Максимальная перегрузка для человека рекорд. Единицы силы

Земные Перегрузки

При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3 - 5 секунд без потери сознания. Перегрузки от 20 - 30 g и более человек может выдерживать без потери сознания не более 1 - 2 секунд и зависимости от величины перегрузки.

Перегрузки применительно к человеку:

1 - 1 g .

3 - 15 g в течение 0,6 сек.

5 - 22 g .

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3 … −2 g до +12 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7 - 8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за прилива крови к голове. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g. Существуют специальные противоперегрузочные костюмы, задача которых - облегчить действие перегрузки. Костюмы представляют из себя корсет со шлангами, надувающимися от воздушной системы и удерживавшими наружную поверхность тела человека, немного препятствуя оттоку крови.

Космические перегрузки

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Вывод:

Если приток крови в состоянии невесомости на порядок больше чем на Земле, то и потеря сознания из за чрезмерного притока крови к голове будет как при меньшем g , так и по сумме сек которые может выдержать космонавт.. Но есть один + Т.к мы в далеком будущем наши противоперегрузочные костюмы например которые в комплекте с 350р будут на порядок лучше способствовать сохранения сознания при сильных и длительных перегрузках + должна спасать искусственная гравитация которая за 2-5 сек должна создавать противовес перегрузкам.

По данным медиков, головной мозг человека может выдержать перегрузки около 150 g, если они действуют на мозг не более 1–2 мс; со снижением перегрузок растет время, в течение которого человек может их испытывать, а перегрузка 40 g даже при длительном воздействии считается относительно безопасной для головы.

Безопасной считается перегрузка до 72 g, в промежуточную «красную» зону попадают перегрузки от 72 до 88 g, а при превышении 88 g травма головы считается высоковероятной. Немаловажной в методике EuroNCAP является и оценка давления, действующего на грудь человека: безопасным считается сжатие грудной клетки на 22 мм, предельным – сжатие на 50 мм.

Тамбовское областное государственное общеобразовательное учреждение

Общеобразовательная школа – интернат с первоначальной летной подготовкой

имени М. М. Расковой

Реферат

«Перегрузки в авиации»

Выполнил: воспитанник 103 взвода

Зотов Вадим

Руководитель: Пеливан В.С.

Тамбов 2006 г

1. Вступление.

2. Вес тела.

3. Перегрузка.

4. Перегрузки при выполнении фигур высшего пилотажа.

5. Ограничения по перегрузке. Невесомость.

6. Заключение.

ПЕРЕГРУЗКИ В АВИАЦИИ

1. Вступление.

Силы тяготения являются, очевидно, первыми, с которыми мы знакомимся еще с детских лет. В физике их часто называют гравитационными (от латинского – тяжесть).

Значение сил тяготения в природе огромно. Они играют первостепенную роль в образовании планет, в распределении вещества в глубинах небесных тел, определяют движение звезд, планетных систем и планет, удерживают около планет атмосферу. Без сил тяготения невозможной была бы жизнь и само существование вселенной, а значит, и нашей Земли.

Сооружая здания и каналы, проникая в глубь Земли или в космическое пространство, конструируя корабль или шагающий экскаватор, добиваясь результатов почти в любом виде спорта, человек всюду имеет дело с силой тяготения.

Великие и таинственные силы тяготения были предметом размышления выдающихся умов человечества: от Платона и Аристотеля в древнем мире до ученых эпохи Возрождения – Леонардо да Винчи, Коперника, Галилея, Кеплера, от Гука и Ньютона до нашего современника Эйнштейна.

При рассмотрении гравитационных сил используются различные понятия, в числе которых сила тяготения, сила тяжести, вес.

2. Вес тела.

Вес – есть сила, с которой вследствие земного притяжения тело давит на опору или натягивает подвес.

В аэродинамике под весом тела понимают несколько иную величину.

