Клеточная биофизика. Биофизика – наука на стыке физики и биологии

Но достаточна ли современная физика для решения биологических проблем, для обоснования теоретической биологии? Не потребуется ли биофизики новая, еще не существующая физика? В истории науки были ситуации, в которых ранее разработанная теория встречалась с границами своей применимости и оказывалась необходимым строить принципиально новую систему представлений. Именно так и возникли и теория относительности, и квантовая механика.

Обсуждая возможности физического истолкования явлений жизни, т.е. влияние физики на современное и последующее развитие биологии, не следует забывать и об обратном влиянии биологии на физику. Закон сохранения энергии, первое начало термодинамики, был открыт Майером, Джоулем, и Гельмгольцем. Как известно, Майер исходил из наблюдений над живыми организмами, над людьми. Менее известно, что Гельмгольц также основывался на биологических явлениях, руководствуя четкой антивиталистической концепцией. Не только биофизика, но физика в целом развивались на пути преодоления витализма.

Бор рассматривал эту проблему на основе концепции дополнительности, частным случаем является принцип неопределенности квантовой механики. Бор считал дополнительными исследований несовместимы. В то же время «ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии». Таким образом, имеется дополнительность биологии, с одной стороны, и физики и химии -- с другой. Эта концепция не виталистична, она не ставит каких- либо границ применению физики и химии в исследованиях живой природы.

Развитие молекулярной биологии привело к атомистическому истолкованию основных явлений жизни -- таких как наследственность и изменчивость.

В 1945 году Шредингер написал книгу «Что такое жизнь с точки зрения физики», оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них -- термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюции изолированной физической системы к состоянию с максимальной энтропией и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергией. Неравновесное состояние открытой системы поддерживаются оттоком энтропии в окружающую среду. Вторая проблема - общие структурные особенности организмов. По словам Шредингера, организм есть апериодический кристалл, т.е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов. Это утверждение справедливо для строения организмов, клеток и биологических макромолекул. Третья проблема -- соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос: « Почему атомы малы?» Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению, с чем малы атомы. Они малы по сравнению с нашими мерами длины - метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать: почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов? Ответ на этот вопрос заключается в том, что необходимая для жизни упорядоченность возможна лишь в макроскопической системе, в противном случае порядок разрушался бы флуктуациями. Наконец, Шредингер задавался вопросом об устойчивости вещества генов, построенных из легких атомов С, Н, К, О, Р, на протяжении множества поколений.

Биофизика (биологическая физика) - наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических процессов, протекающих на разных уровнях организации живой материи - молекулярном, клеточном, организменном и популяционном.

Введение

Теоретические построения и модели биофизики основаны на понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации. Эти понятия отражают природу основных взаимодействий и законов движения материи, что, как известно, составляет предмет физики - фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления. Основная тенденция современной биофизики - проникновение в самые глубокие, элементарные уровни, составляющие основу структурной организации живого.

Становление и развитие биофизики тесно связано с интенсивным взаимопроникновением идей, теоретических подходов и методов современной биологии , физики, химии и математики .

Современная классификация биофизики, принятая ИЮПАБ

Классификация, принятая Международным союзом чистой и прикладной биофизики (1961), которая отражает основные биологические объекты в области биофизических исследований, включает следующие разделы: молекулярную биофизику, в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов; биофизику клетки, изучающую физико-химические основы жизнедеятельности клетки, связь молекулярной структуры мембран и клеточных органелл с их функциями, закономерности координации клеточных процессов, их механические и электрические свойства, энергетику и термодинамику клеточных процессов; биофизику сложных систем, к которым относят отдельные органеллы, целые организмы и популяции; биофизику процессов управления и регуляции, которая занимается исследованием и моделированием принципов управления в биологических системах. Выделяют также разделы биофизики: строение биополимеров (белки, ДНК, липиды), биомеханика, биологическая оптика, биомагнетизм, биологическая термодинамика. К биофизике относят и области науки, изучающие механизмы воздействий на биологические системы различных физических факторов (свет, ионизирующая радиация, электромагнитные поля и др.).

История проникновения начал физики и математики в биологию

Начало изучения физических свойств биологических объектов связывают с работами Г. Галилея и Р. Декарта (17 в.), заложившими основы механики, на принципах которой и делались первые попытки объяснить некоторые процессы жизнедеятельности. Декарт, например, считал, что организм человека подобен сложной машине, состоящей из тех же элементов, что и тела неорганического происхождения. Итальянский физик Дж. Борелли применил принципы механики в описании механизмов движений животных. В 1628 У. Гарвей на основе законов гидравлики описал механизм кровообращения. В 18 в. важное значение для понимания физико-химических процессов, протекающих в живых организмах, имели открытия в области физики, совершенствование её математического аппарата. Использование физических подходов дало толчок к введению в биологию экспериментальных методов и идей точных наук. Л. Эйлер математически описал движение крови по сосудам. М.В. Ломоносов высказал ряд общих суждений о природе вкусовых и зрительных ощущений, выдвинул одну из первых теорий цветового зрения. А. Лавуазье и П. Лаплас показали единство законов химии для неорганических и органических тел, установив, что процесс дыхания аналогичен медленному горению и является источником тепла для живых организмов. Творческая дискуссия между А. Вольтаи Л. Гальвани по проблеме открытия последним «живого электричества» легла в основу электрофизиологии и сыграла важную роль в исследованиях электричества в целом.

Развитие биофизики в XIX - начале XX века

В 19 в. развитие биологии сопровождалось обогащением знаний о физико-химических свойствах биологических структур и процессов. Огромное значение имело создание электролитической теории растворов С. Аррениуса, ионной теории биоэлектрических явлений В. Нернста . Были получены основные представления о природе и роли потенциалов действия в механизме возникновения и распространения возбуждения по нерву (Г. Гельмгольц , Э. Дюбуа-Реймон , Ю. Бернштейн, Германия); значение осмотических и электрических явлений в жизни клеток и тканей было выяснено благодаря работам Ж. Лёба (США), В. Нернста и Р. Гербера (Германия). Всё это позволило Дюбуа-Реймону сделать вывод о том, что в материальных частицах организмов не обнаруживается никаких новых сил, которые не могли бы действовать вне их. Такая принципиальная позиция положила конец объяснениям процессов жизнедеятельности действиями каких-то особых «живых факторов, не поддающихся физическим измерениям».

