Белковый обмен. Обмен белков. Переваривание и всасывание белков Расщепление белков в тканях

Глава IV .9.

Обмен белков

Важный критерий пищевой ценности белков – доступность аминокислот. Аминокислоты большинства животных белков полностью высвобождаются в процессе пищеварения. Исключение составляют белки опорных тканей (коллаген и эластин). Белки растительного происхождения перевариваются в организме плотоядных плохо, т.к. содержат много волокон и иногда ингибиторы протеаз (соя, горох). У жвачных растительные белки перевариваются под действием ферментов микрофлоры рубца. Существенный критерий ценности пищевого белка – аминокислотный состав. Чем больше содержится незаменимых аминокислот, тем полезнее данный белок для организма.

Переваривание и всасывание белков

В ротовой полости не происходит.

В желудке главные клетки слизистой оболочки секретируют пепсиноген – предшественник протеолитического фермента пепсина . В результате аутокатализа в кислой среде желудочного сока фермент активируется. Соляная кислота поддерживает рН в пределах 1,5-2,0. Это оптимальные условия для активной работы фермента. В кислой среде белки корма подвергаются денатурации, что делает их более доступными ферментативному протеолизу. Пепсин быстро гидролизует в белках пептидные связи, образованые ароматическими аминокислотами и медленно связи между лейцином и дикарбоновыми аминокислотами.

В тонком отделе кишечника происходит дальнейший гидролиз пептидов до аминокислот. Туда поступает панкреатический сок с рН 7,8-8,2. Он содержит неактивные предшественники протеаз: трипсиноген , химотрипсиноген , прокарбоксипептидазу , проэластазу. Слизистой кишечника вырабатывается фермент энтеропептидаза , который активирует трипсиноген до трипсина, а последний уже все остальные ферменты. Протеолитические ферменты содержатся также в клетках слизистой кишечника, поэтому гидролиз небольших пептидов происходит после их всасывания. Конечный результат действия ферментов желудка и кишечника – расщепление почти всей массы пищевых белков до свободных аминокислот.

Всасывание аминокислот происходит в тонком отделе кишечника. Это активный процесс и требует затраты энергии. Основной механизм транспорта – гамма-глутамильный цикл. В нем участвует 6 ферментов и трипептид глутатион (глутамилцистеинилглицин). Ключевой фермент – гамма-глутамилтрансфераза . Кроме того, процесс всасывания АК требует присутствия ионов Na + . Аминокислоты попадают в портальный кровоток – в печень и в общий кровоток. Печень и почки поглощают аминокислоты интенсивно, мозг избирательно поглощает метионин, гистидин, глицин, аргинин, глутамин, тирозин.

В толстом отделе кишечника не всосавшиеся по каким-либо причинам (недостаток или низкая активность протеолитических фрементов, нарушение процессов транспорта АК) пептиды и АК подвергаются процессам гниения. При этом образуются такие продукты как: фенол , крезол , сероводород , метилмеркаптан , индол , скатол , а также группа соединений под общим названием «трупные яды» - кадаверин , путресцин . Эти вещества всасываются в кровь и поступают в печень, где подвергаются конъюгации с глюкуроновой кислотой и другим процессам обезвреживания (см. подробнее главу "Биохимия печени"). Затем они выводятся из организма с мочой.

Переваривание белков у жвачных

Под действием ферментов микрофлоры рубца белки гидролизуются до АК, которые могут использоваться двумя путями:

1) идти на синтез белков микрофлоры рубца;

2) подвергаться процессу брожения;

Вновь образовавшаяся микрофлора поступает в сычуг и далее подвергается действию ферментов как и у моногастричных животных. Сбраживание АК завершается образованием летучих жирных кислот (ЛЖК: молочной, масляной, уксусной, пропионовой) и аммиака. Данные продукты в свою очередь идут:

1) на синтез белков микрофлоры рубца;

2) поступают в кровь и идут на энергетические нужды.

Пути использования АК в организме

1) синтез собственных белков организма (см. главу "Матричный биосинтез);

2) при дефиците энергии участие в ЦТК (рис. 4.9.1.);

3) участие в образовании биологически активных веществ (БАВ).

Ряд аминокислот в клетках подвергается химической модификации:

1) окислительное дезаминировние или отщепление аминогруппы катализируется ферментами класса аминооксидаз. Они очень специфичны и малоактивны. Единственный высокоактивный фермент работает в печени и мозге – это глутаматдегидрогеназа (ГДГ). Он катализирует превращение глутаминовой кислоты в альфа-кетоглутаровую ;

2) переаминироване. Происходит обмен аминогруппы на кетогруппу между амино- и кетокислотой. Глутаминовая кислота взаимодействует с пировиноградной , при этом образуется альфа-кетоглутаровая кислота и аланин ;

3) декарбоксилирование или отщепление карбоксильной группы с образованием СО 2 и амина. Катализируют реакцию декарбоксилазы. В тканях этим процессам подвергаются в основном гистидин, тирозин, глутаминовая кислота. Из них образуются гистамин, тирамин, гамма-аминомаслянная кислота .

Гистамин - продукт декарбоксилирования гистидина. Накапливается в тучных клетках. В слизистой желудка активирует синтез пепсина и соляной кислоты. Является одним из медиаторов воспаления.

Серотонин образуется из триптофана преимущественно в нейронах гипоталамуса и стволе мозга. Является медиатором этих нейронов. Разрушается под действием моноаминоксидазы обычно в печени.

Дофамин – производное тирозина. Он является медиатором проведения нервного импульса, а также предшественником меланина, норадреналина и адреналина .

Процессы гниения в тонком отделе кишечника происходят также под действием декарбоксилаз.

