания о поведении и динамике живых микрообъектов в естественных и лабораторных условиях обитания и эксперимента. Ускоренная (рапид) и замедленная (цейтрафферная) микрокиносъемка сделали доступными для исследования процессы, скорость течения которых слишком велика или слишком мала для визуального наблюдения.

Выпускаемые промышленностью фазово-контрастные и амплитудно-контрастные (аноптральные) устройства недороги, легко монтируются на серийных микроскопах; использование их не представляет затруднений. Эти приборы, несомненно, будут находить все новые области применения как в научных исследованиях, так и в медицинской практике.

Ультрафиолетовая микроскопия основана на способности некоторых веществ избирательно поглощать ультрафиолетовые лучи с определенной длиной волны. Это позволяет наглядно демонстрировать и изучать, в том числе количественно, распределение веществ в живых клетках или фиксированных препаратах. Так, например, белки и нуклеиновые кислоты одинаково прозрачны для видимого света; рассматривая неокрашенную клетку в видимом свете, нельзя определить, где расположен белок или нуклеиновая кислота. Но ультрафиолетовые лучи определенной длины нуклеиновая кислота поглощает значительно сильнее, чем белок. Поэтому в ультрафиолетовом микроскопе участок, содержащий нуклеиновую кислоту, выглядит значительно темнее. Так как ультрафиолетовые лучи непосредственно глазом не воспринимаются, приходится применять специальные преобразователи света. Ультрафиолетовая микроскопия технически значительно сложнее обычной световой, ее аппаратура дороже и методика тоньше. Несмотря на это, применение ее оправдано, так как научная значимость быстрого топографического описания химического состава живой клетки весьма велика.

Гораздо более доступна и перспективна люминесцентная микроскопия (см.), широко применяемая ныне в научно-исследовательских и клинико-диагностических лабораториях. При этом живой объект обрабатывают специальными красителями, которые, будучи освещены синим, фиолетовым или ультрафиолетовым светом, начинают светиться, излучая более длинные волны (зеленые, желтые). Цвет возбужденного вторичного свечения зависит от химических свойств объекта и введенного в него красителя.

Поляризационная микроскопия основана на изменении плоскости колебаний световой волны после прохождения через кристаллы. В практической медицине не применяется.

Современная микроскопия требует применения разнообразной вспомогательной аппаратуры. Нагревательные столики и термостаты позволяют выдерживать и наблюдать объект длительное время при заданной температуре. Для длительного выращивания микробов или тканевых культур в поле зрения сильного объектива служат разнообразные микрокамеры. Окулярные и объективные микрометры делают возможными точные измерения микрообъектов. Промышленность выпускает микроманипуляторы (см.) для операций на микрообъектах. Для получения стереоскопического изображения при увеличениях до 100 раз предназначены бинокулярные лупы (см.) и стереомикроскопы (рис. 5). Широко производится и используется аппаратура для микрофотографии и микрокиносъемки (рис. 6). См. также Микроскопическая техника.


Рис. 5. Стереоскопический микроскоп МБС-1.


Рис. 6. Микрокиноустановка МКУ-1.

Световая микроскопия. В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма. Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.

Освещение при микроскопии играет весьма существенную роль. Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.

Хорошее освещение достигается при установке света по методу Келлера. Для этого устанавливают осветитель на расстоянии 30-40 см от микроскопа и, перемещая патрон с лампочкой или весь осветитель, добиваются четкого изображения нити накала лампы на закрытой полностью диафрагме конденсора так, чтобы это изображение полностью заполняло отверстие конденсора. Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы. И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.

Виды световой микроскопии:

1) Иммерсионная световая микроскопия. Иммерсионные объективы используются для изучения объектов невидимых или плохо видимых через сухие системы микроскопа.2) Фазовоконтрастная микроскопия предназначена для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля.3) Аноптральная микроскопия – разновидность фазовоконтрастной микроскопии, при которой применяют объективы со специальными пластинками, нанесенными на одну из линз в виде затемненного кольца.4) Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой - мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом).5) Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов).6) Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).7) Люминесцентная микроскопия - метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучамиЛюминесцентная микроскопия. Метод основан на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждаемого люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого и зеленого цвета. Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуохромами (акридиновый оранжевый, изотиоционат флуоресцеина и др.). Лучи света от сильного источника (обычно ртутной лампы сверхвысокого давления) пропускают через сине-фиолетовый светофильтр. Под действием этого коротковолнового излучения окрашенные флуохромом клетки или бактерии начинают светиться красным или зеленым светом. Для того, чтобы синий свет, вызвавший люминесценцию, не мешал наблюдению, над окуляром ставят запирающий желтый светофильтр, задерживающий синие, но пропускающий желтые, красные и зеленые лучи. В результате при наблюдении в люминесцентном микроскопе на темном фоне видны будут клетки или бактерии, светящиеся желтым, зеленым или красным цветом. Например, при окраске акридиновым оранжевым ДНК клетки (ядерное вещество) будет светиться ярко-зеленым цветом. Метод люминесцентной микроскопии позволяет изучать живые нефиксированные бактерии, окрашенные сильно разведенными флуохромами, не причиняющими вреда миробным клеткам. По характеру свечения могут быть дифференцированы отдельные химические вещества, входящие в состав микробной клетки. Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В обектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).

Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Так как аппаратура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.

Этот метод микроскопии удобен при изучении живых бактерий, спирохет и их подвижности.

Фазово-контрастная микроскопия. Обыкновенные окрашенные препараты поглощают часть проходящего через них света, в результате чего амплитуда световых волн снижается, и частицы препарата выглядят темнее фона. При прохождении света через неокрашенный препарат амплитуда световых волн не меняется, происходит лишь изменение фазы световых волн, прошедших через частицы препарата. Однако человеческий глаз улавливать это изменение фазы света не способен, поэтому неокрашенный препарат при правильной установке освещения в микроскопе будет невидим.

Фазово-контрастное устройство позволяет превратить изменение фазы лучей, прошедших через частицы неокрашенного препарата, в изменения амплитуды, воспринимаемые человеческим глазом, и, таким образом, позволяет сделать неокрашенные препараты отчетливо видимыми.

Приспособление для фазово-контрастной микроскопии включает в себя конденсор с набором кольцевых диафрагм, обеспечивающих освещение препарата полным конусом света, и фазово-контрастные объективы, которые отличаются от обычных тем, что в их главном фокусе располагается полупрозрачная фазовая пластинка в виде кольца, вызывающая сдвиг фазы проходящего через нее света. Установку освещения проводят так, чтобы весь свет, прошедший через кольцевидную диафрагму конденсора, в дальнейшем прошел через расположенное в объективе фазовое кольцо.

При рассмотрении препарата весь свет, прошедший через участки препарата в которых нет каких-либо объектов, пройдет через фазовое кольцо и даст светлое изображение фона. Свет, прошедший через имеющиеся в препарате частицы, например, бактериальные клетки, получит некоторое изменение фазы и, кроме того, разделится на два луча – недифрагированный и дифрагированный. Недифрагированные лучи, пройдя в дальнейшем через кольцевидную фазовую пластинку в объективе, получат дополнительный сдвиг фазы. Дифрагированные лучи пройдут мимо фазовой пластинки, и их фаза не изменится. В плоскости полевой диафрагмы окуляра произойдет интерференция (наложение) дифрагированного и недифрагированного лучей, а так как эти лучи идут в разных фазах, произойдет их взаимное частичное гашение и уменьшение амплитуды. Благодаря этому микробные клетки будут выглядеть темными на светлом фоне.

Существенными недостатками фазово-контрастной микроскопии являются слабая контрастность получаемых изображений и наличие светящихся ореолов вокруг объектов. Фазово-контрастная микроскопия не увеличивает разрешающей способности микроскопа, но помогает выявить детали структуры живых бактерий, стадии их развития, изменения в них под действием различных агентов (антибиотики, химические вещества и т.д.).

Электронная микроскопия. Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию. Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2А (0,2 нм или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света).

Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссивной). При сканирующей (растровой), или туннельной электронной микроскопии пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.

Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптическое элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными. В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную и электропитания.

Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900°С при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом. Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое увеличение объекта.

После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца. Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцентный экран. Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование. Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.

Электронномикроскопическому исследованию могут быть подвергнуты как ультратонкие срезы различных тканей, клеток, микроорганизмов, так и целые бактериальные клетки, вирусы, фаги, а также субклеточные культуры, выделяемые при разрушении клеток различными способами.

Виды электронных микроскопов:

1) Просвечивающий электронный микроскоп (ПЭМ) - это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Для регистрации изображения возможно использование сенсоров, например, ПЗС-матрицы. Первый практический просвечивающий электронный микроскоп был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году с использованием концепции, предложенной ранее Максом Кноллом и Эрнстом Руска.

2) Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) - прибор, позволяющий получать изображения поверхности образца с большим разрешением (несколько нанометров). Ряд дополнительных методов позволяет получать информацию о химическом составе приповерхностных слоёв;

3) Сканирующий туннельный микроскоп (СТМ, англ. STM - scanning tunneling microscope) - прибор, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1-1000 пА при расстояниях около 1 Å.

Современные модели электронных микроскопов устроены так, что сочетают в себе возможности как просвечивающего, так и сканирующего микроскопов, и их легко можно переоборудовать с одного типа на другой.

Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков и др.), контрастированных фосфорно-вольфрамовой кислотой, уранилацетатом, напылением металлов в вакууме. Сканирующая электронная микроскопия применяется для изучения поверхности объектов. При просвечивающей электронной микроскопии получают плоскостные изображения объекта, а при сканирующей – удается получить трехмерное объемное изображение. В бактериологии сканирование наиболее эффективно для выявления отростков и других поверхностных структур, для определения формы и топографических отношений как в колониях, так и на поверхности инфицированных тканей.

При сканирующей микроскопии образец фиксируют, высушивают на холоде и напыляют в вакууме золотом или другими тяжелыми металлами. Таким образом получают реплику (отпечаток), повторяющую контуры образца, впоследствии сканируемую.

Недостатки электронного микроскопа:

1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;

2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;

3) дорого стоит и сам электронный микроскоп и его обслуживание;

4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;

Микроскопические методы исследования – это способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических и других исследованиях.

