Как понять что число делится на 12. Основные признаки делимости


В этой статье подробно разобран признак делимости на 2 . Сначала дана его формулировка, после чего приведены примеры его применения при выяснении, какие из целых чисел делятся на два. Дальше показано доказательство признака делимости на 2 . В заключение рассмотрены альтернативные способы, позволяющие установить делимость на 2 чисел, заданных в виде значений некоторых выражений.

Навигация по странице.

Признак делимости на 2, примеры

Формулировка признака делимости на 2 такова: если запись оканчивается одной из цифр 0 , 2 , 4 , 6 , 8 , то это число делится на 2 нацело, если же запись целого числа оканчивается одной из цифр 1 , 3 , 5 , 7 или 9 , то такое число не делится на 2 без остатка.

Отметим, что озвученный признак делимости на 2 позволяет проверять как целые положительные числа (), так и целые отрицательные на их способность делиться на 2 без остатка.

Теперь можно рассмотреть примеры использования признака делимости на 2 .

Пример.

Какие из данных чисел 8 , −946 , 53 , 10 900 , −988 123 761 делятся на 2 ?

Решение.

Несомненно, можно разделить каждое из данных чисел на 2 (например, выполнив ), откуда будет видно, делится ли число на 2 без остатка или с остатком. Однако признак делимости на 2 позволяет ответить на вопрос задачи намного быстрее.

Так как числа 8 , −946 , 10 900 оканчиваются цифрами 8 , 6 и 0 соответственно, то они делятся на 2 без остатка. В свою очередь числа 53 и −988 123 761 не делятся нацело на 2 , так как оканчиваются на 3 и 1 соответственно.

Ответ:

8 , −946 и 10 900 делятся на 2 , а 53 и −988 123 761 не делятся на 2 .

Теперь можно рассмотреть доказательство признака делимости на 2 . Для удобства переформулируем признак делимости на 2 , озвученный в первом пункте этой статьи, в виде необходимого и достаточного условия делимости целого числа на 2 и докажем его.

Теорема.

Чтобы целое число a делилось на 2 необходимо и достаточно, чтобы в записи числа a последней цифрой была 0 , 2 , 4 , 6 или 8 .

Доказательство.

Число a всегда можно представить в виде суммы целого числа десятков и числа единиц, то есть, в виде a=a 1 ·10+a 0 , где a 1 – число, полученное из числа a , если в его записи убрать последнюю цифру, а a 0 – число, соответствующее последней цифре в записи числа a (для пояснения приведем примеры таких представлений: 46=4·10+6 , 24 328=2 432·10+8 ). В равенстве a=a 1 ·10+a 0 произведение a 1 ·10 всегда делится на 2 , что мы показали перед этой теоремой.

Все дальнейшее доказательство базируется на следующем свойстве делимости: если два из трех целых чисел в равенстве t=u+v делятся на некоторое целое число z , то и третье число тоже делится на z .

Если a делится на 2 , то из указанного свойства делимости и представления a=a 1 ·10+a 0 следует, что a 0 делится на 2 , а это возможно лишь для a 0 равного 0 , 2 , 4 , 6 или 8 . Если же a не делится на 2 , то опять же в силу указанного свойства делимости число a 0 не может делиться на 2 (иначе бы a делилось на 2 ), а это возможно только при a 0 равном 1 , 3 , 5 , 7 или 9 . Этим доказана необходимость.

Теперь обратно. Если число a оканчивается на одну из цифр 0 , 2 , 4 , 6 или 8 , то a 0 делится на 2 . Поэтому в силу указанного свойства делимости и представления a=a 1 ·10+a 0 можно сделать вывод о делимости числа a на 2 . Если же a оканчивается на одну из цифр 1 , 3 , 5 , 7 или 9 , то a 0 не делится на 2 , поэтому a тоже не делится на 2 . В противном случае в силу указанного свойства делимости и представления a=a 1 ·10+a 0 число a 0 делилось бы на 2 , что невозможно. Этим доказана достаточность.