Биосинтез аминокислот

Если незаменимые АК должны в обязательном порядке поступать в организм с пищей, то заменимые АК могут в случае их дефицита синтезироваться одна из другой. Полностью заменимыми являются 8 аминокислот: Ала, Аск, Асп, Глк, Глн, Сер, Глн и Про. Исходными соединениями для их биосинтеза являются компоненты гликолитической цепи и ЦТК. Добавление аминогруппы чаще осуществляется при участии глутаматдегидрогеназы. Аланин из пирувата, аспарагин – из фумарата, глутамин из - альфа-кетоглутарата, из него также пролин, орнитин и аргинин, серин и глицин - из 3-фосфоглицерата. Аспартат может также образовываться из оксалоацетата с использованием в качестве донора аминогруппы от глутамата (Ф: АсАт). Аланин при участии фермента АлАт из пирувата (аминогруппа также от глутамата). Ряд других АК могут синтезироваться в организме, но по более сложным механизмам.

Биосинтез сложных белков

Пуриновые и пиримидиновые нуклеотиды . Пуриновый скелет образуется в ходе нескольких реакций из аспартата, формила, глутамина, глицина и СО 2 . Пиримидиновый скелет из глутамина, аспарагиновой кислоты и СО 2 .

Катаболизм пуриновых нуклеотидов завершается образованием мочевой кислоты . Катаболизм пиримидиновых нуклеотидов – аланином и аминомасляной кислотой.

Синтез гемоглобина включает в себя образование глобина и гема. Глобин синтезируется как и все белки.

Предшественники гема – сукцинил КоА и глицин. Из них образуется аминолевулиновая кислота (Е : аминолевулитат-синтетаза). Две молекулы аминолевулиновой кислоты конденсируются с образованием порфобилиногена(Е: порфобилиногенсинтетаза ). Четыре молекулы порфобилиногена конденсируются в тетрапиррольное соединение которое модифицируется в протопорфирин . Заключительный этап – присоединение железа (Е : феррохелатаза ).

Разрушение гемоглобина происходит в такой последовательности:

1) раскрытие пиррольного кольца с образованием вердоглобина;

2) удаление железа после чего получается биливердоглобин;

3) отщепление глобина с образованием биливердина ;

4) восстановление метиновой группы с получением билирубина .

Билирубин с током крови доставляется в печень, где часть его этерифицируется при участии УТФ-глюкуронилтрансферазы. Этерифицированный билирубин называется прямым (связанным), а неэтерифицированный – непрямым (свободным).

Связанный билирубин выделяется с желчью в 12-перстную кишку, где после ряда превращений под действием ферментов микрофлоры он превращается в стеркобилин и выделяется с калом или в уробилин и выделяется с мочой. Повышение содержания билирубина в крови – билирубинемия.

Обезвреживание аммиака

Он образуется в основном при дезамировании аминокислот.

1) Восстановительное аминировние происходит в малом объеме и несущественно.

2) Образование амидов аспарагиновой и глутаминовой кислот (аспарагина и глутамина). Этот процесс в основном протекает в нервной ткани, где очень важно обезвреживать аммиак.

3) Образование солей аммония происходит в почечной ткани (хлорид аммония удаляется с мочой).

4) Основной путь – синтез мочевины. Происходит в цикле мочевины или орнитиновом цикле.

Для обмена белков в организме человека характерна одна важная особенность - ни белки, ни аминокислоты не могут запасаться впрок, как, например, липиды в жировой ткани или углеводы в виде гликогена.

Заменимые аминокислоты могут синтезироваться в организме человека. Для этого есть несколько путей: аминирование непредельной кислоты, восстановительное аминирование и переаминирование.

Алитированием непредельной кислоты образуется Асп из фумаровой кислоты под действием аспартат:аммиак-лиазы (см. рис. 6.40). Реакция обратима и поэтому Асп, превращаясь в фумаровую кислоту, может полностью окисляться в цикле Кребса.

Восстановительное аминирование - процесс, обратный окислительному дезаминированию (см. рис. 3.14 и 12.1). Но таким путем образуются только Ала и Глу, так как активность их дегидрогеназ существенна.

Таким образом, Ала, Асп и Глу считают первичными , а все остальные заменимые аминокислоты образуются в реакциях переаминироваиия (см. рис. 3.15).

Пищевые аминокислоты (образующиеся при переваривании белков) с кровыо разносятся к разным органам и тканям, где используются для синтеза белков. Подсчитано, что в организме взрослого человека ежесуточно синтезируется 1,3 г белка на 1 кг массы (в среднем 90-100 г). При этом с помощью изотопных методов установлено, что пищевые аминокислоты составляют лишь 1/4 часть. Это свидетельствует о том, что в тканях организма белки подвергаются постоянному обновлению. Разные белки обновляются с разной скоростью. Например, сроки функционирования инсулина составляют 20-30 мин, белков слизистой кишечника - 2-4 сут, гемоглобина - 100-120 сут, коллагена - 6-8 мес.

Отслужившие свой срок молекулы белков подвергаются действию тканевых пептидгидролаз и разрушаются до свободных аминокислот по схеме

Белок -? Высокомолекулярные -? Низкомолекулярные -? Аминокислоты, полипептиды полипептиды

Аналогично протекает распад белков и вне организма, в различных биологических тканях, жидкостях и пищевых системах. Например, при созревании сыров в готовом продукте всегда присутствуют все компоненты, представленные на данной схеме. Соотношение продуктов распада: пептидов, аминокислот, аминов существенно влияет на вкус и аромат. Средне- и низкомолекулярные пептиды, обладающие горьким вкусом, придают некоторым сырам характерный горьковатый привкус.

Процессы обмена белков в организме человека регулируются при участии ряда гормонов (табл. 12.4).