Значительный вклад в развитие биофизики внесли отечественные учёные. И.М. Сеченов исследовал закономерности растворения газов в крови, биомеханику движений. Конденсаторная теория возбуждения нервных тканей, основанная на неодинаковой подвижности ионов, была предложена В.Ю. Чаговцем. К.А. Тимирязев определил фотосинтетическую активность отдельных участков солнечного спектра, установив количественные закономерности, связывающие скорость процесса фотосинтеза и поглощение хлорофиллом в листьях света разного спектрального состава. Идеи и методы физики и физической химии использовались при исследовании движения, органов слуха и зрения, фотосинтеза, механизма генерации электродвижущей силы в нерве и мышце, значения ионной среды для жизнедеятельности клеток и тканей. В 1905-15 гг. Н.К. Кольцов изучал роль физико-химических факторов (поверхностного натяжения, концентрации водородных ионов, катионов) в жизни клетки. П.П. Лазареву принадлежит заслуга в развитии ионной теории возбуждения (1916), изучении кинетики фотохимических реакций. Он создал первую советскую школу биофизиков, объединил вокруг себя большую группу крупных учёных (в их число входили С.И. Вавилов, С.В. Кравков, В.В. Шулейкин, С.В. Дерягин и др.). В 1919 им был создан в Москве Институт биологической физики Наркомздрава, где велись работы по ионной теории возбуждения, изучению кинетики реакций, идущих под действием света, исследовались спектры поглощения и флуоресценции биологических объектов, а также процессы первичного воздействия на организм различных факторов внешней среды. Огромное влияние на развитие биофизики в СССР оказали книги В.И. Вернадского (« Биосфера», 1926), Э.С. Бауэра («Теоретическая биология», 1935), Д.Л. Рубинштейна («Физико-химические основы биологии», 1932), Н.К. Кольцова («Организация клетки», 1936), Д.Н. Насонова и В.Я. Александрова («Реакция живого вещества на внешние воздействия», 1940) и др.

Во 2-й половине 20 века успехи в биофизике непосредственно связаны с достижениями в области физики и химии, с развитием и совершенствованием методов исследований и теоретических подходов, применением электронно-вычислительной техники. С развитием биофизики в биологию проникли такие точные экспериментальные методы исследований как спектральные, изотопные, дифракционные, радиоспектроскопические. Широкое освоение атомной энергии стимулировало интерес к исследованиям в области радиобиологии и радиационной биофизики.

Основной итог начального периода развития биофизики - это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое значение для развития разных областей биологии имеют полученные в этот период доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепция открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых «живых» форм энергии. Все это во многом повлияло не развитие биологии, наряду с успехами биохимии и успехами в изучении структуры биополимеров, способствовало формированию ведущего современного направления биологической науки - физико-химической биологии , в котором биофизика занимает важное место.

Основные направления исследований и достижения современной биофизики

В современной биофизике можно выделить 2 основных направления, составляющих предмет биофизики, - теоретическая биофизика решает общие проблемы термодинамики биологических систем, динамической организации и регуляции биологических процессов, рассматривает физическую природу взаимодействий, определяющих структуру, устойчивость и внутримолекулярную динамическую подвижность макромолекул и их комплексов, механизмы трансформации в них энергии; и биофизика конкретных биологических процессов (биофизика клетки ), анализ которых проводится на основе общетеоретических представлений. Основная тенденция развития биофизики связана с проникновением в молекулярные механизмы, лежащие в основе биологических явлений на разных уровнях организации живого.

На современном этапе развития биофизики произошли принципиальные сдвиги, связанные, прежде всего, с бурным развитием теоретических разделов биофизики сложных систем и молекулярной биофизики. Именно в этих областях, занимающихся закономерностями динамического поведения биологических систем и механизмами молекулярных взаимодействий в биоструктурах, получены общие результаты, на основании которых в биофизике сформировалась собственная теоретическая база. Теоретические модели, разрабатываемые в таких разделах как кинетика, термодинамика, теория регуляции биологических систем, строение биополимеров и их электронные конформационные свойства, составляют в биофизике основу для анализа конкретных биологических процессов. Создание таких моделей необходимо для выявления общих принципов фундаментальных биологически значимых взаимодействий на молекулярном и клеточном уровне, раскрытия их природы в соответствии с законами современной физики, химии с использованием новейших достижений математики и разработки на основе этого исходных обобщенных понятий, адекватных описываемым биологическим явлениям.

Важнейшей особенностью является то, что построение моделей в биофизике требует такой модификации идей смежных точных наук, которая равносильна выработке новых понятий в этих науках в применении к анализу биологических процессов. Биологические системы сами являются источником информации, которая стимулирует развитие некоторых областей физики, химии и математики.

В области биофизики сложных систем использование принципов химической кинетики для анализа метаболических процессов открыло широкие возможности их математического моделирования с помощью обыкновенных дифференциальных уравнений. На этом этапе было получено много важных результатов, в основном в области моделирования физиолого-биохимических процессов, динамики роста клеток и численности популяций в экологических системах. Принципиальное значение в развитии математического моделирования сложных биологических процессов имел отказ от идеи обязательного нахождения точных аналитических решений соответствующих уравнений и использование качественных методов анализа дифференциальных уравнений, которые позволяют раскрыть общие динамические особенности биологических систем. К числу этих особенностей относятся свойства стационарных состояний, их число, устойчивость, возможность переключения из одного режима в другой, наличие автоколебательных режимов, хаотизация динамических режимов.

На этой основе были развиты представления об иерархии времен и «минимальных» и адекватных моделях, достаточно полно отражающих основные свойства объекта. Был также развит параметрический анализ динамического поведения систем, в том числе анализ базовых моделей, отражающих те или иные стороны самоорганизации биологических систем во времени и пространстве. Кроме того, все большее значение приобретает использование вероятностных моделей, которые отражают влияние стохастических факторов на детерминистсткие процессы в биологических системах. Бифуркационная зависимость динамического поведения системы от критических значений параметров отражает возникновение в системе динамической информации, которая реализуется при смене режима функционирования.

К достижениям биофизики, имеющим общебиологическое значение, можно отнести понимание термодинамических свойств организмов и клеток, как открытых систем, формулировку на основе 2-го закона термодинамики критериев эволюции открытой системы к устойчивому состоянию (И. Пригожин ); раскрытие механизмов колебательных процессов на уровне популяций, ферментативных реакций. Исходя из теории автоволновых процессов в активных средах, установлены условия самопроизвольного возникновения диссипативных структур в гомогенных открытых системах. На этом основании строятся модели процессов морфогенеза, формирования регулярных структур при росте бактериальных культур, распространения нервного импульса и нервного возбуждения в нейронных сетях. Развивающаяся область теоретической биофизики - изучение возникновения и природы биологической информации и её связи с энтропией, условий хаотизации и образования фрактальных самоподобных структур в сложных биологических системах.

В целом развитие единого молекулярно-кинетического описания является актуальной проблемой биофизики, которая требует разработки исходных базовых понятий. Так, в области термодинамики необратимых процессов понятие химического потенциала, зависящего от общей концентрации какого-либо компонента, и, строго говоря, понятие энтропии уже несправедливы для гетерогенных систем, далеких от равновесия. В активных макромолекулярных комплексах внутримолекулярные превращения в первую очередь зависят от характера их организации, а не от суммарной концентрации отдельных составляющих компонентов. Это требует разработки новых критериев устойчивости и направленности необратимых процессов в гетерогенных неравновесных системах.