В заключение этого пункта отметим, что числа, записи которых оканчиваются цифрами 1 , 3 , 5 , 7 или 9 при делении на 2 всегда дают остаток 1 .

Другие случаи делимости на 2

В этом пункте мы хотим коснуться случаев, в которых целое число задано не непосредственно, а в виде некоторого значения , и нужно определить, делится ли данное число на 2 или нет. Обычно в этих случаях признак делимости на 2 не помогает, также не представляется возможным выполнить и непосредственное деление. Следовательно, нужно искать какие-то другие пути решения.

Один из подходов к решению таких задач подсказывает следующее свойство делимости: если хотя бы один из множителей в произведении целых чисел делится на данное число, то и все произведение делится на это число. Таким образом, если мы представим исходное буквенное выражение в виде произведения нескольких множителей, один из которых будет делиться на 2 , то этим будет доказана делимость исходного числа 2 .

Представить исходное выражение в виде произведения нескольких множителей иногда помогает . Рассмотрим решение примера.

Пример.

Делится ли значение выражения , вычисленное при некотором натуральном n , на 2 ?

Решение.

Очевидно равенство . Теперь воспользуемся формулой бинома Ньютона, после чего упростим полученное выражение:

В последнем выражении можно 2 вынести за скобки, в итоге имеем равенство . При любом натуральном n правая его часть делится на 2 , так как содержит множитель 2 , следовательно, на 2 делится и левая часть равенства.

Ответ:

Да, делится.

Во многих случаях для доказательства делимости на 2 используется . Возьмем выражение из предыдущего примера и докажем методом математической индукции, что при любых натуральных n его значение делится на 2 .

Пример.

Докажите, что значение выражения при любом натуральном n делится на 2 .

Решение.

Воспользуемся методом математической индукции.

Во-первых, покажем, что значение выражения делится на 2 при n=1 . Имеем , а 6 очевидно делится на 2 .

Во-вторых, предположим, что значение выражения делится на 2 при n=k , то есть, - делится на 2 .

В-третьих, исходя из того, что делится на 2 , докажем, что значение выражения делится на 2 при n=k+1 . То есть, докажем, что делится на 2 , учитывая, что делится на 2 .

Для этого выполним следующие преобразования: . Выражение делится на 2 , так как делится на 2 , выражение тоже делится на 2 , так как содержит множитель 2 , следовательно, в силу свойств делимости разность этих выражений тоже делится на 2 .

Этим доказано, что при любом натуральном n значение выражения делится на 2 .

Отдельно следует сказать о том, что если в произведении присутствуют два числа, которые идут друг за другом в , то такое произведение делится на 2 . Например, произведение целых чисел вида (n+7)·(n−1)·(n +2)·(n+6) делится на 2 при любом натуральном n , так как оно содержит два подряд идущих числа из натурального ряда чисел (ими являются числа n+6 и n+7 ), а одно из них обязательно делится на 2 при любом натуральном n .

Аналогично, если в произведении присутствуют два множителя, между которыми находится четное число членов натурального ряда, то такое произведение делится на 2 . Например, значение выражения (n+1)·(n+6) при любом натуральном n делится на 2 , так как между натуральными числами n+1 и n+6 содержится четное количество чисел: n+2 , n+3 , n+4 и n+5 .

Обобщим информацию двух предыдущих пунктов. Если показать, что значение некоторого выражения делится на 2 при или n+3 обязательно делится на 2 , поэтому и произведение (n+2) 2 ·(n+3) делится на 2 , следовательно, и значение исходного выражения делится на 2 .

Приведем более строгое доказательство.

При n=2·m имеем . Это выражение делится на 2 , так как содержит множитель 4 , который делится на 2 .

При n=2·m+1 имеем . Полученное произведение делится на 2 , так как содержит множитель 2 .

Этим доказано, что n 3 +7·n 2 +16·n+12=(n+2) 2 ·(n+3) делится на 2 при любом натуральном n .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Определение 1. Пусть число a 1) есть произведение двух чисел b и q так, что a=bq. Тогда a называется кратным b .

1) В данной статье под словом число будем понимать целое число.