Микроскопия - один из главных методов диагностики инфекционных и инвазионных заболеваний, позволяющий определить вид возбудителя по форме, размерам, строению оболочки, цитоплазмы, ядра, взаиморасположению и способности окрашиваться определенными красителями; обнаружить яйца и личинки гельминтов, их фрагментов, вегетативных и цистных форм патогенных простейших.

Микроскоп – это оптический прибор, имеющий как минимум двухступенчатое увеличение. И одно из них принадлежит окуляру, который играет роль лупы. Только в отличие от бытовой лупы, окуляр имеет постоянное увеличение, его положение в микроскопе определено и жестко закреплено стандартом (высота окуляра).

Любой оптический микроскоп имеет базовые узлы, функциональное назначение которых не меняется от типа, класса прибора или страны производителя. Разница только в конструкторском и технологическом решениях, предложенных специалистами фирм-разработчиков, а также уровне мирового научно-технического прогресса. И как бы микроскоп не назывался – световой, цифровой, видеомикроскоп, фотомикроскоп, лазерный сканирующий микроскоп, анализатор изображения – в его основе будет базовый световой микроскоп, принцип которого был разработан еще Левингуком, Ньютоном, Карл Цейсом, Эрнстом Аббе.

Микроскоп – это оптико-механо-электрический прибор, объединяющий в себе три функциональные части:
· функция воспроизводящей системы – воспроизвести (создать, сформировать) изображение объекта таким образом, чтобы оно как можно точнее передавало детали объекта с соответствующим разрешением, увеличением, контрастом и цветопередачей;
· функция визуализирующей системы – передать изображение объекта, созданное воспроизводящей системой микроскопа, таким образом, чтобы оно с небольшим дополнительным увеличением (или без него) было видно достаточно резко на сетчатке глаза, фотопленке или пластинке, на экране телевизора или монитора компьютера;
· функция осветительной системы – создать световой поток, позволяющий осветить объект таким образом, чтобы воспроизводящая система микроскопа предельно точно могла выполнить свою основную функцию. При этом совместная работа обоих систем должна обеспечивать визуализацию изображения с использованием физико-химических свойств объекта.

Важнейшей характеристикой каждого объектива микроскопа является его разрешающая способность. Разрешающей способностью называется расстояние между двумя точками, при котором они видны раздельно (т.е. не сливаются в одну).

Для полного использования разрешающей способности иммерсионного объектива необходимо выполнять следующие основные правила:
1) Конденсор осветительного аппарата должен быть поднят до отказа (до уровня предметного столика).
2) Диафрагма конденсора полностью открыта.

Во всех без исключения случаях работа ведется с применением встроенной подсветки или плоского зеркала, так как конденсор рассчитан на работу с параллельными пучками света.
Одной из важных характеристик объектива является его свободное рабочее расстояние, т.е. расстояние между верхней поверхностью препарата и нижней поверхностью фронтальной линзы объектива при наведенном на фокус объективе. Эти расстояния следующие:
для объектива с увеличением 10х – 0,25 мм;
для объектива с увеличением 40х – 0,65 мм;
для объектива с увеличением 100х – 1,25 мм.
Знание этих расстояний необходимо для того, чтобы быстро сфокусировать объектив на препарат.

Классификация микроскопов

Микроскопы по объекту исследования можно разделить на следующие основные виды:
- микроскопы плоского поля – это микроскопы, оптическая схема которых обеспечивает воспроизведение объекта в двумерном пространстве – двумерное изображение. Объекты исследования – тонкие, в среднем, толщиной от 10 мм до 0,1 мм, просматриваемый слой от 1 мм до 0,001 мм. В этих микроскопах возможно наблюдение объемного изображения в пределах 100-200 мкм по высоте за счет особых способов освещения.
- стереоскопические микроскопы - это микроскопы, оптическая схема которых обеспечивает воспроизведение объекта в трехмерном пространстве – объемное, трехмерное изображение. Объекты исследования – габаритные, в среднем, толщиной от 100 мм до 1 мм, просматриваемый слой по высоте/глубине – от 50 мм до 0,5 мм, и плоские.
Конструктивно микроскопы могут быть выполнены в двух вариантах:
- прямые микроскопы (классическое построение схемы) – наблюдательная часть микроскопа расположена сверху объекта. Это относится к микроскопам плоского поля и стереомикроскопам.
- инвертированные микроскопы (перевернутое построение схемы) – наблюдательная часть микроскопа расположена снизу объекта. Это относится только к микроскопам плоского поля.