На самолет при полете действуют аэродинамические силы (подъемная сила и лобовое сопротивление), сила тяги двигательной установки и сила земного притяжения, которую называют весом и обозначают G.

где m – масса летательного аппарата, g – ускорение свободного падения.

Вес – одна из самых сложных сил в природе. Вы знаете, что вес – величина непостоянная, он меняется в зависимости от характера движения тела.

Если тело движется без ускорения, то вес тела равен силе тяжести и определяется по формуле P = mg.

Если тело движется с ускорением вверх, т. е. с ускорением противоположно направленным ускорению свободного падения (а↓g), то вес тела увеличивается, определяется по формуле P = m(g+a) и возникает перегрузка.

Если тело движется с ускорением вниз, т. е. с ускорением сонаправленным с ускорением свободного падения (а ↓↓g), то вес тела определяется по формуле P = m(g-a), и в этом случае возможны несколько вариантов:

если |a|<|g|, то вес тела уменьшается (становится меньше силы тяжести), и возникает состояние частичной невесомости;

если |a|=|g|, то вес тела равен 0, возникает состояние полной невесомости (т. е. тело свободно падает);

если |a|>|g|, то вес тела становится отрицательным и возникает отрицательная перегрузка.

3. Перегрузки.

Перегрузкой называется отношение суммы всех сил, кроме силы веса, действующих на самолет, к весу самолета, и определяется по формуле:

где P – тяга двигателя, R – суммарная аэродинамическая сила.

Стрелки над символами в формуле указывают, что учитывается направление действия сил, поэтому силы нельзя складывать алгебраически.

Например, если аэродинамическая сила R и тяга двигателя P лежат в плоскости симметрии, то их сумма R+P, определяется, как показано на рисунке 4.14.

В большинстве случаев пользуются не суммарной перегрузкой n, а ее проекциями на оси скоростной системы координат – n x , n y , n z как показано на рисунке 4.15.

Существуют три вида перегрузки: нормальная, продольная и боковая.

Нормальная перегрузка n y определяется в первую очередь подъемной силой и определяется по формуле:

где Y – подъемная сила.

На заданной скорости и высоте полета изменить нормальную перегрузку можно путем изменения угла атаки. Как показано на рисунке с уменьшением скорости полета предельные нормальные перегрузки возрастают, а с увеличением высоты – уменьшаются. При отрицательном угле атаки возникают отрицательные перегрузки.

Продольная перегрузка n x определяется отношением разности сил тяги двигателя (Р) и лобового сопротивления (Q) к весу самолета:

n x = (P-Q) / G.

Продольная перегрузка положительна, если тяга больше лобового сопротивления, и отрицательна, если тяга меньше лобового сопротивления или если тяги вообще нет.

Таким образом, знак продольной перегрузки зависит от соотношения величин тяги двигателя и лобового сопротивления самолета.

С увеличением высоты полета положительные продольные перегрузки n х уменьшаются, т. к. уменьшается избыточность тела. Зависимость продольной перегрузки от высоты и скорости полета изображена на рисунке.

Боковая перегрузка n z возникает при несимметричном обтекании самолета воздушным потоком. Это наблюдается при наличии скольжения, либо при отклонении руля направления.

4. Перегрузки при выполнении фигур высшего пилотажа.

Рассмотрим, какие перегрузки возникают при выполнении фигур высшего пилотажа.

На самолетах в разных пилотажных фигурах перегрузка действует по-разному.

Например, на самолете Л-39 при выполнении полупетли необходимо выдерживать оптимальные изменения перегрузки.

Полупетля – фигура пилотажа, при выполнении которой самолет описывает восходящую часть петли Нестерова с последующим поворотом относительно продольной оси на 180 0 и выводом в горизонтальный

полет в направлении, обратном вводу.

При выполнении данной фигуры можно отметить несколько отсчетных точек:

1. Ввод в полупетлю.