Таблица 12.4

Регуляция обмена белков и аминокислот

Орган

Синтезируемые гормоны и оказываемый эффект

Гипофиз

Соматотропин усиливает синтетические процессы белка

Щитовидная железа

Тироксин увеличивает скорость биосинтеза белков

Поджелудочная железа

Инсулин обеспечивает преобладание синтеза белков над их распадом; стимулирует связывание и-РНК с рибосомами

Мозговое вещество надпочечников

Адреналин увеличивает скорость расщепления в тканях белков и выделения азотистых продуктов обмена с мочой

Кора надпочечников

Кортизон тормозит синтез белков, увеличивает их распад и выделение азотистых продуктов обмена с мочой

Семенники

Тестостерон стимулирует биосинтез белка в мышечной ткани, вызывая накопление в организме азота

В результате обмена белков часть аминокислот подвергается распаду. Обязательной стадией при этом является дезаминирование или переамиии- роваиие (см. параграф 3.2).Наиболее распространенный вариант - окислительное дезаминирование. На рис. 3.14 показано суммарное уравнение. В действительности реакция протекает в две стадии: дегидрирование и гидролиз (см. рис. 12.1). При окислении по действием специфической НАД-деги- дрогепазы образуется иминокислота. Во время гидролиза двойная связь в иминогруппе расщепляется и выделяется NH 3 .

Это превращение имеет большое значение для обмена белков, так как обе его стадии обратимы и таким образом из кетокислоты может образоваться аминокислота.

По направлению использования безазотистого остатка аминокислоты делят на две группы: кетогенные и гликогенные (табл. 12.5).

Одновременно кетогенные и гликогенные - Иле, Лиз, Фен, Тир, Три.

В настоящее время известны пути распада всех протеиногенных аминокислот.

Примеры кетогенных и гликогенных аминокислот

Обмен отдельных аминокислот

Глицин - простейшая аминокислота. Синтезируется, главным образом, из Сер, оксиметильная группа которого удаляется ферментом, содержащим витамин By. Подобно ГАМК, Гли является тормозным нейромедиатором . Гли включается в синтез пуриновых азотистых оснований (см. рис. 13.9) и пиррольных циклов. Участвует в обезвреживании токсичных соединений ароматического ряда, которые образуются из растительных продуктов, если те преобладают в рационе. Гли образует с бензойной, фснилуксусной кислотами и фенолами растворимые в воде соединения, которые выводятся через почки. Например, комплекс Гли с бензойной кислотой называется гиинуровая кислота (рис. 12.2).


Рис. 12.2.

С холевой кислотой Гли образует гликохолевую кислоту (рис. 12.3), обладающую свойствами ПАВ и участвующую в эмульгировании жиров при переваривании.


Дезаминирование Гли осуществляется по окислительному типу НАД-зависимой дегидрогеназой с образованием глиоксиловой кислоты (рис. 12.4).

Рис. 12.4.

Серин - заменимая оксиаминокислота. Скелет ее образуется из 3-ФГК, источником которой является глюкоза, a NH 2 -rpynna вводится путем пере- аминирования. Сер необходим для синтеза фосфолипидов (см. рис. 11.42 и 11.43), является предшественником аминоэтанола (рис. 12.5), холина.


Рис. 12.5.

Оксигруппа Сер входит в состав активных центров многих ферментов, таких, как трипсин, химотрипсип, эстеразы, фосфорилазы, фосфатазы.

При распаде Сер сначала освобождается от спиртового гидроксила, а затем гидролитическим путем - от аминогруппы (рис. 12.6). В результате образуется ПВК, которая легко вовлекается в ЦТК и окисляется там до Н 2 0 и С0 2 .


Рис. 12.6.

Метионин - незаменимая серосодержащая аминокислота. Передает метальную группу на другие соединения. В результате образуются холин, креатин, адреналин, азотистые основания.

После освобождения от метальной группы сера Мет в основном переходит в серу Цис.

В действительности все превращения протекают, когда Мет находится в активной форме - в виде 8 + -аденозилметионина (см. рис. 6.31).

Хотя Мет - незаменимая аминокислота, она может регенерироваться из гомоцистеина в обратимой реакции, показанной на рис. 12.7. Катализируется превращение ферментами, в составе которых есть витамины В 9 и В 12 . По-


Рис. 12.7.

скольку единственным источником гомоцистеина служит Мет, то обеспечение организма данной аминокислотой зависит исключительно от ее содержания в продуктах питания .

Цистеин - заменимая серосодержащая аминокислота, так как может синтезироваться из двух аминокислот: Сер и Мет (см. рис. 12.7). Цис содержит высокоактивную сульфгидрильную группу, которая может легко окисляться с образованием дисульфидной связи. Такое превращение происходит между разными полипептидными цепями или в пределах одной полипептидной цепи при формировании третичной структуры белка и называется посттрансляционная модификация белка. Именно таким образом стабилизированы молекулы инсулина, химотрипсина и других белков в третичной структуре.

Активность сульфгидрильной группы проявляется в ферментативном катализе. Например, многие ферменты содержат в активном центре SH- группы, необходимые для каталитической реакции. Известно, что активность таких ферментов утрачивается при окислении SH-rpynn.

В экспериментах с животными доказано, что цистеин трансформируется в трипептид глутатион, обладающий окислительно-восстановительными свойствами. Предполагают, что глутатион поддерживает активную восстановленную форму ферментов, за счет собственного окисления. Положительный антиоксидантный эффект глутатиона доказан:

  • в улучшении процессов нейтрализации тяжелых металлов, токсинов;
  • снижении нежелательных последствий радиации и химиотерапии при лечении онкологических заболеваний;
  • в замедлении процессов старения.

В тканях цистеин может декарбоксилироваться с образованием амино- этантиола (рис. 12.8), который необходим для синтеза Ко А или окисляется до таурина (рис. 12.9).

Таким образом, цистеин - это предшественник таурина, который играет роль нейромедиатора, обладает противосудорожной активностью. Таурин способствует улучшению энергетического обмена, стимулирует восстановительные процессы, например, в тканях глаза.

В печени таурин образует таурохолевую кислоту подобную гликохоле- вой (см. рис. 12.3), чем способствуют эмульгированию жиров в кишечнике.


Рис. 12.9.

Часто комплексы желчных кислот с таурином и глицином называют конъюгаты или парные соединения.