По построению изображения микроскопы можно разделить следующим образом:
- микроскопы светлого поля – на светлом фоне более темное изображение объекта. Освещение: обычный прямо проходящий свет.
- микроскопы с методом косого освещения – на сером фоне контрастное изображение объекта с неровным по толщине контуром. Освещение: обычный прямо проходящий свет частично перекрывается до того, как попадает объект.
- микроскопы с методом темного поля – на темном фоне более светлое изображение объекта или ярко блестящий контур объекта. Освещение:
а) в микроскопах проходящего света – обычный прямо проходящий свет полностью перекрывается до того, как попадает на объект;
б) в микроскопах отраженного света - обычный свет, проходя через кольцевую диафрагму с непрозрачным диском, по размеру перекрывающим выходной зрачок объектива.
- микроскопы с методом фазового контраста – дают возможность с максимальной степенью визуализации и детальности наблюдать на сером фоне более темное «объемное» изображение объекта, окруженное по контуру светлой полосой; при негативном (темнопольном) фазовом контрасте картина обратная. Освещение: обычный прямо проходящий свет перекрывается, но в два этапа – часть света до объекта, а затем после объекта прошедшая часть света перекрывается с ослаблением. При этом свет в виде светового кольца определенной площади проходит через объект, а затем после объекта – через полупрозрачное кольцо в объективе.
Кроме того в парке микроскопов имеются специализированные микроскопы:
- люминесцентные микроскопы – обеспечивают возможность наблюдения на темном фоне свечения объектов. Освещение: обычный прямо падающий свет определенной длины волны попадает на объект, изображение объекта строится в другой длине волны; выделение соответствующих областей спектра происходит с помощью сложной системы блоков интерференционных светофильтров.
- поляризационные микроскопы – на сером или темном фоне разноцветное, четкое или контрастное изображение. Освещение: обычный прямо проходящий свет с помощью поляризатора в осветительной системе превращается в линейно-поляризованный свет, после объекта с помощью анализатора происходит выделение из структуры изображения тех элементов, которые связаны с анизотропией объекта.
- микроскопы дифференциально-интерференционного контраста или интерференционного контраста – на однотонном цветном фоне яркое цветное «объемное» изображение или изображение того же цвета, что и фон, с окантовкой из другого цвета. Освещение: обычный прямо проходящий свет с помощью поляризатора в осветительной системе превращается в линейно-поляризованный свет, после объекта с помощью специальной призмы и анализатора происходит создание объемного цветного контрастного изображения.
- ультрафиолетовые и инфракрасные микроскопы – освещение и наблюдение объекта с помощью электронно-оптических преобразователей вне видимого диапазона: до 400 нм и свыше 700 нм.

- лазерные микроскопы - освещение и наблюдение объекта с помощью лазерного излучения (смотрите пример ниже).

Порядок работы со световыми микроскопами
· Проверить состояние осветительного аппарата: поднять конденсор, открыть его диафрагму, включить питание и для установки интенсивности освещения медленно повернуть ручку настройки яркости, в случае отсутствия встроенной подсветки, поставить плоское зеркало.
· Поместить на столик микроскопа исследуемый препарат и установить в фокусе сухой объектив (10х) на расстояние несколько меньше свободного рабочего расстояния.
· Глядя в окуляр, произвести предварительную установку освещения с помощью ручки настройки яркости (или вращая зеркалом).
· Медленно поднимая тубус макровинтом, добиться резкого изображения препарата.
· Поставив сухой (40х) или иммерсионный (100х) объектив, опускать тубус микроскопа под контролем глаза, глядя сбоку. Опустить объектив на расстояние меньше свободного рабочего и, глядя в окуляр, макровинтом медленно поднимать тубус до тех пор, пока не появится мелькание препарата. Точная установка достигается с помощью микровинта. Не следует делать микровинтом более половины оборота в одну или другую сторону.

Микроскопия неокрашенных объектов
При работе с нативным материалом необходимо соблюдать два основных принципа: не загрязнить исследуемый объект микроорганизмами, не заразить себя и окружающую среду. При микроскопии необходимо помнить, что рассматривание неокрашенного препарата возможно только с ограниченным освещением, путем опускания конденсора или уменьшением отверстия ирис-диафрагмы. Для микроскопии неокрашенных объектов используется окуляр 10х и объектив 10х.
При освещении с помощью встроенной подсветки осветителя или плоского зеркала ирис-диафрагма частично закрыта, конденсор опущен. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. С целью обнаружения объекта все нативные (неокрашенные) препараты просматривают под малым увеличением с помощью макровинта. Для лучшего рассмотрения объекта или его отдельных фрагментов используется сухой объектив с увеличением 40х и освещенность, с помощью поднятия конденсора и открытия ирис-диафрагмы под контролем глаза.

Микроскопия окрашенных объектов
При микроскопии окрашенного препарата необходимо помнить, что рассматривание возможно только при полном освещении. Для микроскопии окрашенных объектов используется окуляр 10х и объектив 10х.
Ирис-диафрагма открыта, конденсор поднят. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. Достигается максимальное освещение препарата. При малом увеличении делается обзор препарата для обнаружения четко выраженных полей зрения. Изучение препарата проводится под большим увеличением с применением сухой системы объектив 40х. Для микроскопии окрашенных препаратов биологической жидкости, мокроты, биологического материала применяется иммерсионная система объектив 100х с нанесением на предметное стекло иммерсионного масла.