2. Угол кабрирования 50 0 – 60 0 . Перегрузка в данной

точке 4,5 – 5 ед.

3. Угол кабрирования 90 0 . Перегрузка 3,5 – 4 ед.

4. Начало ввода в полубочку. Перегрузка

приблизительно равна 1ед.

5. Вывод из полубочки.

При перегрузке больше оптимальной резко увеличивается лобовое сопротивление и быстро падает скорость, возможен выход самолета на режим тряски и сваливания. При перегрузке меньше оптимальной увеличивается время выполнения фигуры и скорость в верхней точке также становится менее заданной.

Рассмотрим еще одну фигуру высшего пилотажа – переворот.

Переворот – это фигура пилотажа, при выполнении которой самолет поворачивается относительно продольной плоскости оси на 180 0 с последующим движением по нисходящей траектории в вертикальной плоскости и выводом в горизонтальный полет в направлении, обратном вводу.

При выполнении переворота на Л-39, в первой половине траектории составляющая силы веса (Gcosθ) способствует искривлению траектории, поэтому на этом участке достаточно небольшое значение нормальной перегрузки 2 – 3 ед. Во второй половине эта же сила препятствует искривлению траектории, поэтому для вывода самолета из пикирования необходима большая перегрузка 3,5 – 4,5 ед. При перевороте происходит зависание самолета, возникновение отрицательных перегрузок в положении «вверх колесами» летчик устраняет, взяв РУС на себя, увеличивает перегрузку до допустимой и создает необходимое угловое вращение.

На Як-52 , например, при выполнении пикирования, при вводе в пикирование появляется отрицательная перегрузка. При выводе из пикирования потеря высоты определяется скоростью, углом пикирования и перегрузкой, создаваемой летчиком.

При выводе из виража «Горки», во избежание возникновения больших отрицательных перегрузок, вывод летчик производит плавным движением ручки управления от себя.

«Пикирование» «Горка»

Еще одной захватывающей фигурой высшего пилотажа является петля Нестерова.

Петля Нестерова – фигура пилотажа, при выполнении которой самолет описывает траекторию в вертикальной плоскости, расположенную выше точки ввода.

При выполнении петли Нестерова на Як-52 летчик должен следить по нарастанию перегрузки за созданием угловой скорости. Необходимо создать угловую скорость вращения с таким расчетом, чтобы при угле кабрирования 40 0 – 50 0 перегрузка была равна 4 – 4,5 ед. При выводе самолета из петли летчик должен следить за темпом нарастания перегрузки.

Перегру́зка - отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к ускорению свободного падения на поверхности Земли. Будучи отношением двух сил, перегрузка является безразмерной величиной, однако часто перегрузка указывается в единицах ускорения свободного падения g. Перегрузка в 1 единицу (то есть 1 g) численно равна весу тела, покоящемуся в поле тяжести Земли. Перегрузка в 0 g испытывается телом, находящемся в состоянии свободного падения под воздействием только гравитационных сил, то есть в состоянии невесомости.

Перегрузка - векторная величина. Для живого организма очень важно направление действия перегрузки. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (голова - ноги) кровь уходит от головы в ноги, желудок опускается вниз. При отрицательной перегрузке увеличивается приток крови к голове. Наиболее благоприятное положение тела человека, при котором он может воспринимать наибольшие перегрузки - лёжа на спине, лицом к направлению ускорения движения, наиболее неблагоприятное для перенесения перегрузок - в продольном направлении ногами к направлению ускорения. При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3-5 секунд без потери сознания. Перегрузки от 20-30 g и более человек может выдерживать без потери сознания не более 1-2 секунд и зависимости от величины перегрузки.

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3…−2 g до +12 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7-8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за прилива крови к голове. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g. Существуют специальные противоперегрузочные костюмы, задача которых - облегчить действие перегрузки. Костюмы представляют собой корсет со шлангами, надувающимися от воздушной системы и удерживающими наружную поверхность тела человека, немного препятствуя оттоку крови.