В молекулярной биофизике изучение конкретных биологических процессов основано на данных исследований физико-химических свойств биополимеров (белков и нуклеиновых кислот), их строения, механизмов самосборки, внутримолекулярной подвижности и т.д. Большое значение в биофизике имеет использование современных экспериментальных методов и прежде всего радиоспектроскопии (ЯМР , ЭПР ), спектрофотометрии, рентгеноструктурного анализа, электронной туннельной микроскопии, атомной силовой микроскопии, лазерной спектроскопии, различных электрометрических методов, в том числе с использованием микроэлектродной техники. Они дают возможность получать информацию о механизмах молекулярных превращений, не нарушая целостности биологических объектов. В настоящее время установлена структура около 1000 белков. Расшифровка пространственной структуры ферментов и их активного центра позволяет понять природу молекулярных механизмов ферментативного катализа, планировать на этой основе создание новых лекарственных средств. Возможности направленного синтеза биологически активных веществ, в том числе лекарственных препаратов, базируются также на фундаментальных исследованиях связи молекулярной подвижности и биологической активности таких молекул.

В области теоретической молекулярной биофизики представления об электронно-конформационных взаимодействиях - ЭКВ (М.В. Волькенштейн ), стохастических свойствах белка (О.Б. Птицын ) составляют основу понимания принципов функционирования биомакромолекул. Специфика биологических закономерностей, полностью раскрывающихся на высших уровнях организации развитой биологической системы, тем не менее, проявляется уже на низших молекулярных уровнях живого. Трансформация энергии и появление продуктов реакции в комплексах достигается в результате внутримолекулярных взаимодействий отдельных частей макромолекулы. Отсюда логически вытекают представления о своеобразии макромолекулы как физического объекта, сочетающего в себе взаимодействия по статистическим и механическим степеням свободы. Именно представления о макромолекулах, прежде всего белковых, как своего рода молекулярных машинах (Л.А. Блюменфельд , Д.С. Чернавский ) позволяют объяснить трансформацию различных видов энергии в результате взаимодействия в пределах одной макромолекулы. Плодотворность биофизического метода анализа и построения обобщенных моделей физического взаимодействия сказывается в том, что принцип ЭКВ позволяет с единых общенаучных позиций рассматривать функционирование молекулярных машин, казалось бы, далеких друг от друга по своей биологической роли - например, молекулярных комплексов, участвующих в первичных процессах фотосинтеза и зрения, фермент-субстратных комплексов ферментативных реакций, молекулярных механизмов работы АТФ-синтетазы, а также переноса ионов через биологические мембраны.

Биофизика изучает свойства биологических мембран , их молекулярную организацию, конформационную подвижность белковых и липидных компонентов, их устойчивость к действию температуры, перекисному окислению липидов, их проницаемость для неэлектролитов и для различных ионов, молекулярное строение и механизмы функционирования ионных каналов, межклеточные взаимодействия. Большое внимание уделяется механизмам преобразования энергии в биоструктурах (см. ст. Биоэнергетика ), где они сопряжены с переносом электронов и с трансформацией энергии электронного возбуждения. Раскрыта роль свободных радикалов в живых системах и их значение в поражающем действии ионизирующей радиации, а также в развитии ряда других патологических процессов (Н.М. Эмануэль , Б.Н. Тарусов). Один из разделов биофизики, пограничных с биохимией - механохимия, изучает механизмы взаимопревращений химической и механической энергии, связанные с сокращением мышц, движением ресничек и жгутиков, перемещением органелл и протоплазмы в клетках. Важное место занимает «квантовая» биофизика, изучающая первичные процессы взаимодействия биологических структур с квантами света (фотосинтез , зрение , воздействие на кожные покровы и т.д.), механизмы биолюминесценции и фототропных реакций, действия ультрафиолетового и видимого света (фотодинамические эффекты ) на биологические объекты. Еще в 40-х гг. 20 в. А.Н. Теренин раскрыл роль триплетных состояний в фотохимических и ряде фотобиологических процессов . А.А. Красновский показал способность возбужденного светом хлорофилла к окислительно-восстановительным превращениям, лежащим в основе первичных процессов фотосинтеза . Современные методы лазерной спектроскопии дают непосредственную информацию о кинетике соответствующих фотоиндуцированных электронных переходов, колебаниях атомных групп в диапазоне от 50-100 фемтосекунд до 10 -12 -10 -6 с и более.

Идеи и методы биофизики не только находят широкое применение при изучении биологических процессов на макромолекулярном и клеточном уровнях, но и распространяются, особенно в последние годы, на популяционный и экосистемный уровни организации живой природы.

Достижения в биофизике в большой степени используются в медицине и экологии. Медицинская биофизика занимается выявлением в организме (клетке) на молекулярном уровне начальных стадий патологических изменений. Ранняя диагностика заболеваний основана на регистрации спектральных изменений, люминесценции, электрической проводимости образцов крови и тканей, сопровождающих заболевание (например, по уровню хемилюминесценции можно судить о характере перекисного окисления липидов). анализирует молекулярные механизмы действия абиотических факторов (температура, свет электромагнитные поля, антропогенные загрязнения и др.) на биологические структуры, жизнеспособность и устойчивость организмов. Важнейшей задачей экологической биофизики является развитие экспресс методов для оценки состояния экосистем. В этой области одной из важнейших задач становится оценка токсичности принципиально новых материалов - наноматериалов, а также механизмов их взаимодействия с биологическими системами.

В России исследования по биофизике проводятся в ряде научно-исследовательских институтов и ВУЗов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1962 был организован Институт биологической физики АН СССР, который позднее разделился на Институт биофизики клетки РАН (директор - чл.-корр. РАН Е.Е.Фесенко) и Институт теоретической и экспериментальной биофизики РАН (директор - чл.-корр. РАН Г.Р. Иваницкий . Биофизика активно развивается в Институте биофизики МЗ РФ , Институте молекулярной биологии РАН и Институте белка РАН , Институте биофизики СО РАН (директор - чл.-корр. РАН Дегермеджи А.Г. ), в университетах Москвы. С.-Петербурга и Воронежа, в , в и др.

Развитие биофизического образования в России

Параллельно с развитием исследований шло формирование базы для подготовки специалистов в области биофизики. Первая в СССР кафедра биофизики на биолого-почвенном факультете МГУ была организована в 1953 г. (Б. Н. Тарусов), а в 1959 была открыта кафедра биофизики на физическом факультете МГУ (Л.А. Блюменфельд). Обе эти кафедры являются не только образовательными центрами, готовящими квалифицированных специалистов-биофизиков, но и крупными научно-исследовательскими центрами. Кафедры биофизики затем были организованы в ряде других ВУЗов страны, в том числе в Государственном университете «Московский физико-технический институт» , в Национальном исследовательском ядерном университете «МИФИ» , а также в ведущих медицинских университетах. Курс биофизики читается во всех университетах страны. Биофизические исследования проводятся в институтах и университетах во многих странах мира. Международные конгрессы по биофизике проводятся регулярно каждые 3 года. Общества биофизиков существуют в США, Великобритании и ряде других стран. В России Научный совет по биофизике при РАН координирует научную работу, осуществляет международные связи. Секция биофизики имеется при Московском обществе испытателей природы.