Аспарагиновая и глутаминовая кислоты играют большую роль в обмене белков, осуществляют транс- и дезаминирование аминокислот. Могут акцептировать NH 3 не только в свободном виде, но и в составе белков. В результате образуются соответствующие амиды: аспрагин (Аси) и глутамин (Глн). Тем самым Аси и Глу участвуют в обезвреживании NH 3 .

Обмен большинства аминокислот проходит через стадию образования аспарагиновой и глутаминовой кислот в реакциях переаминирования.

Обе аминокислоты участвуют в синтезе азотистых оснований (см. рис. 13.8 и 13.9).

Декарбоксилирование аспарагиновой кислоты приводит к образованию а- или (3-алапина (рис. 12.10). Последний может включаться в синтез пан- тотеповой кислоты (см. рис. 6.47).


Рис. 12.10.

При а-декарбоксилировании глутаминовой кислоты образуется у-ами- номасляная кислота (рис. 12.11), которая тормозит процессы возбуждения в сером веществе коры головного мозга и используется как лекарственное средство при некоторых заболеваниях ЦНС.


Фенилаланин - незаменимая ароматическая аминокислота. Окисляется до тирозина, который далее превращается в хинон (рис. 12.12). Хиноны входят в состав меланонротеинов - сложных белков, придающих окраску коже, волосам, шерсти.

Рис. 12.12.

1 - реакция катализируется фенилаланингидроксилазой; 2 - реакция катализируется

тирозиназой

В обмене Фен может наблюдаться наследственный сбой - синтез ряда дефектных ферментов. Например, при дефекте синтеза фенилаланингид- роксилазы наблюдается заболевание феншкетонурия. В этом случае образуется не Тир, а фениллактат, фенилпируват и фенилацетат, которые накапливаются в крови и выводятся с мочой. Эти продукты токсичны для мозга и вызывают у детей тяжелое отставание в умственном развитии (фе- нилпировиноградная олигофрения), предупредить развитие которого можно, соблюдая диету, не содержащую Фен. В частности, гликомакропептид, отщепляющийся при ферментативном гидролизе казеина и переходящий в сыворотку, не содержит Фен, а значит, может использоваться в питании таких детей.

Другое нарушение возникает при дефекте тирозиназы и называется альбинизм (от лат. albus - белый). Из-за сбоя в синтезе пигмента меланина кожа и волосы у человека слабо пигментированы, а зрачки глаз красного цвета, так как просвечивают сосуды глазного дна из-за отсутствия пигментов в радужной оболочке.

Тирозин является заменимой аминокислотой, так как синтезируется из Фен (см. рис. 12.12). Однако окисление Фен в Тир, катализируемое фенил- аланингидроксилазой - необратимый процесс, поэтому при недостатке Фен в продуктах Тир не может заменить его.

Тир - предшественник ряда важных соединений. Во-первых, из Тир синтезируются гормоны щитовидной железы: тетраиодтиронин (Т,) и три- иодтиронин (Т 3).

Во-вторых, Тир при участии тирозиназы окисляется до диоксифенила- ланина (ДОФА), а затем до ДОФА-хинона, который необходим для синтеза окрашенных белков - меланонротеинов.

Наконец, диоксифенилаланин может подвергаться декарбоксилирова- нию с образованием дофамина (диоксифенилэтиламина), который является предшественником катехоламинов (нейромедиаторов) - норадреналина и адреналина (см. рис. 8.3).


Рис. 12.13.

Триптофан - незаменимая для человека и животных аминокислота. Из нее синтезируются такие биологически активные соединения, как серотонин (рис. 12.14) и рибонуклеотид никотиновой кислоты. Серотонин - высокоактивный биогенный амин сосудосуживающего действия. Он регулирует артериальное давление, температуру тела, дыхание, почечную фильтрацию и является медиатором нервных процессов в ЦНС.


Рис. 12.14.

В норме не более 1% Три превращается в серотонин. Более 95% Три окисляется по пути, который приводит к образованию НАД, уменьшая потребность организма в витамине В 5 .

Пролил - заменимая аминокислота, поэтому в животном организме существует возможность ее синтеза: либо из у-полуальдегида глутаминовой кислоты (а-амино-у-оксопентановая кислота), либо из орнитина, который образуется при гидролизе Apr (рис. 12.15).


Рис. 12.15.

При распаде Про сначала окисляется той же НЛД-дегидрогеназой до 5-пирролин-2-карбоновой кислоты, у которой гидролитическим путем разрушается цикл по месту двойной связи. В результате образуется у-полуальдегид. Его альдегидная группа окисляется до карбоксильной. Так возникает Глу, пути использования которой зависят от потребности клетки.

Белки – обязательный компонент сбалансированного пищевого рациона.

Главными источниками белков для организма являются пищевые продукты растительного и животного происхождения. Переваривание белков в организме происходит с участием протеолитических ферментов желудочно-кишечного тракта. Протеолиз – гидролиз белков. Протеолитические ферменты – ферменты, осуществляющие гидролиз белков. Данные ферменты подразделяются на две группы – экзопепетидазы , катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы , катализирующие гидролиз пептидных связей внутри полипептидной цепи.

В ротовой полости расщепления белков не происходит из-за отсутствия протеолитических ферментов. В желудке имеются все условия для переваривания белков. Протеолитические ферменты желудка – пепсин, гастриксин – проявляют максимальную каталитическую активность в сильно кислой среде. Кислая среда создается желудочным соком (рН = 1,0–1,5), который вырабатывается обкладочными клетками слизистой оболочки желудка и в качестве основного компонента содержит соляную кислоту. Под действием соляной кислоты желудочного сока происходит частичная денатурация белка, набухание белков, что приводит к распаду его третичной структуры. Кроме того, соляная кислота переводит неактивный профермент пепсиноген (вырабатывается в главных клетках слизистой оболочки желудка) в активный пепсин. Пепсин

катализирует гидролиз пептидных связей, образованных остатками ароматических и дикарбоновых аминокислот (оптимум рН = 1,5–2,5). Слабее проявляется протеолитическое действие пепсина на белки соединительной ткани (коллаген, эластин). Не расщепляются пепсином протамины, гистоны, мукопротеины и кератины (белки шерсти и волос).