Метод люминесцентной микроскопии
Люминесценция, основа многих современных методов биологических исследований, позволяет наблюдать за взаимоотношениями молекул внутри клеток.
Фактором качественной работы для всех методов люминесцентных исследований является скорость.
Основной целью современной люминесцентной микроскопии является визуализация всех измерений объекта.
Метод с большим эффектом может быть использован для ускорения диагностики ряда заболеваний.
Люминесцентная микроскопия основана на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждающего люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого или зеленого цвета.
Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуорохромами. Центральная часть клеток и присутствующие в препарате посторонние микробные клетки не светятся.
Ускоренная диагностика, идентификация возбудителя, обнаружение специфических антител в биологическом материале, биологической жидкости и во внешней среде осуществляется методами МФА, МИФ с применением люминесцирующих сывороток:
- иммуноглобулины диагностические туляремийные люминесцирующие – диагностика туляремии;
- иммуноглобулины диагностические бруцеллезные люминесцирующие – диагностика бруцеллеза;
-иммуноглобулины диагностические сибиреязвенные соматические люминесцирующие – диагностика сибирской язвы;
-иммуноглобулины диагностические сибиреязвенные антиспоровые адсорбированные флуоресцирующие – диагностика сибирской язвы;
-иммуноглобулины диагностические флуоресцирующие холерные адсорбированные лошадиные – диагностика холеры;
- антигенный препарат с хантавирусным антигеном - диагностика ГЛПС;
- иммуноглобулины диагностические флуоресцирующие для быстрой диагностики гриппа, ОРВИ.
Антигены, вирусы гриппа и другие возбудители ОРВИ в инфицированных клетках по их характерной локализации выявляются в результате взаимодействия антигенов с противовирусными антителами, маркированными флуоресцеинизотиоцианатом, методом МИФ. Метод иммунофлуоресцентного анализа (МИФ) является высоко чувствительным и специфичным качественным иммунодиагностическим тестом. К числу преимуществ метода относится его исключительная простота и возможность быстрого (за 1-2 часа) анализа клинических материалов с распознаванием широкого круга возбудителей, включая вирусы гриппа, парагриппа, респираторно-синцитиальный вирус, коронавирусы, аденовирусы, вирусы герпеса.

Общий метод: наблюдение. Частный метод: микроскопирование.

Christine E. Farrar, Zac H. Forsman, Ruth D. Gates, Jo-Ann C. Leong, and Robert J. Toonen, Hawai"i Institute of Marine Biology at the University of Hawai"i, Manoa

No dyes or digital software produced the brilliant color of these corals-the glory is all their own. Fluorescent molecules, innate to the corals and to the red algae that live inside and nourish them, shine like Christmas lights under different wavelengths of light emitted by a confocal microscope.

When she saw the corals under the lens for the first time, "my jaw just dropped," says Ruth Gates, a coral biologist at the University of Hawai"i, Manoa, and the narrator of the video. "Most people think corals are inanimate rocks," she says. "We showcase how beautiful and dynamic they are as animals." In the video, which compiles the images into three-dimensional, time-lapse animations, corals extend and retract their glowing tentacles. Tiny creatures crawl over the corals, all part of a complex and threatened ecosystem. In the future, Gates says, it might be possible to use confocal microscopy to classify different coral species or diagnose coral disease by their fluorescent patterns. Prior to applying this technique, she says, "that was not even a facet in our thinking about coral biology."

МИКРОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ - способы изучения микроскопического строения различных объектов, размеры к-рых находятся за пределами разрешающей способности глаза. М. м. и. играют важную роль в бактериол., вирусол., цитол., гематол., гистол, и других исследованиях; их применяют также в фармакологии, химии, минералогии, кристаллографии и др. Среди М. м. и. наряду с обычной световой микроскопией широко используют стереоскопическую, темнопольную, интерференционную, фазово-контрастную, поляризационную, ультрафиолетовую, электронную микроскопию и др.

Основой для развития М. м. и. явились работы Аббе (Е. К. Abbe) но дифракционным свойствам электромагнитного излучения. С помощью теории Аббе определяют разрешающую способность микроскопов и изготавливают линзы, лишенные хроматической и сферической аберрации, объективы, дифракционные решетки, осветительный и рисовальный аппараты.

Дифракционная решетка Аббе служит для изучения явлений дифракции и состоит из системы тонких прозрачных и непрозрачных чередующихся линий, к-рые прорезают специальным резцом в толще металлического покрытия, нанесенного на стеклянную подложку.

Осветительный аппарат Аббе применяют в микроскопах для освещения объекта в проходящем свете. Он состоит из зеркала (плоского или вогнутого) и конденсора, посредством к-рых поток света направляют в плоскость объекта в виде сходящегося пучка лучей, что обеспечивает более высокую освещенность препарата и улучшает разрешающую способность микроскопа. Конденсор состоит, как правило, из двух-трех линз; ближнюю к объективу линзу устанавливают так, чтобы ее плоская поверхность была параллельна плоскости предметного столика микроскопа. При удалении конденсора от плоскости объекта яркость освещения снижается, однако возрастает контрастность изображения.

Рисовальный аппарат Аббе служит для зарисовки с гистол, препаратов. Он состоит из расположенной над окуляром микроскопа системы стеклянных призм, к-рая направляет в глаз исследователя световые лучи, прошедшие через гистол, препарат и отраженные с помощью зеркала от листа бумаги, лежащей возле микроскопа. Благодаря этому наблюдатель видит совмещенное изображение препарата и своей руки, очерчивающей, напр., карандашом контуры деталей гистол, картины препарата.