Среди периодических изданий, в которых публикуются статьи по биофизике: «Биофизика» (М., 1956 —); «Молекулярная биология» (М., 1967 —); «Радиобиология» (М., 1961 — в настоящее время «Радиационная биология. Радиоэкология»); «Биологические мембраны» (М., 19 —) .«Advances in Biological and Medical Physics» (N.Y., 1948 —); «Biochimica et Biophysica Acta» (N.Y. - Amst., 1947 —); «Biophysical Journal» (N.Y., I960 —); «Bulletin of Mathematical Biophysics» (Chi, 1939 —); «Journal of Cell Biology» (N.Y., 1962 — . В 1955 — 1961 «Journal of Biophysical and Biochemical Cytology»); «Journal of Molecular Biology» (N.Y. - L., 1959 —); «Journal of Ultrastructure Research» (N.Y. - L., 1957 —)» «Progress in Biophysics and Biophysical Chemistry» (L., 1950 —) ; European Journal of biophysics (); Jurnal of Theoretical biology (1961).

Рекомендуемая литература

Блюменфельд Л.А . Проблемы биологической физики. М., 1977

Волькенштейн М.В. Биофизика. М., 1981

М. Джаксон . Молекулярная и клеточная биофизика. М., «Мир». 2009

Николис Г., Пригожин И . Самоорганизация в неравновесных структурах. пер. с англ. М., 1979;

Рубин А.Б. Биофизика. Т. I. М., 2004. Т. 2. М., 2004 (изд. 3-е)

А.В., Птицын О.Б. Физика белка. М., 2002.

Лекция № 1

Предмет и задачи биофизики

Биофизика как медико-биологическая наука, изучающая механизмы физических и физико-химических процессов в биологических системах. Место биофизики в ряду фундаментальных биологических и медицинских дисциплин, связь с биологическими и медицинскими науками. Краткий исторический очерк развития биофизики. Методы и направления современной биофизики.


Предметом биофизики является изучение физических и физико-химических процессов, лежащих в основе жизни. Существуют и более емкие определения биофизики. Например, лауреат Нобелевской премии А. Сент-Дьердьи утверждал, будто биофизика − «все то, что интересно». Термин «биофизика» закрепился в научной литературе с 1892 г., когда Карл Пирсон, автор книги «Грамматика науки», на ее страницах заявил: «...наука, пытающаяся показать, что факты биологии − морфологии, эмбриологии и физиологии образуют частные случаи приложения общих физических законов , получила название этиологии... Быть может, лучше было бы назвать ее биофизикой». А. Фик и вслед за ним другие немецкие ученые называли эту область знания медицинской физикой, но французский физиолог Ж. А. д"Арсонваль еще до предложения К. Пирсона предпочитал термину «медицинская физика» словосочетание «биологическая физика».

Современная биофизика исследует механизмы физических и физико-химических процессов в биологических системах на субмолекулярном , молекулярном, надмолекулярном, клеточном, тканевом, органном и организменном уровнях.

По природе объектов исследования, биофизика − типичная биологическая наука. По методам изучения биообъектов и анализа результатов исследований , биофизика является своеобразным разделом физики (по мнению М.В. Волькенштейна, «биофизика − физика явлений жизни»). Она идет в авангарде тех областей биологии, которые превращают эту древнейшую область человеческого знания из гуманитарной в точную науку. Внедрение физических принципов анализа биологических явлений в медицину позволяет ей стать не только искусством, но и наукой. В этом особая роль биофизики среди других медицинских теоретических дисциплин.

Зачастую о биофизике говорят как о новой, молодой науке. Так, 9 ноября 1934 г. П.Л. Капица писал: «Биофизика − совершенно новая область, она пришла вместе с биохимией на смену старой классической физиологии. Вместо того чтобы изучать физиологические процессы в целом... биофизика и биохимия изучают отдельные элементы живого существа и стараются объяснить его функцию посредством законов физики и химии». Действительно, в отдельную научную дисциплину биофизика выделилась сравнительно недавно, но зачатки биофизики возникли сразу по появлении работ в области экспериментальной физики. Так, некоторые изыскания Г. Галилея (измерение температуры тела, определение работы , совер­шаемой человеком, и т. п.) можно отнести к биофизическим исследованиям.

Стремление объяснить процессы жизнедеятельности человека и животных физическими законами было весьма характерно для творчества многих ученых XVII и XVIII вв. (Р. Бойль, Р. Гук, И. Ньютон, П.С. Лаплас, А.Л. Лавуазье, М.В. Ломоносов и многие другие). XIX в. стал веком торжества аналитических методов в исследовании биологических явлений. Эти методы получили наибольшее развитие в физиологии, в недрах которой зародилась современная биофизика. Многие физиологические процессы, вплоть до нервной деятельности, пытались объяснить на основе физических законов. В отличие от аналогичных попыток предшественников, такие объяснения в значительной мере подтверждались экспериментально. Герман Гельмгольц измерил скорость распространения нервного импульса. Эмиль Дюбуа-Реймон изучил биоэлектрогенез почти всех органов и тканей организма. Эрнст Вебер объяснил некоторые свойства гемодинамики на основе физических законов. Выдающиеся открытия были сделаны в области биофизики органов чувств − достаточно назвать хотя бы закон Вебера-Фехнера.

Вместе с тем XIX в. определил весьма характерную тенденцию в последующем развитии биофизики. Одним из первых ученых, подметивших и утвердивших эту тенденцию, был Иван Михайлович Сеченов – отец русской физиологии. С не меньшими основаниями его можно назвать основоположником отечественной биофизики. Он использовал методы математики и физической химии для исследования дыхания , установил количественные закономерности растворения газов в биологических жидкостях. В работах И.М. Сеченова прослеживается наиболее перспективный путь развития физиологии и биофизики, связанный, прежде всего с физической химией. В докторской диссертации (1860) И.М. Сеченов утверждал: «Физиолог − физико-химик, имеющий дело с явлениями животного организма».

Однако только в XX в. биофизика стала самостоятельной наукой. С этих пор она приступила к изучению фундаментальных проблем биологии: наследственности и изменчивости, онтогенеза и филогенеза, метаболизма и биоэнергетики.