По мере переваривания белковой пищи с образованием продуктов гидролиза щелочного характера рН желудочного сока изменяется до 4,0. С уменьшением кислотности желудочного сока проявляется деятельность другого протеолитического фермента – гастриксина

(оптимум рН= 3,5–4,5).

В желудочном соке детей обнаружен химозин (реннин), расщепляющий казеиноген молока.

Дальнейшее переваривание полипептидов (образовавшихся в желудке) и нерасщепившихся белков пищи осуществляется в тонком кишечнике под действием ферментов панкреатического и кишечного соков. Протеолитические ферменты кишечника – трипсин, химотрипсин – поступают с панкреатическим соком. Оба фермента наиболее активны в слабощелочной среде (7,8–8,2), что соответствует рН тонкого кишечника. Профермент трипсина – трипсиноген, активатор – энтерокиназа (вырабатывается стенками кишечника) или ранее образованный трипсин. Трипсин

гидролизует пептидные связи, образованные арг и лиз. Профермент химотрипсина – химотрипсиноген, активатор – трипсин. Химотрипсин расщепляет пептидные связи между ароматическими амк, а также связи, которые не были гидролизованы трипсином.

Благодаря гидролитическому действию на белки эндопептидаз (пепсин, трипсин, химотрипсин) образуются пептиды различной длины и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов – экзопептидаз . Одни из них – карбоксипептидазы – синтезируются в поджелудочной железе в виде прокарбоксипептидазы, активируются трипсином в кишечнике, отщепляют аминокислоты с С-конца пептида; другие – аминопептидазы – синтезируются в клетках слизистой оболочки кишечника, активируются трипсином, отщепляют аминокислоты с N – конца.

В организме взрослого человека метаболизм азота в целом сбалансирован , то есть количества поступающего и выделяемого белкового азота примерно равны. Если выделяется только часть вновь поступающего азота, баланс положителен . Это наблюдается, например, при росте организма. Отрицательный баланс встречается редко, главным образом как следствие заболеваний.

Полученные с пищей белки подвергаются полному гидролизу в желудочно-кишечном тракте до аминокислот, которые всасываются и кровотоком распределяются в организме (см. ). 8 из 20 белковых аминокислот не могут синтезироваться в организме человека (см. ). Эти незаменимые аминокислоты должны поступать с пищей (см. ).

Через кишечник и в небольшом объёме также через почки организм постоянно теряет белок. В связи с этими неизбежными потерями ежедневно необходимо получать с пищей не менее 30 г белка. Эта минимальная норма едва ли соблюдается в некоторых странах, в то время как в индустриальных странах содержание белка в пище чаще всего значительно превышает норму. Аминокислоты не запасаются в организме, при избыточном поступлении аминокислот в печени окисляется или используется до 100 г аминокислот в сутки. Содержащийся в них азот превращается в мочевину (см. ) и в этой форме выделяется с мочой, а углеродный скелет используется в синтезе углеводов, липидов (см. ) или окисляется с образованием АТФ.

Предполагается, что в организме взрослого человека ежедневно разрушается до аминокислот 300-400 г белка (протеолиз ). В то же время примерно то же самое количество аминокислот включается во вновь образованные молекулы белков (белковый биосинтез ). Высокий оборот белка в организме необходим потому, что многие белки относительно недолговечны : они начинают обновляться спустя несколько часов после синтеза, а биохимический полупериод составляет 2-8 дней. Ещё более короткоживущими оказываются ключевые ферменты промежуточного обмена. Они обновляются спустя несколько часов после синтеза. Это постоянное разрушение и ресинтез позволяют клеткам быстро приводить в соответствие с метаболическими потребностями уровень и активность наиболее важных ферментов. В противоположность этому особенно долговечны структурные белки, гистоны, гемоглобин или компоненты цитоскелета.

Почти все клетки способны осуществлять биосинтез белков (на схеме наверху слева). Построение пептидной цепи путём трансляции на рибосоме рассмотрено на в статьях , . Однако активные формы большинства белков возникают только после ряда дальнейших шагов. Прежде всего при помощи вспомогательных белков шаперонов должна сложиться биологически активная конформация пептидной цепи (свёртывание , см. , ). При пострансляционном созревании у многих белков удаляются части пептидной цепи или присоединяются дополнительные группы, например олигосахариды или липиды. Эти процессы происходят в эндоплазматическом ретикулуме и в аппарате Гольджи (см. ). Наконец, белки должны транспортироваться в соответствующую ткань или орган (сортировка , см. ).

Внутриклеточное разрушение белков (протеолиз ) происходит частично в липосомах. Кроме того, в цитоплазме имеются органеллы, так называемые протеасомы , в которых разрушаются неправильно свёрнутые или денатурированные белки. Такие молекулы узнаются с помощью специальных маркеров (см. ).

Статьи раздела «Белковый обмен: общие сведения»:

  • А. Белковый обмен: общие сведения


Biological Aging: Methods and Protocols investigates the various processes that are affected by the age of an organism. Several new tools for the ...

Обмен аминокислот. Динамическое состояние белков организма (биохимия)

Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и внешней средой. Аминокислоты непосредственно участвуют в биосинтезе большого количества других биологически активных соединений, регулирующих процессы обмена веществ в организме, таких как нейромедиаторы и гормоны. Аминокислоты служат донорами азота при синтезе всех азотсодержащих небелковых соединений, в том числе нуклеотидов, гема, креатина, холина и др.

Рис. 23.1. Общая схема метаболизма аминокислот в организме


Катаболизм аминокислот является источником энергии для синтеза АТФ. Энергетическая функция аминокислот становится значимой при голодании, некоторых патологических состояниях (сахарный диабет). Именно обмен аминокислот осуществляет взаимосвязь многообразных химических превращений в живом организме.