Можно сказать также a делится на b, или b есть делитель a , или b делит a , или b входит множителем в a .

Из определения 1 вытекают следующие утверждения:

Утверждение 1. Если a -кратное b , b -кратное c , то a кратное c .

Действительно. Так как

где m и n какие то числа, то

Следовательно a делится на c.

Если в ряду чисел, каждое делится на следующее за ним, то каждое число есть кратное всех последующих чисел.

Утверждение 2. Если числа a и b - кратные числа c , то их сумма и разность также кратные числа c .

Действительно. Так как

a+b=mc+nc=(m+n)c,

a−b=mc−nc=(m−n)c.

Следовательно a+b делится на c и a−b делится на c .

Признаки делимости

Выведем общую формулу для определения признака делимости чисел на некоторое натуральное число m , которое называется признаком делимости Паскаля.

Найдем остатки деления на m следующей последовательностью. Пусть остаток от деления 10 на m будет r 1 , 10·r 1 на m будет r 2 , и т.д. Тогда можно записать:

Докажем, что остаток деления числа A на m равна остатку деления числа

(3)

Как известно, если два числа при делении на какое то число m дают одинаковый остаток, то из разность делится на m без остатка.

Рассмотрим разность A−A"

(6)
(7)

Каждый член правой части (5) делится на m следовательно левая часть уравнения также делится на m . Рассуждая аналогично, получим - правая часть (6) делится на m , следовательно левая часть (6) также делится на m , правая часть (7) делится на m , следовательно левая часть (7) также делится на m . Получили, что правая часть уравнения (4) делится на m . Следовательно A и A" имеют одинаковый остаток при делении на m . В этом случае говорят, что A и A" равноостаточные или сравнимыми по модулю m .

Таким образом, если A" делится на m m ) , то A также делится на m (имеет нулевой остаток от деления на m ). Мы показали что для определения делимости A можно определить делимость более простого числа A" .

Исходя из выражения (3), можно получить признаки делимости для конкретных чисел.

Признаки делимости чисел 2, 3, 4, 5, 6, 7, 8, 9, 10

Признак делимости на 2.

Следуя процедуре (1) для m=2 , получим:

Все остатки от деления на 2 равняются нулю. Тогда, из уравнения (3) имеем

Все остатки от деления на 3 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 4 кроме первого равняются 0. Тогда, из уравнения (3) имеем

Все остатки равны нулю. Тогда, из уравнения (3) имеем

Все остатки равны 4. Тогда, из уравнения (3) имеем

Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.

Пример. 2742 делится на 6, т.к. 274*4+2=1098, 1098=109*4+8=444, 444=44*4+4=180 делится на 6.

Более простой признак делимости. Число делится на 6, если оно делится на 2 и на 3 (т.е. если оно четное число и если сумма цифр делится на 3). Число 2742 делится на 6, т.к. число четное и 2+7+4+2=15 делится на 3.

Признак делимости на 7.

Следуя процедуре (1) для m=7 , получим:

Все остатки разные и повторяются через 7 шагов. Тогда, из уравнения (3) имеем

Все остатки все остатки нулевые, кроме первых двух. Тогда, из уравнения (3) имеем

Все остатки от деления на 9 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 10 равняются 0. Тогда, из уравнения (3) имеем

Следовательно число делится на 10 тогда и только тогда, когда последняя цифра делится на 10 (то есть последняя цифра нулевая).

Добрый день!
Сегодня мы продолжим рассматривать признаки делимости.
И начнём мы вот с чего:
Берём последнюю цифру числа, удваиваем её и вычитаем из числа, которое осталось без этой последней цифры. Если разность делится на 7, значит всё число делится на 7. Это действие можно продолжать сколь угодно много раз до того момента, пока не станет понятно: делится или нет число на 7.

Пример: 298109.
1-й шаг. Берём 9, умножаем её на 2 и производим вычитание:
29810-18=29792.

2-й шаг. 29792. Берём 2, умножаем её на 2 и производим вычитание:
2979-4 = 2975.