Большинство исследователей (биофизиков) XVII−XIX вв. рассматривали живой организм как физическую систему, причем основным методом такого изучения биологических явлений был поиск внешних аналогий. Заметим, что и сейчас подобный прием не без успеха применяется в биофизике. Например, сокращение мышцы можно моделировать обратным пьезоэлектрическим эффектом, амебовидное движение клеток – перемещениями ртутной капли в растворе кислоты , проведение нервного импульса – миграцией царапины по железной проволоке, обработанной азотной кислотой (модель Лилли), и т. п.

Познавательное значение таких моделей довольно ограниченно. Зачастую при моделировании одного и того же биологического явления они сменяют одна другую вслед за появлением новых технических устройств. Например, рефлекторная деятельность рассматривалась во времена Р. Декарта по аналогии с работой паровой машины, в начале прошлого века – телефонной станции, сейчас – электронно-вычислительной машины. Однако и подобные (феноменологические) модели нужны. Они позволяют уточнить некоторые детали уже понятых в принципе явлений, создавать бионические системы, в которых используются закономерности биологической организации для построения сложных технических устройств, например роботов. И все же это полезное направление физического моделирования не является главным в решении кардинальных биофизических задач.

Основная цель биофизического исследования состоит в выяснении интимных (внутренних) механизмов биологических процессов, а не в рассмотрении внешних аналогий. Принято считать , что живые организмы представляют собой сложные физико-химические системы. Поэтому не физическое, а физико-химическое моделирование оказалось наиболее плодотворным. Оно привело к созданию ионной теории возбуждения, вскрытию природы биоэлектрогенеза, выяснению свойств биологических мембран и т. д. На этом пути особенно значительны достижения биофизики в последние годы.

По существу, современная биофизика – это физическая химия и химическая фи зика биологических систем. Именно такое направление является ведущим в работе двух крупнейших в мире институтов биофизики РАН, которые находятся в городе Пущино под Москвой. Проблемами биофизики занимаются сейчас многие научно-исследовательские учреждения Академии наук, Академии медицинских наук, Минздрава России. Среди них – институты физической химии и химической физики РАН , Институт биофизики Минздрава России. Развитием биофизики в нашей стране занимаются также университетские кафедры биологической физики.

Биофизика – пограничная область знаний, причем границы между ней и рядом других биологических наук довольно условны. При проведении этих границ исходят из самого определения предмета биофизики – к биофизическим относятся исследования, вскрывающие физические, а также физико-химические механизмы биологических процессов. В биофизических исследованиях применяется основной принцип экспериментального изучения природы – количественный анализ реакций организма на определенные стимулы с построением функциональных зависимостей между ними. Процессы жизнедеятельности получают строгую интерпретацию в виде количественных закономерностей, представляющих собой абстрактную форму выражения функциональной зависимости реакции от стимула.

Функции организма с незапамятных времен изучает физиология. В разное время содержание физиологии изменялось. Сейчас она рассматривает функцию как форму деятельности с определенным конечным результатом, проявлением которого служат физиологические свойства (Шидловский, 1981). В их внутренние механизмы невозможно проникнуть, используя традиционные физиологические подходы к изучению функций. Эти механизмы, поскольку они имеют физическую и химическую природу , изучают биофизика и биохимия. Различие задач биофизики и физиологии в изучении функций организма можно проиллюстрировать таким примером. Исследуя биопотенциалы, биофизик интересуется, прежде всего, механизмом возникновения электромагнитных процессов в живых тканях, физико-химическими основами этого феномена, его энергетическим обеспечением, тогда как для физиолога биопотенциалы являются показателями жизнедеятельности организма, служат количественной характеристикой важнейших физиологических свойств (прежде всего – возбудимости). Так, по электрокардиограмме физиолог судит о свойствах сердечной мышцы (автоматизме, возбудимости, проводимости). Его меньше занимает физико-химическая природа электрогенеза в миокарде, это составляет основную задачу биофизического исследования электрических процессов в сердце.

Биохимия, подобно биофизике , также стремится проникнуть в механизмы физиологических явлений, но изучает их химическую природу. Понятны трудности в разграничении биофизических и биохимических исследований, но это необходимо делать. «Не подлежит сомнению, – утверждал академик Г.М. Франк (1974), – что любые проявления жизни и живые организмы в целом в конечном итоге – „химические машины". Однако, несмотря на примат химии, химический язык и химические концепции недостаточны, чтобы раскрыть материальную сущность явлений жизни. Это в первую очередь относится к путям превращения энергии, природе сил взаимодействия и разнообразным физическим процессам, таким, например, как генерация электрических потенциалов , возникновение механической энергии, механизмы управления и регуляции».

Биофизические методы создаются на основе физических и физико-химических методов изучения природы. В них должны сочетаться трудно совместимые свойства: высокая чувствительность и большая точность. Этому условию отвечают, прежде всего, достижения современной электроники. Весьма плодотворно использование оптических методов. Широко применяют различные методы спектроскопии, включая радиоспектроскопию (методы электронного парамагнитного резонанса – ЭПР и ядерного магнитного резонанса – ЯМР). Давно вошли в обиход радиоизотопные методики.

Любое исследование требует, чтобы регистрирующие приборы не вносили искажений в изучаемый процесс. Для биофизического эксперимента соблюдение этого требования особенно актуально. Известный советский биофизик Б.Н. Тарусов считал, что в этом требовании заключена важнейшая особенность биофизических методов, отличающая их от применения аналогичных методических приемов в других областях физики. Такая несколько утрированная формулировка специфики биофизических методов имеет определенные основания. Трудно сравнить какую-либо физическую систему с живым организмом по необычайно высокой чувствительности последнего к любым воздействиям на него. Они не просто нарушают нормальный ход биологических процессов, а вызывают сложные приспособительные реакции , разнообразные в разных органах и в различных условиях. Искажение смысла истинных явлений может оказаться столь существенным, что становится невозможным вносить поправки в артефакты (явления, не свойственные изучаемому объекту в естественных условиях и возникающие в ходе его исследования), поскольку методы коррекции, используемые с успехом в физике и технике, зачастую бесплодны в биофизике.

Чтобы лучше понять области применения биофизических методов, рассмотрим основные направления научных изысканий в биофизике. Согласно решению Международной ассоциации общей и прикладной биофизики, к ним относят исследования на молекулярном и клеточном уровнях, а также биофизическое изучение органов чувств и сложных систем.

Методы и направления современной биофизики. Молекулярная биофизика изучает функциональную структуру и физико-химические свойства биологически важных (биологически функциональных) молекул, а также физические процессы, обеспечивающие их функционирование , исследует термодинамику биологических систем, перенос энергии и заряда по биомолекулам, квантовомеханические особенности их организации. Эта часть молекулярной биофизики постепенно выделяется в новый раздел под названием квантовой биофизики. В целом задача молекулярной биофизики – раскрыть физико-химические механизмы биологической функциональности молекул.