Большая часть аминокислот входит в состав белков, количество которых в организме взрослого человека составляет примерно 15 кг.

Какой-либо специальной формы депонирования аминокислот и белков, подобно глюкозе или жирным кислотам не существует. Поэтому резервом аминокислот могут служить все функциональные и структурные белки тканей, но преимущественно белки мышц. В организме человека в сутки распадается на аминокислоты около 400 г белков, примерно такое же количество синтезируется. Поэтому тканевые белки не могут восполнять затраты аминокислот при их катаболизме и использовании на синтез других веществ. Период полураспада белков различен – от нескольких минут до нескольких суток. Первичными источниками аминокислот не могут служить и углеводы, так как из них синтезируется только углеродная часть молекулы, а аминогруппа поступает от других аминокислот. Следовательно, основным источником аминокислот организма служат белки пищи.

Показателем, отражающим интенсивность аминокислотного обмена, является азотистый баланс – разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей).

Переваривание белков в желудочно-кишечном тракте

Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию свободной соляной кислоты, секретируемой обкладочными клетками слизистой желудка.

Секреция соляной кислоты представляет активный транспорт, осуществляемый протонной АТФ-азой с затратой АТФ.


Роль соляной кислоты:

1. денатурирует белки;

2. стерилизует пищу;

3. вызывает набухание труднорастворимых белков;

4. активирует пепсиноген;

5. создает рН-оптимум для действия пепсина;

6. способствует всасыванию железа;

7. вызывает секрецию секретина в двенадцатиперстной кишке.


В желудочном соке содержатся протеолитические ферменты пепсин, гастриксин и реннин. Главным из них является пепсин. Он вырабатывается главными клетками слизистой желудка в виде профермента пепсиногена. Активация его осуществляется соляной кислотой (медленная) и аутокаталитически пепсином (быстрая) путем отщепления фрагмента полипептидной цепи с N-конца (частичный протеолиз). При этом происходит изменение конформации молекулы и формирование активного центра. Пепсин действует при значениях рН 1,5–2,5 и является эндопептидазой с относительной специфичностью действия, расщепляющей пептидные связи внутри белковой молекулы.

Кроме пепсина в желудочном соке содержится фермент гастриксин, проявляющий протеолитическую активность при рН 3,0–4,0. По-видимому, именно он начинает переваривание белков.

В желудочном соке грудных детей содержится фермент реннин, который имеет большое значение для переваривания белков у грудных детей, т.к. катализирует створаживание молока (превращение растворимого казеиногена в нерастворимый казеин), в результате чего замедляется продвижение нерастворимого казеина в двенадцатиперстную кишку и он дольше подвергается действию протеаз.

Образовавшиеся в результате действия пепсина в желудке полипептиды поступают в двенадцатиперстную кишку, куда выделяется сок поджелудочной железы. Панкреатический сок имеет щелочную реакцию (рН 7,5–8,2), что обусловлено высоким содержанием бикарбонатов. Кислое содержимое, поступающее из желудка нейтрализуется, и пепсин теряет свою активность.

В панкреатическом соке содержатся протеолитические ферменты трипсин, химотрипсин, карбоксипептидаза и эластаза, которые вырабатываются также в виде проферментов. Трипсиноген активируется энтерокиназой (вырабатывается клетками слизистой двенадцатиперстной кишки), переходит в активный трипсин, который активирует все остальные ферменты поджелудочного и кишечного сока. Клетки поджелудочной железы защищены от действия протеаз тем, что ферменты желудочного сока образуются в виде неактивных предшественников, а в панкреас синтезируется особый белок-ингибитор трипсина. В полости ЖКТ протеазы не контактируют с белками клеток, поскольку слизистая оболочка покрыта слоем слизи, а каждая клетка содержит на наружной поверхности плазматической мембраны полисахариды, которые не расщепляются протеазами. Разрушение клеточных белков ферментами желудочного или кишечного сока происходит при язвенной болезни.

Переваривание продуктов протеолиза пищевых белков в тонком кишечнике осуществляется с помощью амино-, ди-, и трипептидаз, которые функционируют преимущественно пристеночно.

Таким образом, конечными продуктами переваривания белков в ЖКТ являются свободные аминокислоты, которые всасываются.

Всасывание аминокислот.

Происходит путем активного транспорта с участием переносчиков. Максимальная концентрация аминокислот в крови достигается через 30–50 мин после приема белковой пищи. Перенос через щеточную каемку осуществляется целым рядом переносчиков, многие из которых действую при участии Na + -зависимых механизмов симпорта. Причем аминокислоты конкурируют друг с другом за специфические участки связывания. Выяснено, что существуют транспортные системы, переносящие аминокислоты определенного строения: нейтральные с небольшим радикалом, нейтральные с объемным радикалом, кислые, основные и иминокислоты.

В настоящее время, расшифрован механизм транспорта аминокислот в клетки кишечника, мозга, почек, получивший название g-глутамильного цикла Майстера, ключевым ферментом которого является g-глутамилтрансфераза.

Всосавшиеся аминокислоты попадают в портальный кровоток и, следовательно, в печень, а затем в общий кровоток. Освобождается кровь от свободных аминокислот очень быстро – уже через 5 мин 85–100% их оказывается в тканях. Особенно интенсивно аминокислоты поглощаются печенью и почками.

Наследственные нарушения транспорта аминокислот

Болезнь Хартнупа – нарушение всасывания триптофана в кишечнике и его реабсорбции в почечных канальцах. Так как триптофан служит исходным продуктом для синтеза витамина РР, то основные проявления болезни Хартнупа – дерматиты, диарея и деменция, характерные для пеллагры.

Цистинурия – нарушение реабсорбции цистина в почках. Цистин плохо растворим в воде, поэтому выпадает в виде кристаллов, которые приводят к образованию цистиновых камней в почках и мочевыводящих путях.

Расщепление белков в тканях

Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые, карбоксильные и металлопротеиновые катепсины.