При пользовании М. м. и. важное значение приобретает правильная установка освещения, к-рую обычно проводят по методу Келера. Для этого автономный осветитель, напр. ОИ-19, располагают так, чтобы плоскость ирисовой диафрагмы осветителя находилась на расстоянии 15-25 см от центра зеркала микроскопа. Затем через закрытую на 1/2-1/3 диафрагму проецируют изображение нити лампы накаливания осветителя в центр зеркала микроскопа, прикрытого для облегчения наблюдения листом белой бумаги. Изменяя расстояние между микроскопом и осветителем, производят фокусировку изображения нити накаливания и затем зеркалом микроскопа направляют изображение в его объектив. При этом величина освещенного пятна должна совпадать с диаметром апертурной диафрагмы микроскопа, резкое изображение к-рой можно получить, изменяя положение конденсора и плоскости зеркала. В заключение раскрывают апертурную диафрагму микроскопа и с помощью макро- и микровинтов микроскопа получают яркое и четкое изображение объекта.

При работе с малыми увеличениями микроскопа этот способ не всегда позволяет получить полное и равномерное освещение поля зрения. В этих случаях снимают или отводят в сторону фронтальную линзу конденсора, применяют конденсор с большим фокусным расстоянием. При широко открытой апертурной диафрагме микроскопа изображение бывает недостаточно контрастным. В процессе диафрагмирования увеличивается контрастность изображения и возрастает глубина резкости, но может снизиться разрешающая способность микроскопа за счет нарастающих при этом дифракционных явлений. При смене объектива изображение следует снова сфокусировать в фокальной плоскости при закрытой диафрагме осветителя. В случае отклонения оси осветителя от оси объектива микроскопа края изображения могут быть освещены неодинаково. Чтобы освещенность краев изображения стала одинаковой и равномерной по всей площади поля зрения, наблюдая изображение через окуляр, перемещают осветитель.

Установку освещения по методу Келера применяют также при изучении препаратов в так наз. темном поле. В этом случае заменяют обычный конденсор темнопольным и, наблюдая в окуляр, медленно поднимают конденсор до возникновения темнопольного изображения.

Объекты, изучаемые под микроскопом, могут быть прозрачными, а также непрозрачными, т. е. изменяющими амплитудные и фазовые свойства направленного на них электромагнитного излучения. В зависимости от свойств объекта изменяются физ. свойства света - цвет (длина волны), яркость (амплитуда волны), фаза, плоскость и направление распространения волны, что используют в М. м. и. Для микроскопического исследования окрашенных объектов применяют световой микроскоп. Цвет изображения и различия в окраске нередко позволяют судить о хим. природе отдельных структур изучаемого объекта, но не дают возможности оценить его жизнедеятельность (движение, хемотаксис, слияние и др.), т.к. при окраске часто используют хим. или температурную фиксацию, убивающую биол, объект, но обеспечивающую эффективное окрашивание. В отличие от исследования фиксированных биол, объектов, витальная микроскопия основана на прижизненном окрашивании, в результате к-рого многие структуры живой клетки мало изменяются под действием специальных красителей. Витальная микроскопия может проводиться и без окрашивания, если в обычный световой микроскоп ввести темнопольный конденсор.

Ультрафиолетовая микроскопия используется в цитол, и гистохимических исследованиях. Она позволяет изучать локализацию, количественное распределение в клетках и тканях высокомолекулярных соединений (белки, нуклеиновые кислоты) и наблюдать за их динамикой в процессе жизнедеятельности. Этот метод дает возможность без предварительной фиксации и окраски препаратов рассматривать исследуемый материал, напр., с целью прижизненного изучения микрообъектов.

Ультрафиолетовая абсорбционная микроскопия основана на способности нек-рых веществ, входящих в состав тканей и клеток, прозрачных в видимом свете, поглощать ультрафиолетовые лучи с определенной длиной волны.

При исследовании живых или фиксированных неокрашенных объектов возрастает контрастность изображения за счет избирательного поглощения ультрафиолетовых лучей высокомолекулярными соединениями. В частности, важное значение ультрафиолетовая микроскопия имеет для изучения распределения в клетке нуклеиновых к-т, поглощающих ультрафиолетовое излучение в участке спектра ок. 260 нм. Поглощение ультрафиолетового излучения белками зависит от входящих в их состав ароматических аминокислот (тирозина, триптофана, фенилаланина), дающих максимум поглощения в участке спектра ок. 280 нм. Для получения наглядного представления о распределении в препарате веществ изучаемый участок фотографируют в ультрафиолетовом свете с разной длиной волн. В последующем фотоснимки переснимают на цветную пленку в хромоскопе, в к-ром перед снимком, сделанным в коротковолновых лучах, помещают синий светофильтр, в лучах средней длины - зеленый и в длинноволновых лучах - красный светофильтр. Эти снимки с помощью специального приспособления совмещают на экране, и изображение становится видимым, передавая условными цветами различия поглощения ультрафиолетовых лучей отдельными структурами клетки.

Ультрафиолетовую флюоресцентную микроскопию, как и абсорбционную, используют для цитохим, изучения живых или фиксированных неокрашенных объектов, в связи с тем что спектры ультрафиолетовой флюоресценции веществ отличаются друг от друга.

Инфракрасная микроскопия дает возможность установить структуру объекта по характеру поглощения света с длиной волн 800-1000 нм. Широкое распространение имеет исследование в инфракрасном свете веществ, частично или полностью непрозрачных в ультрафиолетовой и видимой областях спектра. Для инфракрасной микроскопии биол, объекты не подвергают дополнительной хим. обработке. При помощи инфракрасного микроскопа производят исследование импрегнированной нервной ткани и капилляров в гистол, срезах, распознают повреждения сетчатки и радужной оболочки глаза.