Перегрузка увеличивает нагрузку на конструкцию машин и может привести к их поломке или разрушению, а также к перемещению не закреплённого или плохо закреплённого груза. Допустимое значение перегрузок для гражданских самолётов составляет 2,5 g.

Примерные значения перегрузок, встречающихся в жизниЧеловек, стоящий неподвижно1 Пассажир в самолёте при взлёте1,5 Парашютист при приземлении со скоростью 6 м/с1,8 Парашютист при раскрытии парашютадо 10,0 (По-16, Д1-5У) до 16 (Ут-15 сер.5) Космонавты при спуске в космическом корабле «Союз»до 3,0-4,0 Лётчик спортивного самолёта при выполнении фигур высшего пилотажаот −7 до +12 Перегрузка (длительная), соответствующая пределу физиологических возможностей человека8,0-10,0 Предыдущий рекорд (кратковременной) перегрузки автомобиля, при которой человеку удалось выжить 179,8 Наибольшая (кратковременная) перегрузка автомобиля, при которой человеку удалось выжить.

В авиационной и космической медицине перегрузкой считается показатель величины ускорения, воздействующего на человека при его перемещении . Он представляет собой отношение равнодействующей перемещающих сил к массе тела человека.

Перегрузка измеряется в единицах, кратных весу тела в земных условиях. Для человека, находящегося на земной поверхности, перегрузка равна единице. К ней приспособлен человеческий организм, поэтому для людей она незаметна.

Если какому-либо телу внешняя сила сообщает ускорение 5 g, то перегрузка будет равна 5. Это значит, что вес тела в данных условиях увеличился в пять раз по сравнению с исходным .

При взлете обычного авиалайнера пассажиры в салоне испытывают перегрузку в 1,5 g. По международным нормам предельно допустимое значение перегрузок для гражданских самолетов составляет 2,5 g .

В момент раскрытия парашюта человек подвергается действию инерционных сил, вызывающих перегрузку, достигающую 4 g . При этом показатель перегрузки зависит от воздушной скорости. Для военных парашютистов он может составлять от 4,3 g при скорости 195 километров в час до 6,8 g при скорости 275 километров в час .

Реакция на перегрузки зависит от их величины, скорости нарастания и исходного состояния организма. Поэтому могут возникать как незначительные функциональные сдвиги (ощущение тяжести в теле, затруднение движений и т.п.), так и очень тяжелые состояния. К ним относятся полная потеря зрения, расстройство функций сердечно-сосудистой, дыхательной и нервной систем, а также потеря сознания и возникновение выраженных морфологических изменений в тканях.

С целью повышения устойчивости организма летчиков к ускорениям в полете применяют противоперегрузочные и высотно-компенсирующие костюмы, которые при перегрузках создают давление на область брюшной стенки и нижние конечности, что приводит к задержке оттока крови в нижнюю половину тела и улучшает кровоснабжение головного мозга.

Для повышения устойчивости к ускорениям проводятся тренировки на центрифуге, закаливание организма, дыхание кислородом под повышенным давлением.

При катапультировании, грубой посадке самолета или приземлении на парашюте возникают значительные по величине перегрузки , которые могут также вызвать органические изменения во внутренних органах и позвоночнике. Для повышения устойчивости к ним используются специальные кресла, имеющие углубленные заголовники, и фиксирующие тело ремнями, ограничителями смещения конечностей.

Перегрузкой также является проявление силы тяжести на борту космического судна. Если в земных условиях характеристикой силы тяжести является ускорение свободного падения тел, то на борту космического корабля в число характеристик перегрузки также входит ускорение свободного падения, равное по величине реактивному ускорению по противоположному ему направлению. Отношение этой величины к величине называется "коэффициентом перегрузки" или "перегрузкой".