Работы по биофизике клетки посвящены физическим и физико-химическим свойствам клеточных и субклеточных структур, закономерностям деления и дифференцировки клеток, особенностям их обмена веществ (метаболизма), а также биофизическим механизмам специализированных функций клеток (мышечного сокращения, секреции, нервной импульсации и др.).

Биофизика органов чувств вскрывает физические и физико-химические механизмы восприятия специфических раздражителей рецепторными аппаратами сенсорных систем (анализаторов) человека и животных (на квантовом, молекулярном, клеточном уровнях).

Задача биофизики сложных систем состоит в разрешении общих физико-биологических проблем (происхождение жизни, наследственность, изменчивость и т. д.) на основе физико-математического моделирования важнейших биологических процессов.

Многие биофизики настаивают на выделении еще одного направления биофизических исследований − биофизических основ экологии. Его содержанием является выяснение механизмов воздействия на организм физических и химических факторов среды. Существует тенденция отождествления всей биофизики с молекулярной биофизикой, что нашло отражение в учебнике М.В. Волькенштейна «Биофизика», изданном для студентов биологических и физических факультетов университетов. Такое ограничение можно допустить для определения области наиболее актуальных научных изысканий современной биофизики, хотя и с этим далеко не все согласны. Так, академик Г.М. Франк еще в 1974 г. утверждал, что «центр тяжести физико-химического рассмотрения основы жизненных явлений смещается теперь в область биологии клетки», поскольку «явления жизни возникают только в системе, называемой клеткой», и, по словам Е.Б. Вильсона (1925), «ключ к каждой биологической проблеме нужно искать в клетке», а современная биофизика стала обладать методами, позволяющими сделать клетку объектом точного физического эксперимента. Это не означает, что другим направлениям биофизических исследований отводится вспомогательная роль. По мнению Г.М. Франка, в развитии биофизики должна соблюдаться «...непрерывность линии исследования от раздела , который мы обозначили как „молекулярная биофизика", далее через биофизику клетки к биофизике сложных процессов».
Биофизика – это наука, изучающая физические и физико-химические процессы, протекающие в биосистемах на разных уровнях организации и являющиеся основой физиологических актов. Возникновение биофизики произошло, как прогресс в физике, вклад внесли математика, химия и биология.

Живые организмы – открытая, саморегулирующаяся, самовоспроизводящаяся и развивающаяся гетерогенная система, важнейшими функциональными веществами в которой являются биополимеры: белки и нуклеиновые кислоты сложного атомно-молекулярного строения.

Задачи биофизики:

1.Раскрытие общих закономерностей поведения открытых неравновесных систем. Теоретическое обоснование термодинамических (т/д) основ жизни.

2.Научное истолкование явлений индивидуального и эволюционного развития , саморегуляции и самовоспроизведения.

3.Выяснение связей между строением и функциональными свойствами биополимеров и других биологически активных веществ.

4.Создание и теоретическое обоснование физико-химических методов исследования биообъектов.

5.Физическое истолкование обширного комплекса функциональных явлений (генерация и распределение нервного импульса, мышечное сокращение, рецепция, фотосинтез и др.)

Разделы биофизики:

· Молекулярная – изучает строение и физико-химических свойства, биофизику молекул. Основными объектами исследования молекулярной биофизики являются функционально активные вещества и среди них белки и нуклеиновые кислоты.

· Биофизика клетки – изучает особенности строения и функционирования клеточных и тканевых систем. Биофизика клетки имеет дело с надмолекулярными структурами живой клетки, среди которых особое место занимают мембранные структуры клеток и субклеточных структур.

· Биофизика сложных систем – изучает кинетику биопроцессов, поведение во времени разнообразных процессов присущих живой материи и термодинамику биосистем. Биофизика сложных систем рассматривает живые организмы различного уровня организации с позиции физико-математического моделирования. Объектами исследования в этом случае являются сообщества клеток, живые ткани, физиологические системы , популяции организмов. Построение моделей является одним из главных этапов биофизического исследования. Живой организм представляет собой очень сложную систему, не всегда доступную для точного физического эксперимента. В этом случае плодотворным становится использование физических, аналоговых, математических моделей. Любое крупное открытие в биофизике получено путём применения моделей.

Представление биомакромолекул в виде кристаллов позволило установить молекулярную структуру гемоглобина и миоглобина. Важную роль сыграла аналоговая электрическая модель возбудимой мембраны в исследованиях Ходжкина и Хаксли. В биофизике мембран широкое применение получили физические модели мембран в виде моно- и бимолекулярных липидных плёнок. С развитием и совершенствованием вычислительной техники моделирование получает новое развитие.

Такие науки как биология, медицина, сельскохозяйственные науки становятся всё более точными. Трудно переоценить в этом случае роль биофизики призванной исследовать явления жизни с использованием физических представлений и методов.

История развития биофизики.
Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Наука конца 20 века – синергетика, показала , что сходными уравнениями описываются процессы самоорганизации самой разной природы: от образования скоплений галактик до образования пятен планктона в океане.
Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый – агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.

Другой подход – подробное рассмотрение элементов системы и их взаимодействий. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл , при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.

Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста, возможность неустойчивости стационарного состояния в локальных системах и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах.

С расширением и углублением человеческих знаний о живых организмах появились такие разделы науки, которые изучают процессы и явления, относящиеся одновременно к различным областям знаний. Среди таких научных дисциплин биологическая физика, или биофизика. Что же она изучает и каковы ее методы исследований?

Известно, что физика изучает основные законы природы: строение атомов и ядер, свойства элементарных частиц, взаимодействие электромагнитных волн и частиц и т. д. Биофизика, возникшая на стыке биологии и физики, - это наука об основных физических и физико-химических процессах в живом организме и их регулировании.

Биофизикам нужно познать закономерности строения и работы живых организмов, не нарушая их свойств, сохраняя организм в живом, деятельном состоянии. Ведь, отмирая, организм теряет присущие ему свойства, все процессы в нем изменяются, и он становится обычной неживой системой. В этом заключается большая трудность. Отсюда возникла необходимость изучать живые организмы на разных «уровнях» - исследовать свойства биологических молекул, характерные особенности и работу клеток, изучать совместную работу органов в целом организме и т. д. Поэтому в биофизике выделились такие крупные разделы: молекулярная биофизика, биофизика клетки, биофизика процессов управления и регуляции и др. Кратко расскажем о каждом из основных разделов биофизики.

Молекулярная биофизика изучает свойства биологических молекул, физико-химические процессы в рецепторных клетках. Эти клетки называются рецепторными или чувствительными, так как они первыми воспринимают сигналы о свете, вкусе, запахе (по-латински «рецептио» - чувствую).

Молекулярная биофизика исследует, например, процессы, которые протекают в органах чувств животных - в органах зрения, слуха, осязания и обоняния. Мы привыкли, что в нашем организме все совершается просто, само собой, и подчас не задумываемся, насколько сложные биофизические процессы происходят, например, когда мы ощущаем вкус сахара или чувствуем запах цветов. А это одна из проблем, над которой много лет работает молекулярная биофизика. Дело в том, что ощущения вкуса или запаха возможны благодаря сложным физико-химическим процессам в рецепторных клетках при взаимодействии с ними молекул различных веществ.