Роль катепсинов:

1. создание биологически активных пептидов путем ограниченного протеолиза белковых предшественников;

2. разрушение состарившихся и аномальных белков;

3. участие в фагоцитозе и делении клеток;

4. участие в аутолизе (при ишемии);

5. участие в патогенезе заболеваний, связанных с изменением функций лизосом (лизосомальные болезни накопления).


Кроме процессов протеолиза в лизосомах возможен процесс разрушения эндогенных белков непосредственно в цитозоле. При этом происходит соединение подлежащих гидролизу белков со специальным белком убиквитином. Происходит ковалентная модификация белка, что может изменять его функцию. К одной молекуле может быть присоединено несколько молекул убиквитина и это служит сигналом для переноса белка-мишени на большую высокомолекулярную частицу протеасому, состоящую из протеаз.

Превращение аминокислот микрофлорой кишечника

Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих самые разнообразные превращения пищевых аминокислот и не переваренных белков, в том числе и по несвойственным человеку метаболическим путям (гнилостный распад).


В результате образуются два типа веществ:

1. токсические продукты: фенол, крезол, индол, скатол, сероводород, амины, меркаптан;

2. Нетоксические продукты: кетокислоты, оксикислоты, жирные кислоты, спирты.


Обезвреживание токсических веществ происходит путем образования парных нетоксичных продуктов при соединении с 3-фосфоаденозин-5-фосфосульфатом (ФАФС, активированная форма серной кислоты), либо с уридиндифосфоглюкуроновой кислотой (УДФ-глюкуронат).

При кишечных инфекциях (дизентерия, брюшной тиф, холера) образуется во много раз большое количество продуктов гнилостного распада аминокислот, которые вызывают общую интоксикацию организма, нарушение проницаемости мембран слизистой оболочки кишечника, приводящее к поносам, обезвоживанию тканей и повышению температуры тела. Кроме того, возрастает активность декарбоксилаз патогенных бактерий, в результате образуются амины, создающие картину инфекционного заболевания.

Пути обмена аминокислот в тканях

Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот.


К ним относят:

1. по аминной группе – реакции дезаминирования и трансаминирования;

2. по карбоксильной группе – реакции декарбоксилирования.


Кроме этих общих путей возможны реакции по углеводородному радикалу аминокислот, которые являются специфическими для каждой аминокислоты.

Катаболизм большинства аминокислот начинается с отщепления a-аминогруппы, которое возможно в реакциях трансаминировани и дезаминирования.

Трансаминирование аминокислот

Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом которых является производное витамина В 6 – пиридоксальфосфат, который обратимо может переходить в пиридоксаминфосфат. Реакции трансаминирования обратимы, и могут проходить как в цитоплазме, так и в митохондриях клеток. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина.

Реакции трансаминирования протекают в 2 стадии. На первой стадии к пиридоксальфосфату в активном центре фермента присоединяется аминогруппа от первого субстрата – аминокислоты. Образуется комплекс фермент- пиридоксаминфосфат и кетокислота – первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований (альдимин и кетимин).

На второй стадии пиридоксаминфосфат соединяется с новой кетокислотой (второй субстрат) и снова через промежуточное образование 2 шиффовых оснований передает аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота – второй продукт реакции.

Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных – глутамат, аланин, аспартат. Наиболее распространенными в большинстве тканей являются аланинаминотрансфераза (АлАТ) и аспартатаминотрансфераза (АсАТ).

Наибольшая активность АсАТ обнаруживается в клетках сердечной мышцы и печени, в то время как в крови обнаруживается только фоновая активность АлАТ и АсАТ. Поэтому можно говорить об органоспецифичности этих ферментов, что позволяет их широко примененятьих с диагностической целью (при инфарктах миокарда и гепатитах).


Биологическое значение трансаминирования

Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование – заключительный этап синтеза заменимых аминокислот из соответствующих кетокислот, если они необходимы в данный момент клеткам. В результате происходит перераспределение аминнного азота в тканях. При трансаминированиии общее количество аминокислот в клетке не меняется.


Оксидазы D-аминокислот.

При физиологических значениях рН в тканях высоко активны оксидазы D-аминокислот. Они также обнаружены в почках и печени и находятся в микросомах. Роль оксидаз D-аминокислот невелика и до конца не понятна, потому что в белки пищи и тканей человека входят только природные L-аминокислоты.

В печени человека присутствуют специфические ферменты, катализирующие реакции дезаминирования серина, треонина, цистеина и гистидина неокислительным путем.

Дезаминирование аминокислот

Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.

Прямое дезаминирование – непосредственное отщепление аминогруппы от аминокислоты без промежуточных посредников. В живой природе возможны следующие типы прямого дезаминирования: окислительное, восстановительное, гидролитическое и путем внутримолекулярной перестройки. Но у человека дезаминирование происходит преимущественно окислительным путем в результате чего образуется соответствующая a-кетокислота и выделяется аммиак. Процесс идет с участием ферментов оксидаз. Выделены оксидазы L-аминокислот, превращающие L-изомеры аминокислот, и D-оксидазы.

Окислительное дезаминирование глутамата

Наиболее активно в тканях происходит дезаминирование глутаминовой кислоты. Реакцию катализирует фермент глутаматдегидрогеназа, который несколько отличается от типичных оксидаз L-аминокислот:

1. в качестве кофермента содержит НАД + или НАДФ + ;

2. обладает абсолютной специфичностью;

3. высокоактивна;

4. локализована в митохондриях.


Реакция идет в 2 этапа. Вначале происходит дегидрирование глутамата и образование a-иминоглутарата, затем – неферментативное гидролитическое отщепление имминогруппы в виде аммиака, в результате чего образуется α-кетоглутарат. Окислительное дезаминирование глутамата – обратимая реакция и при повышении концентрации аммиака может протекать в обратном направлении, как восстановительное аминирование α-кетоглутарата.

Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органах, кроме мышц. Она является регуляторным ферментом аминокислотного обмена. Аллостерические ингибиторы – АТФ, ГТФ, НАД(Ф)Н. Высокие концентрации АДФ активируют фермент. Таким образом, низкий энергетический уровень в клетке стимулирует разрушение аминокислот и образование α-кетоглутарата, поступающего в ЦТК как энергетический субстрат.

Глутаматдегидрогеназа может индуцироваться стероидными гормонами (кортизолом) и ингибироваться эстрогенами и тироксином.

Непрямое дезаминирование аминокислот

Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на α-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования или непрямого дезаминирования. Он происходит с участием 2 ферментов аминотрансферазы и глутаматдегидрогеназы. Значение этих реакций в обмене аминокислот очень велико, так как непрямое дезаминирование – основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей a-кетокислоты. Обратная последовательность реакций, при которой происходит синтез аминокислот из кетокислот, получила название трансреаминирования.

В мышечной ткани активность глутаматдегидрогеназы низка, поэтому в этих клетках при интенсивной физической нагрузке функционирует еще один путь непрямого дезаминирования с участием цикла ИМФ-АМФ. Образующийся при этом аммиак предотвращает закисление среды в клетках, вызванное образованием лактата.

Декарбоксилирование аминокислот

Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию. Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента. Продуктами реакции являются СО 2 и амины, которые оказывают выраженное биологическре действие на организм, и поэтому названы биогенными аминами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Биогенные амины

Гистамин образуется при декарбоксилировании гистидина в тучных клетках соединительной ткани.


В организме человека выполняет следующие функции:

1. стимулирует секрецию желудочного сока и слюны;

2. повышает проницаемость капилляров, вызывает отеки, снижает АД, но увеличивает внутричерепное давление, вызывая головную боль;

3. сокращает гладкую мускулатуру легких, вызывает удушье;

4. участвует в формировании воспалительных реакций – расширение сосудов, покраснение, отечность ткани;

5. вызывает аллергическую реакцию;

6. нейромедиатор;

7. медиатор боли.


Серотонин – образуется при декарбоксилировании и дальнейшем окислении триптофана.


Биологические функции:

1. оказывает мощное сосудосуживающее действие;

2. повышает кровяное давление;

3. участвует в регуляции температуры тела, дыхания;

4. медиатор нервных процессов в ЦНС (обладает антидепрессантным действием).


Дофамин образуется при декарбоксилировании диоксифенилаланина (ДОФА). При дальнейшем окислении и метилировании образуюся адреналин и норадреналин. Дофамин является нейромедиатором, контролирующим произвольные движения, эмоции и память. В высоких концентрациях дофамин стимулирует адренорецепторы, увеличивает силу сердечных сокращений, повышает сопротивление периферических сосудов (с параллельным увеличением почечного и коронарного кровотока). Кроме того, дофамин тормозит секрецию пролактина и соматотропина.

В нервных клетках декарбоксилирование глутамата приводит к образованию g-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга. Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса.

Цикл превращений ГАМК в мозге включает три сопряженных реакции, получивших название ГАМК-шунта. Первую катализирует глутаматкарбоксилаза. Эта реакция является регуляторной и обеспечивает скорость образования ГАМК в клетках мозга. Последующие 2 две реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат затем используется в цикле Кребса. Инактивация ГАМК возможна и окислительным путем под действием моноамионоксидазы.

При декарбоксилировании орнитина образуется путресцин, который является предшественником биологически активных веществ спермина и спермидина. Путресцин, спермин и спермидин имеют большой положительный заряд, легко связываются с отрицательно заряженными молекулами ДНК и РНК, входят в состав хроматина и участвуют в репликации РНК. Кроме того эти вещества стабилизируют структуру мембран клеток.

Этаноламин образуется при декарбоксилировании серина. В организме используется для синтеза холина, ацетилхолина, фосфатидилэтаноламинов, фосфатидилхолинов.

При декарбоксилировании лизина образуется кадаверин, который является трупным ядом.

Для осуществления биологической функции в организме требуется определенная концентрация биогенных аминов. Избыточное их накопление может вызвать различные патологические отклонения.


В связи с этим большое значение приобретают механизмы их инактивации:

1. окисление ферментами моноаминооксидазами (МАО) (кофермент ФАД). Таким путем чаще всего инактивируются дофамин, норадреналин, серотонин и ГАМК. При этом происходит окислительное дезаминирование биогенных аминов с образованием альдегидов, а затем соответствующих кислот, которые выводятся почками.

2. метилирование с участием S-аденозилметионина. Таким путем чаще всего инактивируются катехоламины – фермент катехол-орто-метилтрансфераза (КОМТ)

3. окисление с помощью диаминооксидаз – инактивация гистамина, а также короткоцепочечных алифатических диаминов (путресцина и кадаверина).

Пути катаболизма углеродного скелета аминокислот

Трансаминирование и дезаминирование аминокислот ведет к образованию безазотистых углеродных скелетов аминокислот – α-кетокислот. В состав белков входят 20 аминокислот, различающихся по строению углеводородного радикала, каждый из которых катаболизируется по своим специфическим метаболическим путям.

Катаболизм всех аминокислот сводится к образованию шести веществ, вступающих в общий путь катаболизма: пируват, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат.

Аминокислоты, которые превращаются в промежуточные продукты ЦТК (a-кетоглутарат, сукцинил-КоА, фумарат), и образуют в конечном итоге оксалоацетат, могут использоваться в процессе глюконеогенеза. Такие аминокислоты называются гликогенными. К ним относятся: аланин, аргинин, аспартат, глутамат, глицин, гистидин, метионин, пролин, серин, треонин, валин, цистеин.

Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты, их углеводородная часть превращается непосредственно в ацетоацетат (лейцин, лизин) или в ацетил-КоА (лейцин) и используются в синтезе кетоновых тел.

Тирозин, фенилаланин, изолейцин и триптофан являются смешанными или одновременно гликогенными и кетогенными. Часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата.

Истинной кетогенной аминокислотой является лейцин.