На участке разгона ракеты-носителя перегрузка определяется равнодействующей негравитационных сил — силы тяги и силы аэродинамического сопротивления, которая состоит из силы лобового сопротивления, направленной противоположно скорости, и перпендикулярной к ней подъемной силы. Эта равнодействующая создает негравитационное ускорение, которое определяет перегрузку.

Ее коэффициент на участке разгона составляет несколько единиц .

Если космическая ракета в условиях Земли будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды, то произойдет увеличение давления на опору из-за чего возникнет перегрузка. Если движение будет происходить с выключенными двигателями в пустоте, то давление на опору исчезнет и наступит состояние невесомости .

При старте космического корабля на космонавта , величина которого изменяется от 1 до 7 g. По статистике, космонавты редко испытывают перегрузки, превышающие 4 g.

Способность переносить перегрузки зависит от температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и т.д. Существуют и другие более сложные или менее уловимые факторы, влияние которых еще не до конца выяснено .

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, которое длится более трех секунд, могут возникнуть серьезные нарушения периферического зрения. Поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести. При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта иллюзия называется окологиральной и является следствием воздействия перегрузок на органы внутреннего уха.

Многочисленные экспериментальные исследования, которые были начаты еще ученым Константином Циолковским, показали, что физиологическое воздействие перегрузки зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Из-за увеличения своего веса внутренние органы смещаются вниз и вызывают сильное натяжение связок.

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси, от спины к груди. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

Материал подготовлен на основе информации РИА Новости и открытых источников

Сила, приложенная к телу, в системе единиц СИ измеряется в ньютонах (1 Н = 1 кг·м/с 2 ). В технических дисциплинах в нередко качестве единицы измерения силы традиционно используют килограмм-силу (1 кгс , 1 кГ ) и аналогичные единицы: грамм-силу (1 гс , 1 Г ), тонна-силу (1 тс , 1 Т ). 1 килограмм-сила определена как сила, сообщающая телу массой 1 кг нормальное ускорение, равное по определению 9,80665 м/с 2 (это ускорение приблизительно равно ускорению свободного падения). Таким образом, по второму закону Ньютона, 1 кгс = 1 кг · 9,80665 м/с 2 = 9,80665 Н . Можно сказать также, что тело массой 1 кг , покоящееся на опоре, имеет вес 1 кгс Часто ради краткости килограмм-силу называют просто «килограммом» (а тонна-силу, соответственно, «тонной»), что порождает порой путаницу у людей, не привыкших к использованию разных единиц.

Русская терминология, сложившаяся в ракетостроении, традиционно использует «килограммы» и «тонны» (точнее, килограмм-силы и тонна-силы) в качестве единиц тяги ракетных двигателей. Таким образом, когда говорят о ракетном двигателе с тягой 100 тонн, имеют в виду, что данный двигатель развивает тягу 10 5 кг · 9,80665 м/с 2 $\approx$ 10 6 Н .

Частая ошибка

Путая ньютоны и килограмм-силы, некоторые считают, что сила в 1 килограмм-силу сообщает телу массой 1 килограмм ускорение 1 м/с 2 , т. е. пишут ошибочное «равенство» 1 кгс / 1 кг = 1 м/с 2 . В то же время очевидно, что на самом деле 1 кгс / 1 кг = 9,80665 Н / 1 кг = 9,80665 м/с 2 — таким образом, допускается ошибка почти в 10 раз.