Известно, что химики создали 1 млн. органических соединений и почти каждое из них имеет свой характерный запах. Человек может различать несколько тысяч запахов, причем некоторые вещества мы ощущаем при исключительно малой концентрации - всего миллионные и миллиардные доли миллиграмма на литр воды. Например, чтобы ощутить такие вещества, как скатол, тринитробутилтолуол, достаточно их концентрации 10 -9 мг/л. Животные намного чувствительнее человека. Например, геологи используют специально обученных собак для поиска по запаху рудных месторождений, расположенных глубоко под землей. Всем хорошо известна работа собак-ищеек, находящих след по ничтожно слабому запаху. Но, пожалуй, остротой обоняния всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество, даже если оно содержится в воде в исчезающе малых концентрациях - всего 10 -11 мг/л. Бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 м 3 воздуха.

Молекулярная биофизика помогает выяснить не только различие в чувствительности и строении органов обоняния у различных животных, но и сам процесс определения запаха. Сейчас установлено, что имеется 6-7 основных запахов, разными сочетаниями которых объясняется их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток.

Молекулярная биофизика изучает свойства и процессы не только у животных, но и у растений. В частности, она занимается изучением фотосинтеза. В зеленом листе березы, черемухи, яблони или пшеницы происходят удивительные и сложные процессы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее и создающие с ее помощью из воды и углекислого газа органическое вещество и тем самым дающие жизнь всем живым организмам.

Фотосинтез протекает в зеленых частицах - хлоропластах, находящихся в клетках листа и содержащих растительный пигмент - хлорофилл. Порции световой энергии (фотоны) поглощаются пигментом и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а протон используется для восстановления углекислого газа до углеводов. Протон и электрон, как известно, составляют атом водорода; этот атом «по частям» отнимается у молекулы воды. В процессе фотосинтеза освобождается кислород, которым дышат все живые организмы.

Основа фотосинтеза - самый первый элементарный процесс: взаимодействие порций световой энергии (фотонов) с молекулой хлорофилла. Именно этот процесс изучает молекулярная биофизика в фотосинтезе, с тем чтобы познать, как происходит преобразование световой энергии в энергию химических связей и последующее превращение веществ. Если этот фундаментальный процесс будет познан до конца, его можно будет осуществлять в искусственных условиях. Тогда человечество овладеет самым быстрым и самым экономичным способом получения органических веществ, следовательно, продуктов питания и ценного сырья, которые дают сегодня человеку зеленые растения.

Существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул и системы, образуемые молекулами в клетках (как говорят, субмолекулярные образования), их свойства и изменения, другая исследует свойства и функционирование различных клеток - выделительных, сократительных, обонятельных, светочувствительных и др.

Развитию биофизики клетки во многом способствовали успехи физики, радиоэлектроники, именно благодаря этим наукам биофизика получила электронные микроскопы, позволившие увеличивать микроскопические объекты в сотни тысяч раз. На вооружении биофизиков появился электронный парамагнитный резонанс, с помощью которого можно изучать особые активные части молекул - так называемые свободные радикалы, играющие очень важную роль во всех биологических процессах. С помощью высокочувствительных к свету приборов - фотоэлектронных умножителей (ФЭУ) стало возможным определять крайне малые потоки света. Использование этих приборов привело к большому открытию в биофизике клетки.

Давно была известна способность к свечению у живых организмов: светлячков и различных водных организмов, называемая биолюминесценцией. Но с помощью ФЭУ удалось обнаружить, что способностью к свечению обладают органы почти всех животных и растений. Это так называемое сверхслабое свечение - биохемилюминесценция - происходит в результате физико-химических реакций внутри клеток, и связано оно с внутриклеточным окислением веществ липидов, входящих в структурные элементы. Большую роль в этих процессах играют упомянутые нами свободные радикалы. По интенсивности сверхслабого свечения можно следить за уровнем окислительных обменных реакций и выделением энергии в результате многообразных реакций, идущих внутри клеток.

Обнаружение сверхслабого свечения, наличия свободных радикалов, связи их с жизнедеятельностью клетки резко изменило представления о клеточных процессах. Перед биофизикой клетки встала задача не только разобраться в ультрамикроскопическом строении клетки и ее органелл, но и выяснить, как связаны друг с другом эти элементы, как они работают, в чем причина слаженности, согласованности процессов, совершающихся в клетках.

При исследовании клетки в электронном микроскопе ученым открылся новый мир ультрамикроскопических, т. е. самых мельчайших, клеточных структур. Были обнаружены внутриклеточные мембраны, канальцы, трубочки, пузырьки. Все эти структуры, в миллионы раз тоньше человеческого волоса, играют определенную роль в жизнедеятельности клетки. Любая клетка, кажущаяся простым комочком цитоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших частиц (структурных элементов), действующих точно и согласованно, в строгом порядке, тесно связанных между собой. Количество этих структурных элементов очень велико, например в нервной клетке до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности.

В любой клетке живого организма происходит поглощение необходимых веществ и выделение ненужных, совершается дыхание, деление, наряду с этим клетки выполняют специальные функции. Так, клетки сетчатки глаза определяют силу и качество света, клетки слизистой носа определяют запах веществ, клетки различных желез выделяют физиологически активные вещества - ферменты и гормоны, регулирующие рост и развитие организма.

О всей своей большой работе - увиденном, услышанном, опознанном - клетки нервной ткани животных сообщают электрическими импульсами в головной мозг - главный координирующий центр. Биофизика клетки в целом и один из ее важных разделов, называемый электрофизиологией клетки, изучают, как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах - импульсах, как образуются в клетках биологические токи и потенциалы.

Клетки живого организма тесно связаны между собой, с головным мозгом - главным управляющим центром. В самих клетках, в тысячах их структурных элементов, происходят упорядоченные биохимические процессы. Благодаря чему так согласованно и точно совершаются эти сотни тысяч реакций?

Дело в том, что и клетка, и отдельный орган, и целостный организм представляют собой определенную систему, основанную на специфических законах регулирования и взаимосвязи. Вот эти особенности изучает самый молодой раздел - биофизика процессов управления и регуляции.