3-й шаг. 2975. Берём 5, умножаем на 2 и производим вычитание: 297-10=287.
4-й шаг. 287. Берём 7, умножаем на 2 и производим вычитание 28-14=14. Делится на 7.
Значит всё число 298109 делится на 7.

Ещё пример. Число 1102283.
1-й шаг. 110228-3*2 = 110222
2-й шаг. 11022-2*2 = 11018.
3-й шаг. 1101-8*2 = 1085.
4-й шаг. 108-5*2 = 98.
5-й шаг. 9-8*2 = -7. Делится на 7. Значит, 1102283 делится на 7.

Признак делимости на 13. Берём последнюю цифру числа, умножаем её на 4 и складываем с числом без последней цифры. Если сумма делится на 13, значит все число делится на 13.
Это действие можно продолжать сколь угодно много раз до того момента, пока не станет понятно: делится или нет число на 13.
Пример: Число 595166.
1-й шаг. 59516 + 6*4 = 59540
2-й шаг. 5954 + 0*4 = 5954
3-й шаг. 595 + 4*4 = 611
4-й шаг. 61 + 1*4 = 65
5-й шаг. 6 + 5*4 = 26. Делится на 13.
Значит, число 595166 делится нацело на 13.

Ещё пример. Число 10221224.
1-й шаг. 1022122 + 4*4 = 1022138
2-й шаг. 102213 + 8*4 = 102245
3-й шаг. 10224 + 5*4 = 10244
4-й шаг. 1024 + 4*4 = 1040
5-й шаг. 104 + 0*4 = 104
6-й шаг. 10 + 4*4 = 26. Делится на 13.
Значит, число 10221224 делится нацело на 13.
Теперь я бы хотел показать несколько других признаков делимости и не только на простые числа, но и на составные.

Признак делимости на 11. Возьмём число и сложим все цифры, которые стоят на нечётных местах. Затем сложим все цифры числа, которые стоят на чётных местах.
Если разность между первой суммой и второй кратна 11, то всё число делится на 11.
При этом разность может быть как положительна, так и отрицательна.
Примеры: 160369 (Сумма цифр, которые стоят на нечётных местах
1+0+6 = 7.
Сумма цифр, которые стоят на чётных местах 6+3+9 = 18.
18 — 7 = 11. Делится на 11. Значит, число 160369 делится на 11).

Ещё пример: 7527927 (7+2+9+7 = 25. 5+7+2 = 14. 25 — 14 = 11.
Число 7527927 делится на 11).

Признак делимости на 15. Число 15 — составное. Его можно представить в виде произведения простых множителей, а именно 5 и 3.
А мы уже знаем Значит, число делится на 15, если
1. — оно заканчивается на 0 или 5;

Пример: 36840 (Число оканчивается на 0; сумма цифр его равна 3+6+8+4 = 21. Делится на 3.) Значит, все число делится на 15.
Ещё пример: 113445 Число оканчивается на 5; сумма цифр его равна 1+1+3+4+4+5 = 18. Делится на 3.) Значит, всё число делится на 15.

Признак делимости на 12. Число 12 — составное. Его можно представить в виде произведения следующих множителей: 4 и 3.
Значит, число делится на 12, если
1. — 2 последние цифры его делятся на 4;
2. — сумма цифр его делится на 3.
Примеры: 78864 (Две последние цифры — 64. Число, составленное из них, делится на 4; сумма цифр равна 7+8+8+6+4 = 33. Делится на 3.) Значит, всё число делится на 12.
Ещё пример: 943908 (Две последние цифры — 08. Число, составленное из этих цифр, делится на 4; сумма цифр равна 9+4+3+9+0+8 = 33.
Делится на 3.) Значит, всё число делится на 12.