Для повышения разрешающей способности М. м. и. создают оптические системы, основанные на электромагнитных линзах с применением в качестве источника излучения потока электронов, напр, для электронной микроскопии (см.) используют пучок быстрых электронов, а роль линз выполняют электрические и магнитные поля определенной конфигурации. Разновидностью электронной микроскопии является сканирующая (растровая) микроскопия, к-рая дает возможность получить объемное изображение объекта за счет излучаемых им вторичных электронов.

В нек-рых микроскопах плавное, бесступенчатое увеличение без смены объектива позволяет в пределах широкого диапазона установить интересующие детали объекта, напр, динамику биол, процессов, происходящих в тканевых культурах.

Библиография: Аппельт Г. Введение в методы микроскопического исследования, пер. с нем., М., 1959, библиогр.; Биофизические методы исследования, под ред. Ф. Юбера, пер. с англ., М., 1956; Д e Робертис Э., Новинский В. и Саус Ф. Биология клетки, пер. с англ., с. 94, М., 1973; Дитчберн Р. Физическая оптика, пер. с англ., М., 1965; Ильин P. С., Федотов Г. И. и Федин Л. А. Лабораторные оптические приборы, М., 19 66, библиогр.; Л и л л и Р. Патогистологическая техника и практическая гистохимия, пер. с англ., с. 7, М., 1969; Скворцов Г. Е. и д р. Микроскопы, Л., 1969, библиогр.

Н. К. Пермяков, Г. М. Могилевский.

Микроскопические методы исследования представляют собой способы изучения разнообразных объектов с использованием специального оборудования. Оно позволяет рассматривать строение веществ и организмов, величина которых находится за границами разрешающей способности человеческого взгляда. В статье проведем краткий анализ микроскопических методов исследования.

Общие сведения

Современные методы микроскопического исследования используют в своей практике разные специалисты. Среди них вирусологи, цитологи, гематологи, морфологи и прочие. Основные методы известны достаточно давно. В первую очередь это световой способ рассмотрения объектов. В течение последних лет активно вводятся в практику и другие технологии. Так, популярность приобрели фазово-контрастный, люминесцентный, интерференционный, поляризационный, инфракрасный, ультрафиолетовый, стереоскопический метод исследования . Все они базируются на разнообразных свойствах света. Кроме этого, широко используются электронно-микроскопические методы исследования . Эти способы позволяют отобразить объекты с помощью направленного потока заряженных частиц. Стоит отметить, что такие приемы изучения применяются не только в биологии и медицине. Достаточно популярен в промышленности. Такое изучение позволяет оценивать поведение соединений, вырабатывать технологии для минимизации вероятности разрушения и усиления прочности.

Световые способы: характеристика

Такие микроскопические методы исследования микроорганизмов и других объектов базируются на различной оборудования. Немаловажными факторами при этом является направленность луча, особенности самого объекта. Последний, в частности, может быть прозрачным или непрозрачным. В соответствии со свойствами объекта, меняются физические свойства светового потока - яркость и цвет, обусловленные амплитудой и длиной волны, плоскость, фаза и направленность распространения волны. На использовании этих характеристик и строятся разные .

Специфика

Для изучения световыми способами объекты, как правило, окрашивают. Это позволяет выявить и описать те или иные их свойства. При этом необходимо, чтобы ткани были фиксированными, поскольку окраска выявит определенные структуры исключительно в убитых клетках. В живых элементах краситель обосабливается в виде вакуоли в цитоплазме. Она не прокрашивает структуры. Но с помощью светового микроскопа можно исследовать и живые объекты. Для этого используется витальный способ изучения. В таких случаях применяется темнопольный конденсор. Он встраивается в световой микроскоп.

Изучение неокрашенных объектов

Оно осуществляется с помощью фазово-контрастной микроскопии. Этот способ базируется на дифракции луча в соответствии с особенностями объекта. В процессе воздействия отмечается изменение фазы и длины волны. В объективе микроскопа присутствует полупрозрачная пластинка. Живые или фиксированные, но не окрашенные объекты из-за своей прозрачности почти не изменяют цвет и амплитуду луча, проходящего сквозь них, провоцируя только сдвиг волновой фазы. Но при этом, пройдя через объект, световой поток отклоняется от пластинки. В итоге между лучами, пропущенными сквозь объект, и входящими в световой фон, появляется разность волновой длины. При определенном ее значении возникает визуальный эффект - темный объект будет четко виден на светлом фоне либо наоборот (в соответствии с особенностями фазовой пластинки). Для его получения разность должна составлять не меньше 1/4 длины волны.

Аноптральный способ

Интерференционные приемы

Эти решают в целом те же задачи, что и фазово-контрастные. Однако в последнем случае специалисты могут наблюдать только контуры объектов. Интерференционные микроскопические методы исследования позволяют изучать их части, выполнять количественную оценку элементов. Это возможно благодаря раздвоению светового луча. Один поток проходит сквозь частицу объекта, а другой - мимо. В окуляре микроскопа они сходятся и интерферируют. Возникающая разность фаз может определяться по массе разных клеточных структур. При последовательном ее измерении с заданными можно установить толщину нефиксированных тканей и живых объектов, содержание белков в них, концентрацию сухого вещества и воды и пр. В соответствии с полученными данными специалисты получают возможность косвенно оценивать проницаемость мембран, активность ферментов, клеточный метаболизм.