Расскажем об этом разделе биофизики, воспользовавшись следующим примером. Каждый орган человека состоит из большого числа клеток, выполняющих специфическую работу. Например, особую роль в обонянии играет слизистая оболочка носа - так называемый слизистый эпителий. Площадь его не более 4 см 2 , но содержит он чуть ли не 500 млн. обонятельных клеток - рецепторов. Сведения об их работе передаются по нервным волокнам, число которых достигает 50 млн., в обонятельный нерв и затем в головной мозг. Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы. Для этого они направляются в различные отделы головного мозга, состоящие из громадного числа клеток. Например, только большие полушария головного мозга содержат 2*10 10 клеток, мозжечок -10 11 клеток. Мозг принимает необходимые "решения" и передает ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы. В центральную нервную систему поступают сотни тысяч разнообразных сигналов из внешней среды о звуках, свете, запахах и сигналы о состоянии клеток самого организма. Из сказанного видно, насколько сложны взаимосвязи в любой живой системе - в отдельной клетке или целом организме, как сложна работа по управлению клетками, регулированию их состояния и контролю за согласованностью всех жизненных процессов.

Этот важный отдел биофизики опирается на закономерности, открытые другой наукой - кибернетикой. Биофизики, изучающие процессы управления и регуляции, пользуясь ее методами, разработали ряд электронных моделей, например черепахи, нервной клетки и процесса фотосинтеза, которые облегчают изучение сложных явлений регуляции в организме.

Исследование регуляторных процессов в живом организме показало, что они обладают удивительным свойством - саморегуляцией. Клетки, ткани, органы живых организмов представляют собой САМОрегулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы. Это означает, что работа клеток, органов и организма в целом определяется свойствами и качествами, заложенными в самом организме. Поэтому каждая клеточка или орган самостоятельно, без помощи извне регулирует постоянство состава среды внутри них. Если под воздействием какого-либо фактора их состояние изменяется, это удивительное свойство помогает им вернуться вновь в нормальное cостояние.

Хлоропласты в клетках листа изменяют свое расположение в зависимости от силы освещения: при сильном освещении они располагаются вдоль стенок клеток (слева); при слабом - по всей клетке. Это пример клеточной саморегуляции.

Вот только один простой пример такой саморегуляции. Мы уже рассказывали о важной роли хлоропластов, находящихся в клетках зеленого листа. Хлоропласты способны к самостоятельному передвижению в клетках под влиянием света, поскольку они очень чувствительны к нему. В солнечный яркий день при большой интенсивности света Хлоропласты располагаются вдоль клеточной стенки, как бы стараясь избежать действия сильного света. В пасмурные облачные дни хлоропласты располагаются по всей поверхности клетки, чтобы поглощать больше лучей. Переход хлоропластов из одного положения в другое под влиянием света (фототаксис) совершается благодаря клеточной саморегуляции.

Познание человеком природы, разнообразных живых организмов идет так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки какой-либо одной науки. Биофизика положила начало новым разделам науки, расширяющим горизонты человеческих знаний. Так выделилась в самостоятельную отрасль биологии радиобиология - наука о действии различных видов радиации на живые организмы, космическая биология, изучающая проблемы жизни в космосе, механохимия, исследующая превращение химической энергии в механическую, происходящее в мышечных волокнах. На основе биофизических исследований возникла новая наука - бионика, изучающая живые организмы с целью использования принципов их работы для создания новых и более совершенных по конструкции приборов и аппаратов.

Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше, как в области изучения молекул, субклеточных структур, так и организма в целом. Каждый день приносит новые открытия, изобретения, ценные идеи. Наш век - это время больших успехов во всех областях знания, в том числе и в изучении природы.

Что изучает биофизика?

Раздел 1. Общая биофизика. Включает в себя термодинамику биологических систем, кинетику биологических процессов, фотобиологию и молекулярную биофизику.

Биологическая термодинамика, или термодинамика биологических систем , изучает процессы превращения вещества и энергии в живых организмах. Этот раздел биофизики до сих пор создает почву для дискуссий о том, выполняются ли законы термодинамики в живых организмах. Основу этому разделу положили уже упомянутые выше работы А. Лавуазье и П.Лапласа, доказавшие применимость первого закона термодинамики к живым системам. Дальнейшее развитие этого направления привело к описанию Гельмгольцем тепловых эквивалентов пищи. Наибольший вклад в этот процесс внес австрийский биофизик И.Пригожин, доказавший применимость второго закона термодинамики к биологическим системам и положивший начало учению о термодинамике открытых неравновесных систем.

Кинетика биологических процессов – пожалуй, наиболее близкая к физике и химии область биофизики. Скорость и закономерности протекания реакций в живых системах мало отличаются от остальных. Эксклюзивным предметом является– учение о ферментах, о кинетике ферментативных реакций и способах регуляции ферментативной активности, описанная Михаэлисом и Ментен.

Фотобиология , или квантовая биофизика – изучает взаимодействие излучений с живыми организмами. Видимый свет играет исключительно важную роль в биологии как источник энергии (фотосинтез) и информации (зрение). Здесь нужно отметить большой вклад русского ученого М.Ломоносова, предложившего трехкомпонентную теорию цветного зрения, нашедшую затем свое развитие в работах Юнга и Гельмгольца («Физиологическая оптика», 1867). Они описали оптическую систему глаза, явление аккомодации и изобрели «глазное зеркало» – офтальмоскоп, до сегодняшнего дня используемый при исследовании сетчатки.

Молекулярная биофизика – раздел, тесно прилегающий к физической химии и изучающий закономерности образования и функционирования биомакромолекул. Этот раздел начал бурно развиваться лишь во второй половине XX века, так как требует сложного оборудования для проведения исследований. Здесь следует отметить работы Поллинга и Кори по изучению структуры молекул белка, Уотсона и Крика - по изучению молекулы ДНК.

Раздел II. Биофизика клетки . Предметом данного раздела являются принципы организации и функционирования живой клетки и ее фрагментов, биологических мембран.

Этот раздел биофизики стал развиваться после появления клеточной теории Шванна. Были описаны структура и функция клеточных мембран (Робертсон, Синджер и Николсон), сформулированы представления об избирательной проницаемости мембран (В.Пфеффер и Х.деФриз, Овертон), учение об ионных каналах (Эйзенман, Муллинз, Хилле).

Эксперименты Э. Дюбуа-Реймона и теория В. Оствальда о трансмембранной разности потенциалов положили начало учению о биологическом электричестве, о возбудимых тканях и привели к пониманию закономерностей функционирования нервных и мышечных клеток.

Механизмы передачи информации в клетках, учение о первичных и вторичных посредниках и внутриклеточных сигнальных системах – одно из активно развивающихся направлений современной биофизики. Ионы кальция, циклические нуклеотиды, продукты гидролиза мембранных фосфоинозитидов, простагландины, оксид азота – перечень молекул, передающих информацию от мембраны внутрь клетки и между клетками, постоянно пополняется.

Раздел III. Биофизика сложных систем. Естественным этапом в развитии биофизики явился переход к описанию сложных биологических систем. Начав с исследования отдельных тканей и органов, сегодня биофизика анализирует процессы, протекающие на уровне целого организма, надорганизменных систем (популяций и экологических сообществ), биосферы в целом. Делаются попытки использовать биофизические подходы к анализу социальных процессов.