Пример

<…> Соответственно, сила которая давит на частицы в пределах средневзвешенного радиуса будет равна: 0,74 Гс/мм 2 · 0,00024 = 0,00018 Гс/мм 2 или 0,18 мГс/мм 2 . Соответственно, на среднюю частицу с поперечным сечением в 0,01 мм 2 будет давить сила в 0,0018 мГс.
Эта сила придаст частице ускорение, равное ее отношению к массе средней частицы: 0,0018 мГс / 0,0014 мГ = 1,3 м/сек 2 . <…>

(Выделение apollofacts .) Разумеется, сила величиной 0,0018 миллиграмм-сил сообщила бы частице массой 0,0014 миллиграмм ускорение почти в 10 раз больше того, что насчитал Мухин: 0,0018 миллиграмм-сил / 0,0014 миллиграмм = 0,0018 мг · 9,81 м/с 2 / 0,0014 мг $\approx$ 13 м/сек 2 . (Можно заметить, что с исправлением одной только этой ошибки насчитанная Мухиным глубина кратера, который якобы должен был бы образоваться под лунным модулем при посадке, сразу упадет с 1,9 м , которые требует Мухин, до 20 см ; однако весь остальной расчет настолько нелеп , что эта поправка не способна его исправить).

Вес тела

По определению, вес тела есть сила, с которой тело давит на опору или подвес. Вес тела, покоящегося на опоре или подвесе (т. е. неподижного относительно Земли или иного небесного тела) равен

(1)

\begin{align} \mathbf{W} = m \cdot \mathbf{g}, \end{align}

где $\mathbf{W}$ — вес тела, $m$ — масса тела, $\mathbf{g}$ — ускорение свободного падения в данной точке. На поверхности Земли ускорение свободного падения близко к нормальному ускорению (часто округляемому до 9,81 м/с 2 ). Тело массой 1 кг имеет вес $\approx$ 1 кг · 9,81 м/с 2 $\approx$ 1 кгс . На поверхности Луны ускорение свободного падения примерно в 6 раз меньше, чем у поверхности Земли (точнее, близко к 1,62 м/с 2 ). Таким образом, на Луне тела примерно в 6 раз легче, чем на Земле.

Частая ошибка

Путают вес тела и его массу. Масса тела не зависит от небесного тела, она постоянна (если пренебречь релятивистскими эффектами) и всегда равна одной и той же величине — и на Земле, и на Луне, и в невесомости

Пример

Пример

В газете «Дуэль », № 20, 2002 г. автор живописует страдания, которые должны испытывать астронавты лунного модуля при посадке на Луну, и настаивает на невозможности такой посадки :

Космонавты <…> испытывают длительную перегрузку, максимальное значение которой — 5. Перегрузка направлена вдоль позвоночника (самая опасная перегрузка). Спросите у военных летчиков, можно ли устоять в самолете в течение 8 мин. при пятикратной перегрузке да еще и управлять им. Представьте себе, что после трех дней пребывания в воде (три дня полета к Луне в невесомости) вы выбрались на сушу, вас поместили в Лунную кабину, а ваш вес стал 400 кг (перегрузка 5), комбинезон на вас — 140 кг, а рюкзак за спиной — 250 кг. Чтобы вы не упали, вас держат тросом, прикрепленным к поясу, 8 минут, а затем еще 1,5 мин. (никаких кресел, ложементов нет). Не подгибайте ноги, опирайтесь на подлокотники (руки должны быть на органах управления). Кровь отлила от головы? Глаза почти не видят? Не умирайте и не падайте в обморок <…>
уж совсем плохо заставлять космонавтов управлять посадкой в положении «стоя» при длительной 5-кратной перегрузке — это просто НЕВОЗМОЖНО.

Однако, как уже было показано, в начале спуска астронавты испытывали перегрузку $\approx$ 0,66 g — то есть заметно меньше их нормального земного веса (и никакого рюкзака за спиной у них не было — они были непосредственно подключены к системе жизнеобеспечения корабля). Перед посадкой тяга двигателя почти уравновешивала вес корабля на Луне, поэтому связанное с ней ускорение составляет $\approx$ 1/6 g — таким образом, в течение всей посадки они испытывали меньшую нагрузку, чем при простом стоянии на земле. По сути, одна из задач описыванной тросовая системы как раз и была в том, чтобы помочь астронавтам удержаться на ногах в условиях пониженного веса .