Поляризация

Она осуществляется с помощью призм Николя или пленчатых поляроидов. Их помещают между препаратом и источником света. Поляризационный микроскопический метод исследования в микробиологии позволяет изучать объекты с неоднородными свойствами. В изотропных структурах быстрота распространения света не зависит от выбранной плоскости. При этом в анизотропных системах скорость изменяется в соответствии с направленностью света по поперечной либо продольной оси объекта. В случае если величина преломления вдоль структуры будет больше, чем вдоль поперечной, создается двойное положительное лучепреломление. Это свойственно многим биологическим объектам, у которых обнаруживается строгая молекулярная ориентация. Они все являются анизотропными. К этой категории, в частности, относятся миофибриллы, нейрофибриллы, реснички в мерцательном эпителии, коллагеновые волокна и прочие.

Значение поляризации

Сравнение характера лучевого преломления и показателя анизотропии объекта дает возможность оценивать молекулярную организацию структуры. Поляризационный метод выступает как один из гистологических способов анализа, используется в цитологии и пр. В свете можно изучать не только окрашенные объекты. Поляризационный метод дает возможность исследовать неокрашенные и нефиксированные - нативные - препараты тканевых срезов.

Люминесцентные приемы

Они базируются на свойствах некоторых объектов давать свечение в сине-фиолетовом участке спектра или в УФ-лучах. Многие вещества, например белки, некоторые витамины, коферменты, лекарственные средства, наделены первичной (собственной) люминесценцией. Другие объекты начинают светиться при добавлении флюорохромов - специальных красителей. Эти добавки избирательно или диффузно распространяются на отдельные клеточные структуры или химические соединения. Это свойство легло в основу использования люминесцентной микроскопии при гистохимических и

Области использования

Применяя иммуно-флуоресценцию, специалисты обнаруживают вирусные антигены и устанавливают их концентрацию, идентифицируют вирусы, анти тела и антигены, гормоны, разнообразные продукты метаболизма и так далее. В этой связи при диагностике герпеса, эпидемического паротита, вирусного гепатита, гриппа и прочих инфекций используются люминесцентные методы исследования материалов. Микроскопический иммуно-флуоресцентный способ позволяет распознавать опухоли злокачественного характера, определять ишемические участки в сердце на ранних этапах инфаркта и пр.

Использование ультрафиолета

Оно основывается на способности ряда веществ, включенных в живые клетки, микроорганизмы или фиксированные, но неокрашенные, прозрачные при видимом свете ткани поглощать УФ-лучи определенной длины волн. Это характерно, в частности, для высокомолекулярных соединений. К ним относят белки, ароматические кислоты (метилаланин, триптофан, тирозин и пр.), нуклеиновые кислоты, пирамидиновые и пуриновые основания и так далее. Ультрафиолетовая микроскопия позволяет уточнить локализацию и количество этих соединений. При изучении живых объектов специалисты могут наблюдать изменения процессов их жизнедеятельности.

Дополнительно

Инфракрасная микроскопия используется при исследовании непрозрачных для света и УФ-лучей объектов посредством поглощения их структурами потока, длина волны которого 750-1200 нм. Чтобы применить этот способ нет необходимости предварительно подвергать препараты химической обработке. Как правило, инфракрасный метод используется в антропологии, зоологии и прочих биологических отраслях. Что касается медицины, то этот способ применяют преимущественно в офтальмологии и нейроморфологии. Изучение объемных объектов осуществляется с помощью стереоскопической микроскопии. Конструкция оборудования позволяет выполнять наблюдение левым и правым глазом под различным углом. Непрозрачные объекты исследуются при сравнительно небольшом увеличении (не более 120 раз). Стереоскопические способы используются в микрохирургии, патоморфологии, в судебной медицине.

Электронная микроскопия

Она используется для изучения структуры клеток и тканей на макромолекулярном и субклеточном уровнях. позволила сделать качественный скачок в сфере исследований. Этот способ широко применяется в биохимии, онкологии, вирусологии, морфологии, иммунологии, генетике и прочих отраслях. Значительное усиление разрешающей способности оборудования обеспечивается потоком электронов, которые проходят в вакууме сквозь электромагнитные поля. Последние, в свою очередь, создаются специальными линзами. Электроны обладают способностью проходить сквозь структуры объекта либо отражаться от них с отклонениями под разными углами. В результате создается отображение на люминесцентном экране прибора. При просвечивающей микроскопии получается плоскостное изображение, при сканирующей, соответственно, объемное.

Необходимые условия

Стоит отметить, что перед тем, как пройти электронное микроскопическое исследование, объект подвергается специальной подготовке. В частности, используется физическая либо химическая фиксация тканей и организмов. Секционный и биопсийный материал, кроме этого, обезвоживают, внедряют в эпоксидные смолы, разрезают алмазными или стеклянными ножами на ультратонкие срезы. Затем их контрастируют и изучают. В сканирующем микроскопе исследуются поверхности объектов. Для этого на них напыляют специальные вещества в вакуумной камере.