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

ПРИЗНАКИ ДЕЛИМОСТИ чисел - простейшие критерии (правила), позволяющие судить о делимости (без остатка) одних натуральных чисел на другие. Решение вопроса о делимости чисел признаки делимости сводят к действиям над небольшими числами, обычно выполняемым в уме.
Так как основанием общепринятой системы счисления является 10, то наиболее простыми и распространенными являются признаки делимости на делители чисел трех видов: 10 k , 10 k - 1, 10 k + 1 .
Первый вид - признаки делимости на делители числа 10 k , для делимости любого целого числа N на любой целый делитель q числа 10 k необходимо и достаточно, чтобы последняя k-циферная грань (к-циферное окончание) числа N делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 = 10 (I 1), 10 2 = 100 (I 2) и 10 3 = 1000 (I 3):
I 1 . На 2, 5 и 10 - одноциферное окончание (последняя цифра) числа должно делиться соответственно на 2, 5 и 10. Например, число 80 110 делится на 2, 5 и 10, так как последняя цифра 0 этого числа делится на 2, 5 и 10; число 37 835 делится на 5, но не делится на 2 и 10, так как последняя цифра 5 этого числа делится на 5. но не делится на 2 и 10.

I 2 . На 2, 4, 5, 10, 20, 25, 50 и 100-двуциферное окончание числа должно делиться соответственно на 2, 4, 5, 10, 20, 25, 50 и 100. Например, число 7 840 700 делится на 2, 4, 5, 10, 20, 25, 50 и 100, так как двуциферное окончание 00 этого числа делится на 2, 4, 5, 10, 20, 25, 50 и 100; число 10 831 750 делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100, так как двуциферное окончание 50 этого числа делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100.

I 3 . На 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000 - трехциферное окончание числа должно делиться соответственно на 2,4,5,8,10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000. Например, число 675 081 000 делится на все перечисленные в этом признаке числа, так как на каждое из них делится трехциферное окончание 000 заданного числа; число 51 184 032 делится на 2, 4 и 8 и не делится на остальные, так как трехциферное окончание 032 заданного числа делится только на 2, 4 и 8 и не делится на остальные.

Второй вид - признаки делимости на делители числа 10 k - 1: для делимости любого целого числа N на любой целый делительq числа 10 k - 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 - 1 = 9 (II 1), 10 2 - 1=99 (II 2) и 10 3 - 1 = 999 (II 3):
II 1 . На 3 и 9 -сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

II 2 . На 3, 9, 11, 33 и 99 - сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

II 3 . На 3, 9, 27, 37, 111, 333 и 999 - сумма трехциферных граней числа должна делиться соответственно на 3, 9, 27, 37, 111, 333 и 999. Например, число 354 645 871 128 делится на все перечисленные в этом признаке числа, так как на каждое из них делится сумма трехциферных граней 354+645+ +871 + 128=1998 (и 1 + 998 = 999) этого числа.

Третий вид - признаки делимости на делители числа 10 k + 1: для делимости любого целого числа N на любой целый делитель q числа 10 k + 1 необходимо и достаточно, чтобы разность между суммой k-циферных граней, стоящих в N на четных местах, и суммой k-циферных граней, стоящих в N на нечетных местах, делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 + 1 =11 (III 1), 10 2 + 1 = 101 (III 2) и 10 3 +1 = 1001 (III 3).

III 1 . На 11 - разность между суммой цифр (одноциферных граней), стоящих на четных местах, и суммой цифр (одноциферных граней), стоящих на нечетных местах, должна делиться на 11. Например, число 876 583 598 делится на 11, так как разность 8 - 7+6 - 5+8 - 3+5 - 9+8=11 (и 1 - 1=0) между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делится на 11.

III 2 . На 101 - разность между суммой двуциферных граней, стоящих в числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, должна делиться на 101. Например, число 8 130 197 делится на 101, так как разность 8-13+01-97 = 101 (и 1-01=0) между суммой двуциферных граней, стоящих в этом числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, делится на 101.

III 3 . На 7, 11, 13, 77, 91, 143 и 1001 - разность между суммой трехциферных граней, стоящих в числе на четных местах, и суммой трехциферных граней, стоящих на нечетных местах, должна делиться соответственно на 7, 11, 13, 77, 91, 143 и 1001. Например, число 539 693 385 делится на 7, 11 и 77, но не делится на 13, 91, 143 и 1001, так как 539 - 693+385=231 делится на 7, 11 и 77 и не делится на 13, 91, 143 и 1001.